刚体力学测试卷-参考答案
刚体部分习题参考答案

m2 g.
4-26 小幅摆动的周期: T = 2π l12 + l22 ; g(l2 − l1 )
等值摆长:
l0
=
l12 + l2 2 l2 − l1
> l1 + l2
.
4-27
I
=
T12 T2 2 − T12
ml(l
−
T2 2 4π 2
g)
= 1.21×103 g ⋅ cm2
4-28
(1)
T= T0
T2 = T1e−0.3π = 53.3N .
a1
=
(m1R − m2r)R I c + m1R 2 + m2r 2
g,
a2
=
r R
a1
=
(m1R − m2r)r I c + m1R 2 + m2r 2
g;
T1
=
Ic + m2r(r + R) I c + m1R 2 + m2r 2
m1 g
,
T2
=
I c + m1r(r + R) I c + m1R 2 + m2r 2
ω
=
1 mr 2
h 2π
= 4.13 ×1016 md / s
4-4
v2
=
r1 r2
v1, tgθ2
=
v23 gr1v1
∝ v23;即v2增大,故θ2亦增大,θ2
> θ1.
4-5 ω' = 8 ω; 5
ΔEk
= 39 25
Ek0 ,增加的能量来自汽车的动力。
4-6 ω = v (这是转台反方向旋转地角速度) 。 2R
《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
刚体力学参考答案

mg —sin f A l sin三个独立方程有四个未知数,不能唯一确定。
【提示】:把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。
设L 为每一子弹相对与 O 点的角动量大小,3为子弹射入前圆盘的角速度,3为子弹射入第五章刚体力学参考答案(2014)—、选择题[C ]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为 M 的定滑轮,绳的两端分别 悬有质量为 m 和m 的物体(m v m ),如图5-7所示•绳与轮之间无相对滑动•若某时刻滑轮 沿逆时针方向转动,则绳中的张力 (A)处处相等. (B) 左边大于右边. (C)右边大于左边. (D) 哪边大无法判断. 【提示】:逆时针转动时角速度方向垂直于纸面向外 ,由于m v m ,实际上滑轮在作减 速转动,角加速度方向垂直纸面向内 ,设滑轮半径为 R,受右端绳子向下拉 力为T 2,左端绳子向下拉力为 T i ,对滑轮由转动定律得:(T 2-T I )R=J [D ]2、【基础训练3】如图5-8所示,一质量为 m 的匀质细杆AB 壁上,B 端置于粗糙水平地面上而静止•杆身与竖直方向成 角,则 1 1(A)为 mg pos . (B) 为 mg g4 2 (C) 为 m®n m2m 1图5-7 A 端靠在粗糙的竖直墙 A 端对墙壁的压力大 .(D) 不能唯一确定 图5-8■:::;SKB 【提示】: 因为细杆处于平衡状态,它所受的合外力为零,以 B 为参考点,外力矩也是平衡的,则有:NAfBAN B mgN A lcon[C]3、基础训练(7) 一圆盘正绕垂直于盘面的水平光滑固定轴 两个质量相同,速度大小相同,方向相反并在一条直线上的子弹, 内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (C)减小. (B) (D)不变. 不能确定. O 转动,如图5-11射来子弹射入圆盘并且留在盘m<J 为圆盘的转动惯量,J 子弹为子弹转动惯量,据角动量守恒[C ]4、【自测提高4】光滑的水平桌面上,有一长为 2L 、质量为m 的匀质细杆,可绕过其 中点且垂直于杆的竖直光滑固定轴 0自由转动,其转动惯量为 [mL ,起初杆静止•桌面上3有两个质量均为 m 的小球,各自在垂直于杆的方向上, 正对着杆的一端, 以相同速率v 相向运动,如图5-19所示•当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在 一起转动,则这一系统碰撞后的转动角速度应为…、 2v4v 6v 8v 12v (A)(B)• (C)• (D)(E)•3L5L7L9L7Lv y$ vO俯视图图 5-19【提示】:视两小球与细杆为一系统, 碰撞过程中系统所受合外力矩为零, 满足角动量守恒条件, 所以2 21 2lmv lmv [ml ml m(2l)]12可得答案(C )[A ] 5、【自测提高7】质量为m 的小孩站在半径为 R 的水平平台边缘上•平台可以绕通过 其中心的竖直光滑固定轴自由转动,转动惯量为 J .平台和小孩开始时均静止•当小孩突然 以相对于地面为 v 的速率在台边缘沿逆时针转向走动时, 旋转方向分别为【提示】:视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒:一 ,口 Rmv mR 2,v 、0 Rmv J 可得 ---------------- ------ (一)。
刚体结构力学试题及答案

刚体结构力学试题及答案一、选择题(每题4分,共20分)1. 刚体的转动惯量与物体的质量和形状有关,以下说法正确的是()。
A. 质量越大,转动惯量越大B. 质量分布越集中,转动惯量越小C. 质量分布越分散,转动惯量越大D. 转动惯量与物体的质量无关答案:C2. 刚体在力的作用下发生旋转,下列说法正确的是()。
A. 力矩的大小与力的大小成正比B. 力矩的大小与力臂的长度成反比C. 力矩的大小与力的大小和力臂的长度都成正比D. 力矩的大小与力的大小和力臂的长度都无关答案:C3. 刚体的角速度与线速度之间的关系是()。
A. 角速度是线速度的两倍B. 线速度是角速度的两倍C. 角速度与线速度成正比D. 角速度与线速度成反比答案:C4. 在刚体的平移运动中,下列说法正确的是()。
A. 刚体上任意两点的位移相同B. 刚体上任意两点的速度相同C. 刚体上任意两点的加速度相同D. 以上说法都正确答案:D5. 刚体的转动惯量与物体的转动轴有关,以下说法正确的是()。
A. 转动轴越靠近物体的重心,转动惯量越小B. 转动轴越远离物体的重心,转动惯量越大C. 转动轴的位置不影响转动惯量D. 转动轴的位置与转动惯量无关答案:A二、填空题(每题4分,共20分)1. 刚体的转动惯量定义为物体的质量与其到转轴的____的乘积。
答案:距离平方2. 刚体在力矩作用下产生的角加速度的大小与力矩成正比,与物体的____成反比。
答案:转动惯量3. 根据牛顿第二定律,刚体的角加速度等于力矩除以物体的____。
答案:转动惯量4. 刚体的角速度和角位移的单位分别是____和____。
答案:弧度每秒,弧度5. 刚体在平面内的运动可以分解为____和____。
答案:平移,旋转三、简答题(每题10分,共30分)1. 请简述刚体的转动惯量与哪些因素有关,并举例说明。
答案:刚体的转动惯量与物体的质量分布和转轴的位置有关。
例如,一个均匀的圆盘绕通过其质心的轴旋转时,其转动惯量较小;而如果绕通过其边缘的轴旋转,其转动惯量则较大。
刚体力学基础-习题-解答

衡水学院 理工科专业 《大学物理B 》 刚体力学基础 习题命题教师:郑永春 试题审核人:张郡亮一、填空题(每空1分)1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。
此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma 2 _,对通过三角形中心且平行于其一边的轴的转动惯量为J A =__12ma 2_,对通过三角形中心和一个顶点的轴的转动惯量为J B =__21ma 2。
2、两个质量分布均匀的圆盘A 和B 的密度分别为ρA 和ρB (ρA >ρB ),且两圆盘的总质量和厚度均相同。
设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 和J B ,则有J A < J B 。
3、 一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度ω0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过了角度∆θ=__4.0rad4、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =__2275 kg·m 2·s 1 _;它们各自收拢绳索,到绳长为5 m 时,各自的速率υ =__13 m·s 1_。
5、有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。
如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将 变大 ,角加速度大小将 变小 。
二、单项选择题(每小题2分)( A )1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的是:A.这两个力都平行于轴作用时,它们对轴的合力矩一定是零;B.这两个力都垂直于轴作用时,它们对轴的合力矩一定是零;C.当这两个力的合力为零时,它们对轴的合力矩也一定是零;D.当这两个力对轴的合力矩为零时,它们的合力也一定是零。
大学物理刚体力学测试题答案

2
3 1 1 J mi ri m l m l m l 2 2 2 5 2 ml 4
2
对OX轴(垂直纸面向外)的转动惯量为 2 2 2 l
2
l 3
对OZ轴的转动惯量为
1
l O
y
2 2 1 1 1 2 x 2 J mi ri m l m l 0 ml 2 2 2
0 240 转动,则飞轮边缘上一点在飞轮转过 时的切向加速度 at
=
0.15m s
2
,法向加速度 a n =
0.4 m s2
。
4 角度需变为弧度计算 240 rad 3 4 2 1 2 4 2 16 2 3 t t 2 3 0.5 3
1.如图所示,一均匀圆盘,半径为 R,质量为 m,其中心轴装在光 滑的固定轴上,并与圆盘垂直。在圆盘边上绕一轻绳,绳的下端挂 ' 一质量为 m 的物体,求圆盘的角加速度和圆盘边缘各点切向加速度
4.长为 l 的均匀细棒可绕通过其一端并与之垂直的水平光滑轮转动。 0 3g 设棒从水平位置开始释放,转过 30 时棒的角速度为___________,角 2l 3 3g 。 加速度为__________ 1 4l
h
(1)质心下落高度为 1 h l sin 30 2 重力的功
30
2
l sin 30
1 A mg l sin 30 2
由刚体的动能定理, 1 1 1 1 2 2 mg l sin 30 J 0 ml 2 2 2 3
mg
3g 3g sin 30 l 2l
重力的力矩
1 重力力臂 d 2 l cos 30
刚体和相对论力学课堂测验题参考解答(2010-01)

mg T ma 0, TR M r J 0.
得
M r TR mgR
(2)同理,由牛顿第二定律及转动定律,有
Mg T Ma, T R M r J .
a 其中, T R mgR J . R
得
3( M m) Mg a . 2
2.一长为l,质量为M的杆可绕支点o自由转动。一质 量为m,速度为v的子弹射入距支点为a的棒内。若棒 偏转角为θ=30°。问子弹的初速度为多少?
3、一根米尺静止在K'系中,与O'x’轴成30°夹角。如 果在K系中测得该米尺与Ox轴夹角为45°,试求:(1) K'系相对于K系的速率u为多少?;(2)在K系中该米 尺的长度为多少? 解:(1)由于米尺只在x方向上有长度收缩,所以有
l x l x 1 u 2 / c 2 l cos 30 1 u 2 / c 2 l y l l sin 30 y
t t ux / c 2 1 u2 / c 2 ux / c 2 1 u2 / c 2 5.77 10 8 s
7.已知惯性系K'系相对K系以速率u=0.6c沿x、 x'轴 正方向运动,若从K'系中原点O '沿x、 x'轴正方向发 出一光脉冲,在K'系中测得光速 vx c ,则则在K系 c 中测得光速 v x .
解: 角动量守恒:
o
30°
1 2 2 mva Ml ma 3
机械能守恒:
l a v
11 2 l 2 2 Ml ma mga1 cos 30 Mg 1 cos 30 23 2
刚体力学习题解答.docx

第三章习题解答3.13 某发动机飞轮在时间间隔t内的角位移为。
求 t时刻的角速度和角加速度。
解:3.14桑塔纳汽车时速为 166km/h,车轮滚动半径为 0.26m,发动机转速与驱动轮转速比为 0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m,发动机转速为 n1, 驱动轮转速为 n2, 汽车速度为 v=166km/h 。
显然,汽车前进的速度就是驱动轮边缘的线速度,,所以:3.15 如题 3-15图所示,质量为 m的空心圆柱体,质量均匀分布,其内外半径为 r1和r2,求对通过其中心轴的转动惯量。
解:设圆柱体长为 h ,密度为,则半径为 r,厚为 dr的薄圆筒的质量 dm 为:对其轴线的转动惯量为3.17 如题 3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。
解:如图所示,圆形细杆对过 O轴且垂直于圆形细杆所在平面的轴的转动惯量为 mR2,根据垂直轴定理和问题的对称性知:圆形细杆对过轴的转动惯量为 mR2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:3.18 在质量为 M ,半径为 R的匀质圆盘上挖出半径为 r的两个圆孔,圆孔中心在半径R的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
解:大圆盘对过圆盘中心 o且与盘面垂直的轴线(以下简称 o轴)的转动惯量为.由于对称放置,两个小圆盘对 o轴的转动惯量相等,设为 I ’,圆盘质量的面密度σ=M/πR2,根据平行轴定理,设挖去两个小圆盘后,剩余部分对o轴的转动惯量为 I ”3.19一转动系统的转动惯量为I=8.0kgm 2,转速为ω=41.9rad/s,两制动闸瓦对轮的压力都为 392N,闸瓦与轮缘间的摩擦系数为μ=0.4,轮半径为 r=0.4m,问从开始制动到静止需多长时间?解:由转动定理:制动过程可视为匀减速转动,3.20一轻绳绕于 r=0.2m的飞轮边缘,以恒力F=98N 拉绳,如题 3-20图(a)所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《 大学物理B 》课程习题(刚体定轴转动)参考答案
一、单项选择题(11题)
1 B
2 B
3 D
4 B
5 A
6 B
7 D
8 D
9 C 10 B 11 A
二、填空题(10题)
1. 减小,增大,保持不变,增大 .
2. 4s ,s m /15-。
3. μmgl 2
1。
4. 62.5,s 35. 5. l g 23,l g 3。
6. mgl 21,mgl 18
1. 7. 不断减小,不断增加
8. (J/k)ln2。
9.
θcos 23l g , 10.
三、计算题(6题)
1.解:(分析知,物体m 受重力mg 、绳子的拉力T 作用,
对定滑轮: βJ TR =……..2分
对物体m 有:ma T mg =-……..2分
又 βR a =………….2分 (22
1MR J =
) 解得:g M m m a 2
/+=……2分 221at h =Θ mg h M m t )2(+=∴……2分
2.利用机械能守恒
222
121ωJ m mgh +=
v ——4分 其中R v m ==ω,20R 21J ——2分 带入解得:gh m 2)2(0m
m 2m m mgh 2v 0+=+= ——2分 3. 解:以启动前的位置为各势能的零点,启动前后应用机械能守恒定律
037sin 212121022
22=-++mgx r
J m kx υυ—————4分
0=υ 时,得0=x 或()m x 8.11237sin 8.90.22=︒⨯⨯⨯=—————6分
4. 解:运用角动量守恒,
带入运算,可得:v=4m/s —————6分
5. 解:作示力图.两重物加速度大小a 相同,方向如图.
示力图 2分
m 1g -T 1=m 1a 1分
T 2-m 2g =m 2a 1分设滑
轮的角加速度为β,则 (T 1-T 2)r =J β 2分
且有 a =r β
1分
由以上四式消去T 1,T 2得: ()()J
r m m gr m m ++-=22121β 2分
开始时系统静止,故t 时刻滑轮的角速度.
()()J
r m m grt m m t ++-==22121 βω 1分
6. 解球体的收缩可视为球的内力所引起,因而在收缩前后球体的角动量守恒. 1分 设J 0和ω 0、J 和ω分别为收缩前后球体的转动惯量和角速度, 则有
J 0ω 0 = J ω ① 2分
由已知条件知:J 0 = 2mR 2 / 5,J = 2m (R / 2)2 / 5
代入①式得 ω = 4ω 0 1分 即收缩后球体转快了,其周期
442200T T =π=π=
ωω 1分 周期减小为原来的1 / 4. m 2g m 1g r a T 1T 2T 2T 1β l m M l m υυ)(30sin 0+=。