建筑声学第一章 建筑声学基本知识

合集下载

建筑声学基本知识

建筑声学基本知识

建筑声学基本知识一.声音得产生与声波得物理量1.振动产生声音振动物体得往复运动,挤压弹性介质形成往复变化得振动波;振动波在介质中传播,激起人耳得振动感受而产生声音。

声波就是一种纵波,这给人耳或者绝大多数动物得听觉器官构造有关。

声波得传播就是能量得传递,而非质点得转移。

介质质点只在其平衡点附近来回振动而不传向远处。

声音就是我们能够感到存在得振动纵波,人耳能感受得频率范围标准规定为20Hz~20000H;低于这个范围得就是次声波, 高于这个范围得就是超声波。

2.声波得基本物理量声波得特性可以由波得基本物理量来描述。

频率:在1秒钟内完成全振动得次数,记作f,单位就是Hz。

波长:声波在传播途径上,两相邻同相位质点之间得距离,记作λ,单位就是m。

声速:声波在介质中传播得速度,记作c,单位就是m/s,c=λf。

声速与声源特性无关,而与介质得压强与温度有关。

表达式为:c0=√(γP0/ρ0)γ为空气比热比;P0大气剪静压;ρ0为空气密度。

常温常压下,空气中声速就是343m/s,其她介质下各不相同。

压强得变化与压强变化引起得得空气密度变化互相抵消,声速主要与温度相关。

3.在声环境评价与设计中得物理量。

声压:声波在介质中传播时,介质中得压强相对于无声波时得介质静压强得改变量。

表达式为:P= P0 cos (ωt-kr+φ)P为r位置处得声压P a(N/m²);P0为最大声压P a(N/m²);k=ω/c0;φ为与轴向相位角。

常温下1个大气压强为1、0325x105P a声强:就是在单位时间内,通过垂直于传播方向上得单位面积内得平均声能量,就是一个有方向矢量。

I表示,单位就是W/m²。

声强与声压得关系就是:I= P²/(ρ0c0)ρ0为大气密度,常温下ρ0 =1、21kg/m³;c0为声波在介质中传播得速度m/s。

声功率:声源在单位时间内向外辐射得声能,W表示,单位W。

建筑声学1---基本知识要点20140118

建筑声学1---基本知识要点20140118

例:在一自由声场中,距离面声源2m远的直达 声的声压级为65dB,则距声源4m处的声压级为: A. 65dB C. 61dB B. 63dB D.59dB
二、混响和混响时间计算公式
混响过程:对室内音质影响很大 声源停止后,室内声场逐渐被房间内表面所 吸收而消 失的过程。此过程与听音的质量关 系极大 。 停止发声→直达声→一次反射声→二次反、 射声→………… 多次反射声整个过程连续且 逐渐衰减——是一个逐渐衰减的混响过程.


2、定义响度级 A、 选定标准声音: 1000Hz(纯音)——Lp=50dB B、f1(2000Hz)(待测)——Lp=48dB
f2(100Hz) (待测)——Lp=59dB
他们的响度级都是: 50方 定义:某频率声音的响度级等于根据听力正 常的听音的听音判断为等响的1KHz 纯音的声压级。 单位: 方 1KHz的声压级为响度级
第二节 室内声学原理
一、自由声场(无反射)
(一)点声源观测点与声源的距离增加一倍,声压级
降低6dB。
Lp =Lw— 20lg r --11
(二)无限长的线声源观测点与声源的距离增 加一倍,声压级 降低3dB。 交通噪声观测点与声源的距离增加一倍, 声压级降低4dB。 (三)面声源观测点与声源的距离增加,声压 级不衰减。
生声扩散现象? A 凸曲面 C 平面 B 凹曲面 D 软界面
6、 (2006)两个声音传至人耳的时间差为多少 毫秒(ms)时,人们就会分辨出他们是断续的?
A 25ms
C 45ms
B 35ms
D 55ms
7、 (2005)低频声波在传播途径上遇到相对尺
寸较小的障板时,会产生下列哪种声现象? A 反射 C 扩散 答案:D B 干涉 D 绕射

01建筑声学基本知识

01建筑声学基本知识

建筑声学基础知识
声学漫画——声源、噪声
R 10lg 1
建筑声学基础知识
声学漫画——音质
R 10lg 1
谢 谢!
建筑声学基础知识
室内声现象
声反射 声吸收 声隔绝
建筑声学基础知识
声反射实例天坛
三音石 回声壁 圜丘
建筑声学基础知识
声反射/Sound reflection
概念:声波前进过程中遇到尺寸大于波长的界面,发生反射
建筑声学基础知识
声反射/Sound reflection
镜像反射 条件:声波前进过程中遇到光滑表面 符合反射定律——入射声线、反射声线和界面法线在同一平面内 反射声能与界面的吸声系数α有关
建筑声学基础知识
隔声/Sound Isolation
隔声——噪声控制的重要手段
空气声隔绝——隔声量R
R 10lg 1
R 10lg 1
式中:τ——构件透射系数
隔声构件的结构形式:
单层匀质密实墙、双层匀质密实墙、轻质墙、门窗、组合墙
隔声特性:质量定律、吻合效应
固体声隔绝 噪声产生:振动物体直接撞击结构物 噪声传播途径:物体直接撞击、受撞击而振动的结构与其它建筑构件连接而传播 隔绝途径:减弱振动源的振动、阻隔振动传播、阻隔振动结构向空间辐射声能 实例:楼板下做隔声吊顶
建筑声学基础知识
室内声场
在室内放置一个持 续发声的稳定声源, 经过一定时间的直 达声和来自各个界 面的反射声(混响) 声的共同作用,室 内声场会达到一个 稳态。此时,如果 声源停止发生,则 室内稳态声压级离 开开始衰减。
ห้องสมุดไป่ตู้
建筑声学基础知识
混响时间/Reverberation Time

建筑物理声学基本知识

建筑物理声学基本知识

第一章 建筑声学基本知识
声波的性质>>声波的衍射(绕射) ➢ 声波的衍射(绕射)
▪ 声影区的声音——衍射声 ▪ 边缘绕射的程度
• 障板尺度 • 声波的频率
11
2020年7月18日星期六
Architectural Acoustics
第一章 建筑声学基本知识
声波的性质>>声扩散、吸收和透射
➢ 声扩散
• 对中、高频敏感;对低频不敏感
▪ 听闻范围
➢ 响度
▪ 人耳所感觉的声音的大小称为响度
• 相同声压级,不同频率的声音,响度不同
• 相同频率,不同声压级的声音,响度不同
• 等响
▪ 响度的单位为宋(sone)
➢ 频谱的划分
▪ 对声音整个频率范围分段 ▪ 倍频程和1/3倍频程
5
2020年7月18日星期六
Architectural Acoustics
第一章 建筑声学基本知识
声音的计量 ➢ 声音的叠加
▪ 多个声音的叠加
6
2020年7月18日星期六
Architectural Acoustics
第一章 建筑声学基本知识
第一章 建筑声学基本知识
声音在户外的传播
➢ 点源声音随距离的衰减
▪ 球面声波的向外扩展
Lp Lw 10lg 4 10lg r2 Lw 11 20lg r
▪ 传Lp播2 距L离p1加 倍20,lg声rr12压级Lp降1 低206lgdBn
➢ 线源声音随距离的衰减
▪ 无限长线声源:传播距离加倍,声压级降低 3 dB ▪ 有限长线声源:传播距离加倍,声压级降低 3~6 dB
声音的频谱
➢ 频谱
▪ 声音往往包含多个频率,所有频率的集合成为频谱 ▪ 线状谱:由一些离散的频率成分形成的谱 ▪ 连续谱:在一定频率范围内频率成分连续的谱

建筑声学基本知识

建筑声学基本知识

建筑声学基本知识一.声音的产生和声波的物理量1 .振动产生声音振动物体的往复运动,挤压弹性介质形成往复变化的振动波;振动波在介质中传播,激起人耳的振动感受而产生声音。

声波是一种纵波,这给人耳或者绝大多数动物的听觉器官构造有关。

声波的传播是能量的传递,而非质点的转移。

介质质点只在其平衡点附近来回振动而不传向远处。

千matW-n*-后声音是我们能够感到存在的振动纵波,人耳能感受的频率范围标准规定为20Hz~20000H;低于这个范围的是次声波,高于这个范围的是超声波。

2 .声波的基本物理量声波的特性可以由波的基本物理量来描述。

频率:在1秒钟内完成全振动的次数,记作f,单位是Hz。

波长:声波在传播途径上,两相邻同相位质点之间的距离,记作,单位是m。

声速:声波在介质中传播的速度,记作c,单位是m/s,c=f。

声速与声源特性无关,而与介质的压强和温度有关。

表达式为:/=(P0/0)为空气比热比;P0大气剪静压;0为空气密度。

常温常压下,空气中声速是343m/s,其他介质下各不相同。

压强的变化与压强变化引起的的空气密度变化互相抵消,声速主要与温度相关。

3 .在声环境评价和设计中的物理量。

声压:声波在介质中传播时,介质中的压强相对于无声波时的介质静压强的改变量。

表达式为:P=P0cs(-kr+)P为r位置处的声压P a(N/m,P0为最大声压P a(N/m2);k=/c0;为与轴向相位角。

常温下1个大气压强为1.0325x105P0a声强:是在单位时间内,通过垂直于传播方向上的单位面积内的平均声能量,是一个有方向矢量。

I表示,单位是W/m2o声强与声压的关系是:I=P2/(0c0)0为大气密度,常温下0=1.21kg/m3;c0为声波在介质中传播的速度m/s o声功率:声源在单位时间内向外辐射的声能,W表示,单位W o声源声功率与声强的关系是:W=I.(4r2)其中,r是距声源的距离。

在自由声场中测得声压和已知距声源的距离,就可以算出声强以及声源的声功率。

建筑物理 +声学部分+《第1章:建筑声学基础知识》

建筑物理 +声学部分+《第1章:建筑声学基础知识》

0c 又称为介质的特性阻抗。
郑州华信学院
建筑物理
第1章 建筑声学
1.2.2 声功率级、声强级和声压级 人耳刚能听见的下限声强为10-12w/m2,相应的声压为 2×10-5N/m2;使人感到疼痛的上限声强为1w/m 2,相 应的声压为20N/m2。所以用声强和声压计量声音很难。 1.声功率级( LW ) 声功率级是声功率与基准功率之比的对数的10倍。记为 LW W LW 10 lg (dB) W0
郑州华信学院
建筑物理
第1章 建筑声学
2.声强级(LI ) 声强级是声强与基准声强之比的对数的10倍。记为 LI
I LI 10 lg I0
(dB)
郑州华信学院
建筑物理
第1章 建筑声学
3.声压级(Lp) 声压级是声压与基准声压之比的对数的20倍。记为 Lp
p L p 20 lg (dB) p0
郑州华信学院
建筑物理
第1章 建筑声学
1.1.4 声音的透射、反射和吸收
当声波入射到建筑构件(如墙、天花)时,声能的一部 分被反射,一部分透过构件,还有一部分被构件吸收。 根据能量守恒定律,若入射总声能为E0,反射的声能 为Eρ,构件吸收的声能为Eα,透过构件的声能为Eτ, 则互相间有如下的关系:
E0=E 十Eα十E τ
Lp LW 20lg r 8
郑州华信学院
建筑物理
第1章 建筑声学
1.4.2 室内声压级的计算
1.直达声、早期反射声及混响声。
1.直达声:是指声源直接到达接收点的声音。 2.早期反射声:一般指直达声到达以后,相对延 迟时间为50ms内到达的反射声。(对于音乐声可 放宽至80ms)。 3.混响声:在早期反射声之后陆续到达的,经过 多次反射后的声音统称为混响声。

1-建筑声学的基本知识 1

1-建筑声学的基本知识 1
就会被分解成许多较小的反射声线,并且使传播的立 体角扩大,这种现象称之为扩散反射。适当的声波扩 散反射可以促进声音分布均匀,并可防止一些声学缺 陷的出现。
1-建筑声学的基本知识
• 扩散反射可分为完全扩散反射和部分扩散反射两 种。前者是将入射的声线均匀地向四面八方反射,即 反射的方向分布完全与入射方向无关;作后者是指反 射同时具有镜像和扩散两种性质,即部分镜像反射, 部分作扩散反射。

声源辐射声波时对外作功。声功率是指声源在单位时
间内向外辐射的声能,记作W,单位是瓦(W)或微瓦
(μW)。 是属于声源本身的一种特性。
声源种类 喷气飞机 汽锤 汽车 钢琴 女高音 对话
几种不同声源的声功率 声功率
10kW 1W 0.1W 2mw 1000-7200μW 20μW
1-建筑声学的基本知识
1-建筑声学的基本知识
• 第1章 建筑声 1 声音的物理性质
• 本节要点: • 1.
1-建筑声学的基本知识
• 1.1声音 声源 空气中的声波
声音是人耳所能感觉 到的“弹性”介质的振动, 是压力迅速而微小的起伏 变化。
声音产生于物质的振 动,例如扬声器的膜片、 拨动的琴弦等。这些振动 的物体称之为声源。
1-建筑声学的基本知识
• 二、声强级LI

声强级是声强与基准声强之比的对数的10倍,
记作LI,单位也是分贝(dB),可用下式表示:
I LI 10 lg I0
式中 I ——某点的声强,W/m2;
I 0 ——基准声强,10-12W/m2。
1-建筑声学的基本知识
• 三、声压级

声压级是声压与基准声压之比的对数乘以20,
• 应注意不同波长与扩散反射之间的关系

大学建筑物理声学基本知识

大学建筑物理声学基本知识
■声速、波长和频率之间的关系: 波长 = c/f M 声速 C = f · M/S
4
2)几何描述
声场:有声波存在的空间。
波阵面:声波从声源出发,在介质中按一定 方
向传播,在某时刻声波到达空间各点
之包迹面。
形状: 点声源——球面波 线声波——柱面波 面声源——平面波
波阵面
5
声线:自声源发出代表声能传播方向的曲线,代表声 音传播的方向,垂直于波阵面。 仅在均匀、各向同性的介质中,声线是直线。
24
D D1 D2
第2节 声的计量与人的听觉特性
一、声功率W、声强I、声压P
1、声功率W:声源单位时间内声源向外辐射的声能 (W瓦,W微瓦),声功率不等于电功率。1W声 功率是最大值。
16
4、吸声概念
1)声传播的能量分配 Eo=Er+E+E 能量守恒
2)反射系数 r= Er/Eo 透射系数 = E/Eo
3)吸声系数 = 1- r 概念:从入射声能所在空间考虑,除反射声以外,均不会
引起该空间声场的变化,故认为除去反射声的声能 以外,均视为被围护结构所“吸声”。 定义: =( Eo - Er )/ Eo= ( E + Er )/ Eo 问题:窗洞的吸声系数多少?
2)定义:声波传到两个介质分界面时,部分声波从界 面返回原介质的现象。
3)反射条件: 障碍物—反射板的尺度充分大(大于波 长)。
13
4)反射定律 a 反射线、入射线、 法线在同一平面。 b 反射线、入射线 在法线的两侧 c 反射角=入射角
5)典型反射面的应用 平面——镜象反射 凹面——形成声聚焦 凸面——声扩散 (尺度应与λ比较)
21
第一节 总结
22
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

07.03.2021
建筑声学13
第十章 建筑声学基本知识
第一节 声音的产生和传播
3、声波的散射 当障碍物的尺寸与声波相 当时,将不会形成定向反 射,而以障碍物为一子波 源,向不同方向发生不规 则的反射、折射、绕射
07.03.2021
建筑声学14
第十章 建筑声学基本知识
第一节 声音的产生和传播
4、声波的透射与吸收
1932努特生(knudsen)出版《建筑声学》1936年莫尔斯《振动 与声》标志建筑声学成为一门系统的学科
中国古代剧场演变及设计成就 公元前一千年殷代:“坎其击鼓,宛丘之下”---《诗经·陈风》
利用自然地形观看歌舞表演。 “余音绕梁三日不绝”----《列子》 已经注意到混响的问题
07.03.2021
第十一章 建筑声学基本知识
第一节 声音的产生和传播
一、产生和传播的条件 声音是如何产生的? 结论:声音是由物体振动产生的。声音是如何传播的?—— 人耳听觉的产生 声源:由于振动正在发声的物体 宋代学者言:“声者,形气相軋而成也”形—振动的物体; 气-空气媒介;相軋—相互作用。 声音产生和传播的条件:(1)声源 (2)传播的媒介
07.03.2021
建筑声学10
第十章 建筑声学基本知识
第一节 声音的产生和传播
三 、声波的绕射、反射和散射、透射和吸收
1、声波的绕射:由于媒质中的障碍物或其它不连续引起的波 阵面畸变。 声波在传播过程中遇到障碍或孔洞时将发生绕射。绕射的情 况与声波的波长和障碍物(或孔)的尺寸有关。
07.03.2021
3、发展方向:生活水平—环境条件—厅堂及民用建筑要求— 结构轻薄----工业发展 设备增加——声环境恶化---交通拥挤
——建筑声学的新挑战
4、声学发展简史:
公元前古希腊、罗马的露天圆形剧场
07.03.2021
建筑声学4
建筑声环境概述
埃比道拉斯剧场: 歌坛Ф 20m,歌坛后部舞台高3.5m,进深 3m,长26.5m,12根壁柱作背景,扇形看台利用自然山坡。
f:频率,每秒钟振动的次数,单位Hz(赫兹) T:完成一次全振动所需的时间
07.03.2021
建筑声学9
第十章 建筑声学基本知识
第一节 声音的产生和传播
3、声速C:声波在某一介质中传播的速度。 单位m/s。
c 是指声源振动状态传播的速度,与介质特性有关
声波在空气中声速:c 331.4 1
273 在0oC时, C钢=5000m/s, C水=1450m/s 在15oC时,C空气=340m/s 参数间存在如下关系:c=f* 或 =c/f 人耳可听频率范围为20Hz~20KHz(听觉范围 ) <20Hz为次声,>20KHz为超声其中,人耳感觉最重要的部 分约在100Hz~4000Hz,相应的波长约3.4m~8.5cm 。
第三篇 建筑声学
( ) architectural acoustics
(建筑声环境)
07.03.2021
3
建筑声环境概述
概述:
1、概念 :研究与建筑环境有关的声学问题,包括厅堂音质和 建筑环境噪声控制两部分,目的是创造符合听闻要求的环境。
2、内容: a、声学知识(物理学) b、两个范畴:室内音质 建筑物声学(隔声、城市噪声)
声波具有能量,简称声能。
当声波碰到室内某一界面后(如天花、墙),一部分声能被反射,一部
。 分被吸收(主要是转化成热能),一部分穿透到另一空间
透射系数: Ei Eo
反射系数:
Er Eo
E oE E E
吸声系数: I p20c
应用:不同材料,不同的构造对声音具有不同的性能。在隔声中希望用透射 系数小的材料防止噪声。在音质设计中需要选择吸声材料,控制室内声场。
建筑声学6
建筑声环境概述
15世纪天坛的回音壁----利用回声 知识建造回音壁、三音石和圜丘。
我国50年代初,中科院电子学研究所 马大猷教授开创建筑声学系统;58年 人民大会堂万人大礼堂(10000座) 声学设计成功;
现代大都市电影院、剧场、音乐厅、歌 厅、演播室。
07.03.2021
建筑声学7
建筑声学基本知识
第一节 声音的产生和传播
2、声波的反射 当声波遇到一块尺寸比波长大得多的障碍时,声波将被反射。 类似于光在镜子上的反射。反射的能量与反射面有关 反射的规则: 1)入射线、反射线法线在同一侧。 2)入射线和反射线分别在法线两侧。 3)入射角等于反射角。∠i= ∠
07.03.2021
建筑声学5
建筑声环境概述
奥朗日剧场:半圆形乐队席,舞台上方修建斜反射顶棚将反射声投 向观众
中世纪教堂:混响时间长,音质丰满,语言清晰度差 18世纪奥地利维也纳的音乐厅,意大利米兰歌剧院 19世纪末20世纪初期美国声学家赛宾(Sabine)的贡献:
Sabine对混响时间的研究—1900年发表《混响》
球面波:点声源发出的波,波阵面为同心球面的波,声线与波阵 面垂直。如人、乐器发出的声波。
平面波:波阵面为与传播方向垂直的平行平面,如多个线声源或 多个点声源叠排。
柱面波:波阵面为同轴柱面,如单个线声源发出的声波。
2、波长:在传播途径上,两相邻同相位质点距离。 单位m(米) 声波完成一次振动所走的距离。
二、波阵面、波长、声速 几何声学:声线的观点研究在封闭的空气中传播; 物理声学:用波动的观点研究声学问题 声线:自声源发出代表能量传播方向的曲线,声的波动限制不 计
07.03.2021
建筑声学8
第十章 建筑声学基本知识
第一节 声音的产生和传播
1、波阵面:声波从声源发出,在某一介质内按同一 方向传播,在某一时间到达空间各点所包络的面称 为波阵面。
07.03.2021
建筑声学15
第十章 建筑声学基本知识
第二节 声音的计量
声波是能量的一种传播形式。人们常谈到声音的大小或 强弱,或一个声音比另一个声音响或不响,这就提出了 声音强弱的计量。
一、 声功率、声强、声压
1、声功率W :单位时间内物体向外辐射的能量W。(瓦W或 微瓦W )声源声功率包括全部可听频率范围 声功率是声源本身的一种重要属性。相关声源的声功率: 人正常讲话:50W 100万人同时讲话50W,相当于一个灯泡。 训练有素的歌手:5000~10000 W。 汽车喇叭: 0.1 W, 喷气飞机: 10KW。 应用:在厅堂设计中如何充分利用有限的声功率是很重要的问 题。
相关文档
最新文档