余角和补角11

合集下载

浙教版数学七年级上册6.8《余角和补角》教学设计

浙教版数学七年级上册6.8《余角和补角》教学设计

浙教版数学七年级上册6.8《余角和补角》教学设计一. 教材分析《余角和补角》是浙教版数学七年级上册第六章第八节的内容,主要介绍了余角和补角的概念、性质及其运用。

本节内容是在学生已经掌握了角的分类、垂线的性质等知识的基础上进行学习的,是进一步研究三角形的重要基础。

通过本节内容的学习,学生能够理解余角和补角的概念,掌握求解余角和补角的方法,并能运用余角和补角解决一些实际问题。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象力,但对于余角和补角这类抽象的概念,仍需要通过具体的实例和操作来加深理解。

学生在学习过程中,可能对余角和补角的求解方法容易混淆,需要在实践中不断巩固。

此外,学生对于实际问题的解决,还需要教师的引导和启发。

三. 教学目标1.知识与技能:理解余角和补角的概念,掌握求解余角和补角的方法,能够运用余角和补角解决一些实际问题。

2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象力,提高学生解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:余角和补角的概念,求解余角和补角的方法。

2.难点:余角和补角的运用,解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入余角和补角的概念,让学生在具体的情境中感受和理解。

2.合作学习法:引导学生进行小组讨论和合作,共同探究余角和补角的求解方法。

3.实践操作法:让学生通过实际的操作,加深对余角和补角的理解。

六. 教学准备1.教具:多媒体课件、黑板、粉笔。

2.学具:三角板、直尺、铅笔。

3.教学素材:生活实例、练习题。

七. 教学过程1.导入(5分钟)利用多媒体课件展示一些生活实例,如在教室里的学生在座位上的角度关系,引导学生观察和思考。

提问:这些角度之间有什么关系?学生通过观察和思考,得出余角和补角的概念。

2.呈现(10分钟)教师通过讲解和示范,呈现余角和补角的概念及其性质。

(922)余角和补角专项练习30题(有答案)ok

(922)余角和补角专项练习30题(有答案)ok

余角和补角专项练习30题(有答案)1.若∠α=40°,则∠α的余角是_________.2.已知一个角的补角比这个角的余角的3倍大10°,求这个角的度数.3.已知一个角的补角等于这个角的余角的4倍,求这个角的度数.4.一个角的余角比它的补角的还少20°,求这个角.5.一个角的补角是123°24′16″,则这个角的余角是多少.6.一个角的补角是它的3倍,这个角是多少度?7.如图,∠AOC和∠BOD都是直角,如果∠AOB=150°,求∠COD的度数.8.已知∠α和∠β互余,且∠α比∠β小25°,求∠α﹣∠β的度数.9.一个角的补角是它的余角的10倍,求这个角.10.已知一个角的补角比这个角小30°,求这个角的度数.11.已知∠α与∠β互为补角,并且∠α的两倍比∠β大60°,求∠α、∠β.12.已知∠α=2∠β,∠α的余角的3倍等于∠β的补角,求∠α、∠β的度数.13.若∠1与∠2互余,∠3与∠1互补,∠2=27°18′,求∠3的度数.14.如图,A、O、B在同一条直线上,∠AOD=∠DOB=∠COE=90°.(1)图中∠2的余角有_________,∠1的余角有_________.(2)请写出图中相等的锐角,并说明为什么?(3)∠1的补角是什么?∠2有补角吗?若有,请写出.15.若一个角的余角与这个角的补角之比是2:7,求这个角的邻补角.16.一个角的补角与它的余角的2倍的差是平角的,求这个角.17.已知互余两角的差为20°,求这两个角的度数.18.如图,OC是∠AOB的平分线,且∠AOD=90°.(1)图中∠COD的余角是_________;(2)如果∠COD=24°45′,求∠BOD的度数.19.如图,OD平分∠BOC,OE平分∠AOC,若∠BOC=70°,∠AOC=50°,请求出∠AOB与∠DOE的大小,并判断它们是否互补.20.一个角的余角比它的2倍角的补角还少15°,求这个角的度数.21.如图,点A、O、E在同一条直线上,OB、OC、OD都是射线,∠1=∠2,∠1与∠4互为余角.(1)∠2与∠3的大小有何关系?请说明理由.(2)∠3与∠4的大小有何关系?请说明理由.(3)说明∠3的补角是∠AOD.22.如图所示,∠AOC=90°,OB⊥OD,则与∠BOC相等的角有谁?图中共有多少对互为余角请写出来.23.如图,直线AB与CD相交于O,OE平分∠AOB,OF平分∠COD.(1)图中与∠COA互补的角是_________;(把符合条件的所有角都写出来)(2)如果∠AOC=35°,求∠EOF的度数.24.已知∠α与∠β互为补角,且∠β的比∠α大15°,求∠α的余角.25.如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.(1)指出图中∠AOD的补角,∠BOE的补角;(2)若∠BOC=68°,求∠COD和∠EOC的度数;(3)∠COD与∠EOC具有怎样的数量关系?26.如图,点A、O、B三点在一条直线上,C为直线AB外任意一点,OE、OF分别是∠AOC和∠BOC的平分线.(1)你能求出∠EOF的度数吗?如果能,请直接写出∠EOF的度数;(2)写出∠COF的所有余角;(3)写出∠AOF的所有补角.27.有两个角,若第一个角割去它的后,与第二个互余,若第一个角补上它的后,与第二个角互补,求这两个角的度数.28.如图,直线AB、CD相交于点O,OE⊥CD,射线OF平分∠AOE.(1)请写出图中三对互余的角;(2)若∠BOD=20°,求∠BOE及∠COF的度数.29.已知∠AOB=40°,∠BOC与∠AOB互为补角,OD是∠BOC的平分线,求∠AOD的度数.30.如图,已知直线AB与CD相交于点O,OE、OF分别是∠BOD、∠AOD的平分线.(1)∠DOE的补角是_________;(2)若∠BOD=62°,求∠AOE和∠DOF的度数;(3)判断射线OE与OF之间有怎样的位置关系?并说明理由.余角和补角30题参考答案:1.若∠α=40°,则∠α的余角是50°.2.设这个角是x,则(180°﹣x)﹣3(90°﹣x)=10°,解得x=50°.3.设这个角为x,则它的补角为(180°﹣x)余角为(90°﹣x),由题意得:180°﹣x=4(90°﹣x)解得x=60°4.设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),根据题意可,得90°﹣x=(180°﹣x)﹣20°,解得x=75°.5.若一个角的补角是123°24′16″,则这个角为180°﹣123°24′16″=56°35′46″,则它的余角为90°﹣56°35′46″=33°24′16″,故这个角的余角为33°24′16″6.设这个角为x,则它的补角为(180°﹣x),依题意得,180°﹣x=3x 解得x=45°.故答案为45°7.∵∠BOD是直角,∴∠BOD=90°,∵∠AOB=150°,∴∠AOD=60°,又∵∠AOC是直角,∴∠AOC=90°,∴∠COD=30°.故答案为30°8.根据题意可知,∠α+∠β=90°①,∠α+25°=∠β②,把②式代入①中,得∠α=32.5°,∠β=57.5°,所以∠α﹣∠β=32.5°﹣11.5°=21°.故答案为21°9.设这个角是x,则180°﹣x=10(90°﹣x),解得x=80°.故答案为80°10.设这个角为x,则这个角的补角为(180﹣x),那么180°﹣x=x﹣30°,解得x=105°.答:这个角为105°11.设∠β为x°,则∠α为(180﹣x)°2(180﹣x)﹣x=60∴x=100∴∠α=80°,∠β=100°.故答案为∠α=80°,∠β=100°.12.根据题意得∠α=2∠β,3(90°﹣∠α)=180°﹣∠β,解得:∠α=36°,∠β=18°.故答案为∠α=36°,∠β=18°13.∵∠1与∠2互余,∠2=27°18′∴∠1=62°42′,∵∠3与∠1互补,∴∠3=117°18′.答:∠3的度数为117°18′.又∠2和∠4都是∠1的余角,根据同角的余角相等得∠2=∠4.(3)∠1的补角是∠BOC,∠2有补角,是∠AOE15.设这个角为α,则这个角的余角为90°﹣α,这个角的补角为180°﹣α.依照题意,这两个角的比为:(90°﹣α):(180°﹣α)=2:7.所以360°﹣2α=630°﹣7α,5α=270°,所以α=54°.从而,这个角的邻补角为:180°﹣54°=126°16.设这个角为x,(180°﹣x)﹣2(90°﹣x)=180×=60°,答:这个角是60°17.设这个角为α(α>45°),则它的余角为90°﹣α,根据题意,α﹣(90°﹣α)=20°;得,α=55°,则其余角为35°.答:这两个角分别为55°和35°18.(1)∠AOC,∠BOC;(答对1个给1分)(2)∠AOC=∠AOD﹣∠COD=90°﹣24°45′=65°15′∵OC是∠AOB的平分线,所以∠AOB=2∠AOC=130°30′∴∠BOD=∠AOB﹣∠AOD=130°30′﹣90°=40°30′19.∵OD平分∠BOC,∠BOC=70°,∴∠BOD=∠BOC=35°,同理∠COE=25°,∴∠DOE=∠COD+∠COE=60°,∵∠BOC=70°,∠AOC=50°,∴∠AOB=∠AOC+∠BOC=120°,∴∠AOB+∠DOE=120°+60°=180°.答:∠AOB与∠DOE互补.20.设这个角的度数为x,则它的余角为(90°﹣x),补角为(180°﹣x),依题意,得:(90°﹣x)=180°﹣2x﹣15°,解得x=75°,∴这个角的度数为75°21.(1)∠2与∠3互余.理由:由A、O、E在同一直线上知∠1+∠2+∠3+∠4=180°.由∠1与∠4互余知∠1+∠4=90°,则∠2+∠3=90°,所以∠2与∠3互余.(2)∠3=∠4.理由:由(1)知∠1+∠4=∠2+∠3,又∠1=∠2,则∠3=∠4.(3)由(2)中∠3=∠4知∠3的补角就是∠4的补角.因为∠4的补角是∠AOD,所以∠3的补角是∠AOD22.∵∠AOC=90°,OB⊥OD,∴∠EOA+∠AOB=∠AOB+∠BOC,∴∠BOC=∠AOE,23.(1)图中与∠COA互补的角是∠AOD或∠COB.故答案为:∠AOD或∠COB.(2)∵OE平分∠AOB,OF平分∠COD.∴∠AOE=90°,∠COF=90°,∵∠AOC=35°,∴∠EOF=∠AOE+∠COF﹣∠AOC=90°+90°﹣35°=145°.或∠EOF=∠AOE+∠COF+∠AOC=215°.答:∠EOF为145°或215°.24.根据题意及补角的定义,∴,解得,∴∠α的余角为90°﹣∠α=90°﹣63°=27°.25.(1)∠AOD的补角为∠BOD,∠BOE的补角为∠AOE;(2)∵OD平分∠BOC,∠BOC=68°,∴∠COD=∠BOC=×68°=34°,∵∠BOC=68°,∴∠AOC=180°﹣∠BOC=180°﹣68°=112°,∵OE平分∠AOC,∴∠EOC=∠AOC=×112°=56°;(3)∵OD平分∠BOC,OE平分∠AOC,∴∠COD=∠BOC,∠EOC=∠AOC,∴∠COD+∠EOC=(∠BOC+∠AOC)=×180°=90°,∴∠COD与∠EOC互余26.(1)∵OE、OF分别是∠AOC和∠BOC的平分线.∴∠BOF=∠COF,∠AOE=COE,又∵∠AOC+∠BOC=180°,∴∠AOE+∠COE+∠BOF+∠COF=180°,∴∠EOC+∠COF=90°,又∵∠EOF=∠EOC+∠EOF,∴∠EOF=90°;(2)由(1)可知,∠COF的余角有∠EOC,∠AOE;27.设第一个角为α,第二个角为β,根据题意得:,解得:∴这两个角分别是90°和3028.(1)∵OE⊥CD,∴∠EOD=∠EOC=90°,∴∠BOE+∠BOD=90°,∠EOF+∠COF=90°,∴∠BOE与∠BOD互为余角;∠EOF与∠COF互为余角;又∵射线OF平分∠AOE.∴∠AOF=∠EOF,∴∠AOF+∠COF=90°,∴∠COF与∠AOF互为余角;(2)∵∠BOD=20°,∴∠BOE=70°,∴∠EOF+∠AOF=90°+20°=110°,∵∠EOF=∠AOF,∴∠EOF=∠AOF=55°,∴∠COF=55°﹣20°=35°29.解:∵∠AOB=40°,∠BOC与∠AOB互为补角,∴∠BOC=140°,又∵OD是∠BOC的平分线,∴∠DOB=70°,∴∠AOD=∠AOB+∠BOD=110°.②∵∠AOB=40°,∠BOC与∠AOB互为补角,∴∠BOC=140°,又∵OD是∠BOC的平分线,综上可得∠AOD的度数为110°或30°30.(1)∵OE是∠BOD的平分线,∴∠DOE=∠BOE,又∵∠BOE+∠AOE=180°,∠DOE+∠COE=180°,∴∠DOE的补角是∠AOE或∠COE;(2))∵OE是∠BOD的平分线,∠BOD=62°,∴∠BOE=∠BOD=31°,∴∠AOE=180°﹣31°=149°,∵∠BOD=62°,∴∠AOD=180°﹣62°=118°,∵OF是∠AOD的平分线,∴∠DOF=×118°=59°;(3)OE与OF的位置关系是:OE⊥OF.理由如下:∵OE、OF分别是∠BOD、∠AOD的平分线,∴∠DOE=∠BOD,∠DOF=∠AOD,∵∠BOD+∠AOD=180°,∴∠EOF=∠DOE+∠DOF=(∠BOD+∠AOD)=90°,∴OE⊥OF。

四年级下第11讲 角度计算

四年级下第11讲 角度计算

四春第11讲 角度计算一、知识要点1、补角、余角如果两个角的和是一个平角,那么这两个角互为补角,其中一个角叫做另一个角的补角; 如果两个角的和是一个直角,那么这两个角互为余角,其中一个角叫做另一个角的余角。

2、对顶角两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。

两条直线相交,构成两对对顶角。

互为对顶角的两个角相等(对顶角的性质)。

3、多边形n 边形的内角和等于。

二、例题精选【例1】 已知∠1、∠2、∠3是三角形中的三个内角,如果:∠1+∠2=∠3,求∠3是多少度?【巩固1】已知∠1、∠2、∠3是三角形中的三个内角,如果∠1比∠2大30°,∠2比∠3大30°,则这个三角形是什么三角形?【例2】 正五边形的内角和是多少度?其每个内角是多少度?【巩固2】正六边形的内角和是多少度?其每个内角是多少度?【例3】 如图,九张同样的直角三角形卡片,拼成了图示的平面图形。

这种三角形卡片中的两个锐角分别是多少度?()2180n -⨯o【巩固3】如图所示,在正方形ABCD 中有一个点E ,使三角形BCE 是正三角形。

求EAB ∠的大小。

【例4】 一个正三角形、一个正方形和一个正五边形叠放在一起,如图所示,求α∠。

【巩固4】如图所示,五条线段依次首尾相连成了一个五角星。

问:12345∠+∠+∠+∠+∠等于多少度?【例5】 如图,如果BC=CD=DA ,请求出图中A ∠和B ∠的度数。

【例6】 下图是由风筝形和镖形两种不同的砖铺设而成。

请仔细观察这个美丽的图案,并且回答风筝形砖的四个内角各是多少度?EDCB Aα79︒24︒12345BA150︒CD四、回家作业作业1已知等腰三角形的一个角是38°,求另两个角的大小?作业2 已知:如图∠2=58°,∠3=37°,∠4=55°,求∠1的度数?作业3 如图:已知∠1=600,∠2=250,∠3=200,求∠4的度数。

6.3.3余角和补角课件人教版数学七年级上册

6.3.3余角和补角课件人教版数学七年级上册
活动
45°
45°
30°
60°
45°+ 45°= 90°
30°+ 60°= 90°
如果两个角的和等于90°(直角),就说这两个角互为余角, 即其中每一个角是另一个角的余角.
情景引入
活动 拼一拼三角板,你发现了什么?
90° 90°
90°+ 90°= 180°
如果两个角的和等于180°(平角),就说这两个角互为补角, 即其中每一个角是另一个角的补角.
人教版·初中数学·七年级上册
第六章 几何图形初步 6.3.3 余角和补角
学习目标
1. 通过具体情境了解余角和补角的概念,理解余角和补 角的性质,能运用它们解决相关问题,提高学生分析问 题、解决问题的能力.
2.经历观察、探究、操作等过程,发展学生的几何概念, 培养学生的推理能力和语言表达能力.
情景引入 观察下面的三角板,你发现了什么?
为( C )
A. 70
B.108
C. 72
D. 54
练习4一个角是70°39′,求它的余角为 19°21′,补角为 109°21′。
课堂小结
•这节课我学会(懂得)了……
如果两个角的和等于90º(直角),就说这两个角 互为余角,即其中每一个角是另一个角的余角.


如果两个角的和等于180º(平角),就说这两个角
2
1
3
4
等角的补角相等
补角性质:同角或等角的补角相等
归纳小结
两角间的 数量关系
互余 ∠1 +∠2 = 90° 或∠1 = 90° -∠2
对应图形
12
性质
同角或等角的 余角相等
互补 ∠1 +∠2 = 180° 或∠1 = 180° -∠2

考点06 余角和补角(解析版)

考点06 余角和补角(解析版)

考点06 余角和补角1.(甘肃省肃南县第一中学2019—2020学年七年级上学期期末试题(一))如果两个角互为补角,而其中一个角是另一个角的5倍,那么这两个角是( )A .15o ,75oB .20o ,100oC .10o ,50oD .30o ,150o【答案】D【分析】设较小的角为x ,则较大的角5x ,根据这两个角互为补角可得关于x 的方程,解方程即可求出x ,进而可得答案.【详解】解:设较小的角为x ,则较大的角5x ,根据题意得:x+5x=180°,解得:x=30°,5×30°=150°;所以这两个角是:30°,150°.故选:D .【点睛】本题考查了互补两角的概念和简单的一元一次方程的应用,属于基础题型,正确理解题意、熟练掌握上述知识是解题的关键.2.(河北省新乐市2020-2021学年七年级上学期期中数学试题)若90αθ∠+∠=︒,βθ∠=∠,则α∠与β∠的关系是( ) A .α∠与β∠互余B .α∠与β∠互补C .α∠与β∠相等D .α∠大于β∠【答案】A 【分析】根据等角的余角相等可直接进行排除选项.【详解】解:∵90αθ∠+∠=︒,βθ∠=∠,∴90αβ∠+∠=︒,故选A .【点睛】本题主要考查余角,熟练掌握余角的性质是解题的关键.3.(广东省珠海市香洲区紫荆中学2020-2021学年七年级上学期期中数学试题)已知一个角是30°,那么这个角的补角的度数是( )A .120°B .150°C .60°D .30°【答案】B【分析】根据互补的两角之和为180°即可得出这个角的补角.【详解】解:这个角的补角18030150=︒-︒=︒.故答案为:B .【点睛】本题考查了补角的知识,属于基础题,掌握互补的两角之和为180°是关键.4.(广东省揭阳市2019-2020学年七年级下学期期中数学试题)已知115A ∠=︒,B 是A ∠的补角,则B 的余角的度数是( )A .65︒B .115︒C .15︒D .25︒【答案】D【分析】根据余角与补角的定义逐步解答即可.【详解】解:由题意得,180B A ∠=︒-∠18011565=︒-︒=︒, ∴B 的余角为906525︒-︒=︒.故选:D.【点睛】本题考查了余角和补角的定义与计算,熟练掌握定义是解答关键.5.(河北省石家庄市灵寿县2019-2020学年七年级上学期期末数学试题)已知A ∠是它的补角的4倍,那么A ∠=( )A .144︒B .36︒C .90︒D .72︒【答案】A【分析】根据A ∠的补角是180A ∠︒-,结合A ∠是它的补角的4倍,列方程求解即可.【详解】∵A ∠的补角是180A ∠︒-,依题意得:()4180A A ∠∠=︒-,解得:144A ∠=︒.故选:A .【点睛】本题主要考查了补角的概念,正确得出等量关系是解题关键.6.(陕西省榆林市清涧县2019-2020学年七年级上学期期末数学试题)如图,AOB ∠为平角,且14AOC BOC ∠=∠,则BOC ∠的度数是( )A .144︒B .36︒C .45︒D .135︒【答案】A 【分析】根据平角的性质得到180AOC BOC ∠+∠=︒,再根据这两个角之间的比例关系求出BOC ∠.【详解】解:∵AOB ∠是平角,∴180AOC BOC ∠+∠=︒, ∵14AOC BOC ∠=∠, ∴41801445BOC ∠=︒⨯=︒. 故选:A .【点睛】本题考查平角的性质,解题的关键是利用平角的性质和角度之间的比例求角度.7.(甘肃省肃南县第一中学2019—2020学年七年级上学期期末试题(一)231745'''︒的余角是_________________,补角是___________________.【答案】664215'''︒ 1564215'''︒【分析】根据互为余角、互为补角的定义进行计算即可求得答案.【详解】解:∵90231745895960231745664215''''''''''''︒-︒=︒-︒=︒∴231745'''︒的余角是664215'''︒;∵18023174517959602317451564215''''''''''''︒-︒=︒-︒=︒∴231745'''︒的补角是1564215'''︒.故答案是:664215'''︒;1564215'''︒【点睛】本题考查了余角、补角的概念,掌握基本概念是解决问题的关键.8.(河北省张家口市宣化区2020-2021学年七年级上学期期中(冀教版)试题如果∠α=26°,那么∠α的余角等于__________ .【答案】64°【分析】根据互为余角的两个角的和等于90°列式计算即可的解.【详解】∵∠α=26°,∴∠α的余角=90°-26°=64°.故答案为:64°【点睛】本题考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.9.(黑龙江省大兴安岭塔河县2019-2020学年七年级上学期期末数学试题)已知∠α=36°14′,则∠α的余角的度数是_____.【答案】53°46′【分析】直接利用互为余角的定义结合度分秒的转化得出答案.【详解】解:∵∠α=36°14′,则∠α的余角的度数是:90°-36°14′=89°60′-36°14′=53°46′;故答案为:53°46′.【点睛】此题主要考查了互为余角的定义结合度分秒的转化,正确把握相关定义是解题关键.10.(河北省唐山市乐亭县第三初级中学2020-2021学年七年级上学期期末数学试题)6250'°的余角等于______.【答案】2710'°【分析】根据余角的定义、角的四则运算即可得.【详解】6250'°的余角为906250896062502710''''︒-︒=︒-︒=︒,故答案为:2710'°.【点睛】本题考查了余角、角的四则运算,熟练掌握余角的定义是解题关键.11.(浙江省宁波市江北外国语学校2020-2021学年七年级上学期期中数学试题)30°角的补角是______度.【答案】150【分析】根据互补的两角之和为180°,即可得出答案.【详解】解:30°的补角为18030150︒︒︒-=.故答案为:150【点睛】本题考查了余角和补角的知识,互余的两角之和为90°,互补的两角之和为180°,是需要我们熟练记忆的内容.12.(江西省赣州市定南县2019-2020学年七年级下学期期末数学试题)∠1的对顶角等于50︒,∠1的余角等于_______________.【答案】40°【分析】根据余角的概念进行解答即可.【详解】解:∠1的对顶角等于50︒,∠1=50︒,则∠1的余角等于90°-50°=40°.故答案为:40°.【点睛】本题主要考查了余角的概念,注意:如果两个角的和等于90°,就说这两个角互为余角.13.(河北省保定市曲阳县2020-2021学年七年级上学期期中数学试题)已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有______(填序号).【答案】①②④【分析】根据余角和补角的定义,把式子进行变形即可确定答案.【详解】解:∵α∠和β∠互补,∴α∠+β∠=180°,∴β∠=180°-α∠,根据余角定义①正确,②90α∠-︒=180°-β∠-90°=90°-β∠所以②正确,③()12αβ∠+∠=1180902⨯︒=︒故③错误,④()12αβ∠-∠=12(180°-β∠-β∠)=12(180°-2β∠)=90°-β∠故④正确,⑤()1902α∠-︒=()()1118090=9022ββ-︒--∠∠故⑤错误; 故答案为:①②④.【点睛】本题考查余角和补角相关计算以及余角和补角的定义,熟练进行式子的变形是解题的关键. 14.(湖南省长沙市2019-2020年七年级下学期第三次教学质量检测联考数学试题)如图所示,A 、O 、B 三点在同一条直线上,AOC ∠与AOD ∠互余,已知20AOD ∠=︒,则BOC ∠=______.【答案】110︒【分析】根据余角的性质,先解出AOC ∠的度数,再由邻补角的性质即可计算出BOC ∠度数.【详解】A 、O 、B 三点在同一条直线上,AOC ∠与AOD ∠互余, ∴AOC ∠+AOD ∠=90︒20AOD ∠=︒902070AOC ∴∠=︒-︒=︒AOC ∠+180BOC ∠=︒18070110BOC ∴∠=︒-︒=︒故答案为:110︒.【点睛】本题考查余角与补角,是基础考点,难度较易,掌握相关知识是解题关键.15.(河北省石家庄市栾城区2020-2021学年七年级上学期期中考试数学试题)如图,90BOC ∠=°,45COD ∠=︒,则图中互为补角的角共有______对.【答案】3对【分析】根据题意,补角的定义是两个角的和为180°即可得出结论.【详解】由题意知,∵90BOC ∠=°,45COD ∠=︒,∴∠BOD=45°,∠AOD=135°,∴互补的角为:∠BOD 和∠AOD ,∠COD 和∠AOD ,∠AOC 和∠BOC,共3对,故答案为:3对.【点睛】本题考查了补角的定义,掌握补角的定义是解题的关键.16.(江西省赣州市定南县2019-2020学年七年级上学期期末数学试题)一个角的余角是5134',这个角的补角是__________. 【答案】14134'【分析】根据余角、补角和度分秒的性质计算即可;【详解】∵一个角的余角是5134',所以这个角是9051343826''︒-︒=︒,∴这个角的补角为180382614134''︒-︒=︒; 故答案是14134'︒.【点睛】本题主要考查了余角和补角的性质,准确利用度分秒计算是解题的关键.17.(河南省新乡市原阳县2020-2021学年七年级上学期第二次月考数学试题)一个角的余角的度数为7028'47''︒,则这个角等于__________.【答案】1931'13''【分析】相加等于90°的两角称作互为余角,也作两角互余,即一个角是另一个角的余角.因而,已知一个角的余角,求这个角,就可以用90°减去它余角的度数.【详解】解:这个角的度数为907028'47''1931'13''-︒=,故答案为:1931'13''【点睛】本题主要考查余角的定义,是一个基本的题目,注意角度的单位换算1=60',1'60''=是本题的解题关键.18.(内蒙古乌兰察布市四子王旗2019-2020学年七年级上学期期末数学试题)已知∠α= 29°18′,则∠α的余角的补角等于_________.【答案】119°18´【分析】利用互余和互补两角的关系即可求出答案.【详解】解:∵∠α= 29°18′,∴∠α的余角=90°-29°18′=60°42′,∴∠α的余角的补角=180°-60°42′=119°18´.【点睛】本题考查了余角和补角.正确把握相关定义是解题的关键.19.(吉林省长春外国语学校2020-2021学年七年级上学期第二次月考数学试题)若A ∠=52°16′,则A ∠的补角为_____.【答案】127°44′【分析】根据补角的定义解题即可.【详解】A ∠的补角为180180521612744A ''︒-∠=︒-︒=︒故答案为:127°44′【点睛】本题考查补角,是基础考点,难度较易,掌握相关知识是解题关键.20.一个角的余角比它的补角的14还少12︒,则这个角的度数为_______. 【答案】76︒【分析】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-,根据题意列出方程即可求解.【详解】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒- ()190180124x x ∴-=-- 19045124x x -=-- 3574x =4573x =⨯ 76x =︒即这个角为76︒故答案为76︒.【点睛】此题主要考查角度的计算,解题的关键是根据题意列出方程求解.21.(云南省保山市第九中学2020-2021学年七年级上学期第三次月考数学试题)如果∠1=60°,∠1的余角等于__________【答案】30°【分析】根据余角的概念进行解答即可.【详解】如果∠1=60°,则∠1的余角等于90°-60°=30°.故答案为:30°.【点睛】本题主要考查了余角的概念,注意:如果两个角的和等于90°,就说这两个角互为余角. 22.(湖南省长沙市雅礼实验中学2020-2021学年七年级上学期第三次月考数学试题)已知,∠A =46°28',则∠A 的余角=_____.【答案】43°32′【分析】根据余角的定义求解即可.【详解】解:∵∠A =46°28′,∴∠A 的余角=90°﹣46°28′=43°32′.故答案为:43°32′.【点睛】本题考查了余角的定义,熟知余角的定义是解答的关键.23.(河北省唐山市乐亭县第三初级中学2020-2021学年七年级上学期期末数学试题)如图,O 为直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.(1)图中有______个小于平角的角.(2)求COE ∠、∠BOE 的度数.【答案】(1)9;(2)6565COE BOE ∠=∠=︒°,.【分析】(1)根据平角的定义即可得;(2)先根据角平分线的定义可得1252COD AOC ∠=∠=︒,再根据余角的定义可得COE ∠的度数,然后根据平角的定义可得∠BOE 的度数.【详解】(1)图中小于平角的角为,,,,,,,,AOD AOC AOE DOC DOE DOB COE COB EOB ∠∠∠∠∠∠∠∠∠,共有9个,故答案为:9;(2)因为OD 平分AOC ∠,50AOC ∠=︒, 所以1252COD AOC ∠=∠=︒, 因为90DOE ∠=︒,所以902565COE DOE COD ∠=∠-∠=︒-︒=︒,所以180180506565BOE AOC COE ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查了余角、平角、角平分线的定义,熟练掌握角的相关概念是解题关键.24.(广东省深圳市福田区石厦学校2020-2021学年七年级上学期期中数学试题)已知:如图1,OB 、OC 分别为锐角AOD ∠内部的两条动射线,当OB 、OC 运动到如图的位置时,100AOC BOD ∠+∠=︒,40AOB COD ∠+∠=︒.(1)求BOC ∠的度数.(2)如图2,射线OM 、ON 分别为AOB ∠、COD ∠的平分线,求MON ∠的度数.(3)如图3,若OE 、OF 是AOD ∠外部的两条射线,且90EOB COF ∠=∠=︒,OP 平分EOD ∠,OQ 平分AOF ∠,当BOC ∠绕着点A 旋转时,POQ ∠的大小是否会发生变化,若不变,求出其度数,若变化,说明理由.【答案】(1)BOC ∠的度数为30︒;(2)MON ∠的度数为50︒;(3)POQ ∠的大小不变,110∠=︒POQ【分析】(1)根据角的和与差即可得出答案;(2)根据角平分线的性质及角的和与差即可得出答案;(3)根据90EOB COF ∠=∠=︒,可得出60COE BOF ∠=∠=︒,进而求出EOF ∠,再根据OP 平分DOE ∠,OQ 平分AOF ∠,即可得出答案.【详解】(1)∵100AOC BOD ∠+∠=︒,∴100AOB BOC BOC COD ∠+∠+∠+∠=︒,∴2100AOB COD BOC ∠+∠+∠=︒,∵40AOB COD ∠+∠=︒,∴260BOC ∠=︒,∴30BOC ∠=︒.答:BOC ∠的度数为30︒.(2)∵OM 平分AOB ∠, ∴12BOM AOB ∠=∠, ∵ON 平分COD ∠, ∴12CON COD ∠=∠, ∴()12BOM CON AOB COD ∠+∠=∠+∠, ∵40AOB COD ∠+∠=︒,30BOC ∠=︒,∴302050MON BOM BOC CON ∠=∠+∠+∠=︒+︒=︒.答:MON ∠的度数为50︒.(3)∵90EOB COF ∠=∠=︒,30BOC ∠=︒,∴60COE BOF ∠=∠=︒,又150EOF COE BOF BOC ∠=∠+∠+∠=︒,70AOD ∠=°,1507080DOE AOF ∠+∠=︒-︒=︒,∵OP 平分DOE ∠,OQ 平分AOF ∠, ∴()1402POQ AOQ DOE AOF ∠+∠=∠+∠=︒, ∴4070110POQ POD AOQ AOD ∠=∠+∠+∠=︒+︒=︒.故POQ ∠的大小不变.【点睛】本题考查了角平分线的定义、余角和补角的意义,掌握角平分线的定义以及角的和差关系是正确解答的前提.25.(江苏省南通市崇川区南通田家炳中学2020-2021学年七年级上学期12月月考数学试题)如图,点O是直线AB上的一点,∠COD是一个直角,OE平分∠BOC.(1)如图1,当∠AOC=30°,求∠DOE的度数;(2)如图2,若∠AOC=x°,求∠DOE的度数.(用含有x的代数式表示)【答案】(1)15°;(2)12x【分析】(1)根据互补求出∠BOC,再根据角平分线求出∠COE,再用互余,求出结果即可;(2)方法同(1),把角度用未知数表示,相应的角度用含有x的代数式表示即可.【详解】(1)∵∠AOC=30°,∴∠BOC=180°﹣∠AOC=150°,又∵OE平分∠BOC,∴∠BOE=∠COE=12∠BOC=75°,又∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=15°;(2)∵∠AOC=x°,∴∠BOC=180°﹣∠AOC=(180﹣x)°,又∵OE平分∠BOC∴∠BOE=∠COE=12∠BOC=12(180﹣x)°,又∵∠COD=90°∴∠DOE=∠COD﹣∠COE=90°﹣12(180﹣x)°=12x°【点睛】本题考查角平分线、互为余角、互为补角的意义,通过图形直观得出各个角之间的关系是正确解答的关键.26.(吉林省白山市临江2019-2020学年七年级上学期期末数学试题)已知两个角的大小之比是7:3,它们的差是36°,这两个角是否互余?请说明理由.【答案】两角互余,理由见解析.【分析】由两角之比是7:3,即可设这两个角分别为:7x°,3x°,又由它们的差是36°,即可得方程:7x°-3x°=36°,解此方程即可求得答案.【详解】两角互余.理由:设两角分别为7x°,3x°,由题得7x°-3x°=36,解得x°=9°,则7x°=63°,3x°=27°,∵63°+27°=90°∴这两个角互余.【点睛】此题考查了角的计算.解题时注意掌握方程思想的应用.。

北师大版七年级数学下册《二章 相交线与平行线 1 两条直线的位置关系 对顶角、余角和补角》公开课教案_11

北师大版七年级数学下册《二章 相交线与平行线  1 两条直线的位置关系  对顶角、余角和补角》公开课教案_11

北师大版义务教育课程标准实验教科书七年级下册2.1.1两直线的位置关系第1课时教学设计一、教材分析1、地位作用:本节课研究的相交线是平面内两条直线的两种位置关系中的其中一种情形,学生已经学习了直线、射线、线段和角的有关知识,因此,本节课是在学生已有知识和经验的基础上,来进一步研究平面内两条直线相交的情形。

在本节课中首先探究了两直线相交所成的角的位置和大小关系,给出了邻补角和对顶角的概念,得出了“对顶角相等”的结论;为接下来研究两条直线被第三条直线所截的情形,即同位角、内错角、同旁内角等概念的学习作了最基本的准备。

同时是后续学习垂直的基础。

2、目标和目标解析:1.理解邻补角和对顶角的概念;2.掌握“对顶角相等”的性质;3.理解对顶角相等的说理过程;4.经历质疑,猜想,归纳等数学活动,培养学生的观察,转化,说理能力和数学语言规范表达能力;5.通过师友互助、小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣。

3、教学重、难点教学重点:邻补角、对顶角的概念,对顶角的性质与应用。

教学难点:对顶角相等的性质的探索。

突破难点的方法:通过相关旧知的复习,按照猜想、推理的思维过程进行突破。

二、教学准备:多媒体课件、导学案、剪刀,纸。

三、教学过程教学内容师生活动设计意图一、创设情景,引入新知问题:在我们的生活的世界中,蕴涵着大量的相交线和平行线,大家对它们也不陌生,(播放图片)请找出图片中的相交线、平行线。

由此引入本节的主要内容。

(板书)课题学生观察图片,获得感性认识.让学生知道,相交线、平行线的概念是从实物中抽象出来的,通过学生熟悉的事物,激发学生的学习兴趣。

二、小组合作,探究新知1. 观察剪刀剪布的过程,引入两条相交直线所成的角问题1:张开地剪刀给人以什么形象?(出示一把张开的剪刀),张开的剪刀可看作两条相交直线。

(教师可以同时在黑板上画出几何图形)在用剪刀剪布的过程中,用力握紧把手引发了剪刀张角的变化,表演剪布过程,让学生仔细观察,提出问题问题2:两个把手之间的的角发生了什么变化?剪刀刀刃张开的口又怎么变化?握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.教师:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.2.认识邻补角和对顶角,探索它们性质(1)角的位置关系探究画直线AB、CD相交于点O问题:1 、两条相交直线.形成的小于平角的角有几个?2、两两相配共组成几对角?3、各对角存在怎样的位置关系?按位置关系对他们怎样进行分类?4、各对角的度数有什么关系?学生观察、思考、回答问题学生观察、思考、回答,得出结论学生思考并在小组内交流,全班交流.由实际问题引导学生初步感知相交线形成的角及特点,同时明确本节课要学习的内容用现实生活中的例子引出两线相交所成角的问题,自然而贴切,同时在这个过程中,让学生对两线相交所成角的关系有了初步的认识,这就为研究对顶角相等作了铺垫三.细心观察,归纳定义1、探究邻补角的定义问题:(1)∠1与∠2有怎样的位置关系?(2)∠1与∠2的顶点有什么特点?(3)∠1与∠2的边所在的位置有什么特点?邻补角定义:∠1和∠2有一条公共边OA,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。

11 四年级下春季课程第十一讲 图形中角度的计算

11 四年级下春季课程第十一讲 图形中角度的计算

四年级数学春季课程第十一讲图形中角度的计算一、知识梳理:考点1 角的度量1..量角的大小,要用量角器。

角的计量单位是度,用“ 。

”表示。

把半圆分成 180 等份,每一份所对的角的大小是 1 度,记作 1。

2.角的大小要看两条边张开的大小,张开得越大,角越大。

考点2 角的分类1.三角形内角(三个角)的和是 180。

,四边形内角和是 360。

2.对顶角的大小一样,平行线间内错角的大小一样,平行四边形对角的大小一样。

3.角按其大小可以分为锐角、直角、钝角、平角、周角。

锐角大于 0。

,小于 90。

直角=90。

钝角大于 90。

,小于 180。

平角=180。

周角=360。

考点3 余角和补角1.定义:一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.类似地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.2.性质:(1)同角(等角)的余角相等.(2)同角(等角)的补角相等.注意:(1)互余互补指的是两个角的数量关系,互余、互补的两个角只与它们的和有关,而与它们的位置无关.考点4 邻补角与对顶角(1)两条直线相交得到的有公共顶点的四个角,它们任意两角之间的关系是邻补角或对顶角。

.(2)定义及性质邻补角定义:两条直线相交后所得的有一个公共顶点且有一条公共边的两个角。

互为邻补角的两个角之和为180 度。

对顶角定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角。

对顶角相等。

如上图:∠1与∠4是邻补角,∠1与∠2是邻补角、∠2与∠3是邻补角、∠3、∠4是邻补角、即:∠1+∠4=180度,∠1+∠2=180度,∠2+∠3=180度、∠3+∠4=180度;∠1与∠3是对顶角、∠2与∠4是对顶角。

即∠1=∠3、∠2=∠4。

考点5 用三角尺拼角三角尺的角其中一块是 30。

、60。

、90。

,另一块是 45。

、45。

、90。

华师大版七上4.6《角》(余角与补角)word教学设计

华师大版七上4.6《角》(余角与补角)word教学设计
教学目标
课程标准:
知识与技能:在具体情境中了解余角与补角,理解余角与补角的性质,通过练习掌握其概念及性质,并能运用他们解决一些简单实际问题。
过程与方法:经历、观察、操作,探究等过程,发展学生几何概念,培养学生推理能力和表达能力。
情感、态度与价值观:培养学生乐于探究,合作的习惯,体验探索成功,感受到成功的乐趣,进一步体会“数学就在我的身边”,增强学生用数学解决实际问题的意识。
学生活动经验基础:在前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验。具备了一定的图形认识能力和借助图形分析和解决问题的能力;并初步学习了在直观认识的基础上进行合情说理,将直观与简单说理相结合的方法;初步感受到推理说明的必要性和作用;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。




教学重点及
解决措施
余角与补角的概念与性质,通过问题启发引导学生思考、归纳,实践操作,自主探究;小组互助协作学习
教学难点及
解决措施
余角与补角性质的应用。教师通过课件,帮助理解余角与补角性质,通过学生说,教师点拔,突破难点。
教学设计思路
教科书提出本课的具体学习任务:了解补角、余角的概念及其性质并能够进行简单的应用。但这仅仅是这堂课外显的具体教学目标,或者说是一个近期目标。数学教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个数学教学的远期目标。这堂课在具体情境中了解余角与补角,理解余角与补角的性质,通过练习掌握其概念及性质,并能运用他们解决一些简单实际问题
余角与补角教案
教学设计表
学科数学授课年级七年级学校仁和中学教师姓名何仁伟
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教案余角和补角一、学习目标:1.认识一个角的余角和补角,理解互余、互补的概念,会求一个角的余角和补角;2.掌握并运用余角和补角的性质;3.能进行一些简单的有关角的推理.二、知识回顾:1.计算:(1)90°-29°35′=_______;(2)180°-56°27′=____________.2.如图R t△ABC,讨论∠1与∠2,∠3与∠4,∠2与∠3的数量关系.三、知识梳理:1.互为余角如果两个角的和等于90°(直角),就说这两个角互为余角,简称互余,即其中一个角是另一个角的余角.如下图所示:几何语言表示为:如果∠1+∠2=90°,那么∠1与∠2互为余角.2.互为补角如果两个角的和等于180°(平角),就说这两个角互为补角,简称互补,即其中一个角是另一个的补角.如下图所示:几何语言表示为:如果∠1+∠2=180°,那么∠1与∠2互为补角.3.余角的性质同角(或等角)的余角相等.4.补角的性质同角(或等角)的补角相等.5.同角的余角与补角的关系一个锐角的补角比这个角的余角大90°.6. 方位角方位角是指方向线与正北或正南这两条基准线的夹角.如图1,射线OA与正北方向的夹角为40°,则OA的方位角是北偏东40°;OB与正北方向的夹角为65°,则OB的方位角是北偏西65°;同理,OC的方位角为南偏西45°或说成是西南方向,OD的方位角为南偏东20°.四、典例探究1.判断两个角互余或互补【例1】如图,A,O,E三点在同一条直线上,∠1=∠2,且∠1和∠4互为余角.(1)∠2和∠4互余吗?(2)∠3和∠4有什么关系,为什么?(3)∠3的补角是哪个?总结:1.互为余角和互为补角是针对两个角而言的,必须成对出现.2.互余和互补是指两个角之间的数量关系,与他们的位置无关.3.锐角的补角是钝角,直角的补角是直角,钝角的补角是锐角.4.只有锐角才有余角.5.同一个角的补角比余角大90°.练1.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A.∠1=∠3 B.∠1=180°﹣∠3 C.∠1=90°+∠3 D.以上都不对练2.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③180°﹣∠α;④12(∠α﹣∠β).正确的是()A.①②③④ B.①②④ C.①②③ D.①②2.与余角、补角有关的计算题【例2】一个角的补角加上10°后等于这个角的余角的3倍,求这个角.总结:1.∠α的余角表示为90°-∠α,∠α的补角表示为180°-∠α.注意正确区分余角和补角,不要弄反了.2.用方程的思想解这类题比较简便.练3.已知∠β=3∠α,∠β的余角的3倍等于∠α的补角,求∠α,∠β的度数.【例3】如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.总结:1.当已知条件中出现直角或平角时,要注意观察哪些角互为余角,哪些角互为补角,以利用互余或互补建立等量关系.2.当题中角之间的关系比较复杂时,学会设未知数,用方程的思想来解答.练4.如图,已知∠AOM与∠MOB互为余角,且∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果已知中∠AOB=80°,其他条件不变,求∠MON的度数;(3)如果已知中∠BOC=60°,其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)中你能看出有什么规律.3.同(等)角的余角相等【例4】如图,∠A+∠B=90°,点D在线段AB上,点E在线段AC上,DF平分∠BDE,DF与BC交于点F.(1)依题意补全图形;(2)若∠B+∠BDF=90°,求证:∠A=∠EDF.证明:∵∠A+∠B=90°,∠B+∠BDF=90°∴(理由:)又∵.∴∠BDF=∠EDF(理由:)∴∠A=∠EDF.总结:1.同角或等角的余角相等,包含两方面内容:①是同一个角的余角相等;②是相等的角的余角相等.2.利用余角的性质寻找相等的角或求角度时,首先要找出直角,在此基础上找出互余的角.注意观察同一个角是否有多个余角,从而利用“同(等)角的余角相等”来进一步推理.练5.如图,一副三角板的两个直角顶点重合在一起.(1)若∠EON=130°,求∠MOF的度数;(2)比较∠EOM与∠FON的大小,并写出理由;(3)求∠EON+∠MOF的度数.练6.填空,完成下列说理过程.如图,BD平分∠ABC交AC于点D,∠C=∠DEB=90°,那么∠CDB与∠EDB相等吗?请说明理由.解:因为∠1+∠CDB+∠C=180°,且∠C=90°,所以∠1+∠CDB=90°.因为∠2+∠EDB+∠DEB=180°,且∠DEB=90°,所以∠2+∠EDB=90°.因为BD平分∠ABC,根据,所以∠1 = ∠2.根据,所以∠CDB=∠EDB.4.同(等)角的补角相等【例5】如图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB,OF⊥CD.(1)图中除直角外,请写出一对相等的角:;(2)如果∠AOD=40°,①那么根据,可得∠BOC= 度.②因为OP是∠BOC的平分线,所以∠COP=12∠= °.③∠POF的度数为.总结:1.同角或等角的补角相等,包含两方面内容:①是同一个角的补角相等;②是相等的角的补角相等.2.利用补角的性质寻找相等的角或求角度时,首先要找出平角,在此基础上找出互补的角.注意观察同一个角是否有多个补角,从而利用“同(等)角的补角相等”来进一步推理;3.互余与互补的角的性质是说明两角相等的重要方法.练7.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是(把符合条件的角都填出来).(2)图中除直角相等外,还有相等的角,请写出三对:①;②;③.(3)①如果∠AOD=140°.那么根据,可得∠BOC= 度.②如果1EOF=AOD5∠∠,求∠EOF的度数.6. 方位角【例6】如图,一艘客轮沿东北方向OC行驶,在海上O处发现灯塔A在北偏西30°方向上,灯塔B在南偏东60°方向上.(1)在图中画出射线OA、OB、OC;(2)求∠AOC与∠BOC的度数,你发现了什么?总结:1.方位角是以观测者的位置为中心,将正南或正北的方向线与目标方向线所成的小于90°的角.2.方位角的特征:(1)顶点在中心点;(2)一边是南北线(起始线),另一边是方向线.3.方位角通常表达为北(南)偏东(西)××度. 当方位角在45°方向上时,常说成东南、东北、西南、西北方向.4.方位角在航行、测绘等工作中经常用到.练8 如图,OA的方向是北偏东15°,OB的方向是西偏北50度.(1)若∠AOC=∠AOB,则OC的方向是_____;(2)OD是OB的反向延长线,OD的方向是________;(3)∠BOD可看作是OB绕点O逆时针方向至OD,作∠BOD的平分线OE,OE的方向是_____________;(4)在(1)、(2)、(3)的条件下,∠COE=_______.五、课后小测一、选择题1.如果α与β互为余角,则()A.α+β=180°B.α﹣β=180° C.α﹣β=90° D.α+β=90°2.若∠α+∠β=90°,∠β+∠γ=90°,则∠α与∠γ的关系是()A.互余B.互补C.相等D.∠α=90°+∠γ3.如图所示,已知∠AOC=∠BOC=90°,∠BOE=∠COD,则图中互为余角的角共有()A.2对B.3对C.4对D.5对4.如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是()A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°二、填空题5.如图,C岛在A岛的北偏东60°方向,C岛在B岛的北偏西50°方向,从C岛看A、B两岛的视角∠ACB是_______度.二、解答题6.如图,回答下列问题:(1)写出∠ALG的余角,并说明理由;(2)写出∠ALG的补角,并说明理由.7.如图,将一副三角板的两个直角顶点O重合在一起,摆放成如图1、图2所示的形状.(1)如图1,若∠BOC=60°,求∠AOD的度数;(2)如图2,若∠BOC=70°,求∠AOD的度数;(3)猜想∠AOD和∠BOC的关系.8.如图,点O是直线AB上的一点,OC平分∠AOB,在直线AB另一端以O为顶点作∠DOE=90°.(1)若∠AOE=48°,求∠BOD的度数;(2)写出图中与∠AOE互余的角;(3)∠AOE与∠COD有什么数量关系?请写出你的结论并说明理由.9.看图填空:解:∠AOB=90°,∠COD=90°(已知)即∠AOD+∠BOD=90°,∠AOD+∠AOC=90°∴∠AOC=∠()Q∠BOD=25°(已知)∴∠AOC=°(等量代换)10.如图,直线AB、CD相交于点O,OA是∠EOC的平分线,∠EOD=100°,(1)请指出∠BOC的一个补角;(2)求出∠BOD的度数.11. 气象台12日紧急发布“康森”最新动态,第2号热带风暴“康森”中心正以每小时20千米左右的速度沿北偏西60°方向移动,10小时后会突然改为沿北偏东30°方向移动.请画出该风暴的移动路线示意图.。

相关文档
最新文档