初一上册数学有理数随堂练习北大师版
数学北师大版七年级上册有理数练习题

数学北师大版七年级上册有理数练习题有理数的大小比较练题方法1利用数轴比较大小1.如图,在数轴上有a,b,c,d四个点,则下列说法正确的是()A.a>bB.c<0C.b<cD.-1>d2.有理数a在数轴上对应的点如图所示,则a,-a,-1的大小关系是()A.-a<a<-1B.-a<-1<aC.a<-1<-aD.a<-a<-13.大于-2.5而小于3.5的整数共有()A.6个B.5个C.4个D.3个4.在数轴上表示下列各数,并把这些数用“>”连接起来.13.5,3.5的相反数,-,绝对值等于3的数,最大的负整数.25.点A、B在数轴上的位置如图所示,它们分别表示数a、b.(1)请将a,b,1,-1四个数按从小到大的顺序排列起来;(2)若将点B向右移动3个单位,请将a、b、-1三个数按从小到大的顺序排列起来.方法2利用比较大小的法则比较大小6.以下各式建立的是()A.-1>0B.3>-2C.-2<-5D.1<-27.(扬州中考)下列各数中,比-2小的数是()A.-3B.-1XXX758.(西双版纳中考)若a=-,b=-,则a,b的大小关系是a________b(填“>”“<”或“=”).889.已知数。
-2,1,-3,5.(1)用“>”把各数连接起来;(2)用“<”把各数的相反数连接起来;(3)用“>”把各数的绝对值连接起来.办法3使用非凡值比力大小10.如图,数轴上的点透露表现的有理数是a,b,则以下式子精确的选项是()A.-a<bB.a<bC.|a|<|b|D.-a<-b11.a,b两数在数轴上的对应点的位置如图,下列各式正确的是()。
初一上册数学有理数随堂练习北大师版

初一上册数学有理数随堂练习北大师版
1. 某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:+10,-2,+3,-1,+9,-3,-2,+11,+3,-4,+6.
(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?
(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?
2. 一只蚂蚁从某点P出发在一条直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬行的各段路程依次为(单位:米):
+5,-4,+10,-8,-5,+12,-10
(1)蚂蚁最终回到出发点了吗?
(2)若蚂蚁共用了9分钟完成上面的路程,那么蚂蚁每分钟走多少路程?
3. 某检修小组在一条东西走向的公路上检修公路(约
定向东为正).某天,该小组从A地出发,到收工时,行走记录为(单位:千米):+15、-2、+5、-1、-10、-3、-2、+12、+4、-5.
(1)你知道他们收工的时候在A地的哪一边,并且距A 地多少千米吗?
(2)如果汽车每千米耗油0.5升,求检修组这天耗油多少升?
现在是不是感觉为大家准备的初一上册数学有理数随堂练习很关键呢?欢迎大家阅读与选择!
2016-2017学年初一上册数学同步练习题(各版本、各单元)
浙教版七年级上册数学第一章同步练习汇总。
北师大版数学初一上册同步练习:有理数(word解析版)

北师大版数学初一上册同步练习:22.1 有理数(word解析版)学校:___________姓名:___________班级:___________一.选择题(共12小题)1.某种药品的说明书上标明储存温度是(20±2)℃,则该药品在()范畴内储存才合适.A.18℃~20℃ B.20℃~22℃C.18℃~21℃D.18℃~22℃2.若一辆汽车向南行驶5千米记作+5千米,那么向北行驶3千米应记作()A.+3千米B.+2千米C.﹣3千米D.﹣2千米3.假如“收入10元”记作+10元,那么支出20元记作()A.+20元B.﹣20元C.+10元D.﹣10元4.﹣2,0,2,﹣3这四个数中是正数的是()A.﹣2 B.0 C.2 D.﹣35.下列一组数:﹣8,0,﹣32,﹣(﹣5.7),其中负数的个数有()A.1个B.2个C.3个D.4个6.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数.则下面4个足球中,质量最接近标准的是()A.B.C.D.7.下列四个数中,正整数是()A.﹣2 B.﹣1 C.0 D.18.在数﹣2,π,0,2.6,+3,中,属于整数的个数为()A.4 B.3 C.2 D.19.最大的负整数是()A.0 B.1 C.﹣1 D.不存在10.下列四个数是负分数的是()A.﹣(﹣0.)B.π C.0.341 D.11.下列说法中不正确的是()A.﹣3.14既是负数,分数,也是有理数B.0既不是正数,也不是负数,然而整数C.﹣2021既是负数,也是整数,但不是有理数D.0是非正数12.在下列选项中,既是分数,又是负数的是()A.9 B.C.﹣0.125 D.﹣72二.填空题(共10小题)13.假如盈利200元记做+200元,那么亏损80元记做元.14.假如向东走10米记作+10米,那么向西走15米可记作米.15.把向东走4米记作+4米,那么向西走6米记作米.16.将高于平均水位2m记作“+2m”,那么低于平均水位0.5m记作.17.假如卖出一台电脑赚钱500元,记作+500,那么亏本300元,记作元.18.观看下面一列数:﹣1,2,﹣3,4,﹣5,6,﹣7,…将这列数排成下列形式:按照上述规律排下去,那么第10行从左边数第9个数是;数﹣201是第行从左边数第个数.19.在﹣42,+0.01,π,0,120,这5个数中正有理数是.20.在+8.3,﹣4,﹣0.8,0,90,,,+24中,非负数有,负分数有.21.下列各数:2,﹣5,0,﹣0.06,+,20%,0.1,其中分数有个.22.有一个五位数,十位上数字是最小的素数,百位上的数字是最小的自然数,千位上的数字是最小的合数,假如那个数能被2,3,5整除,那个数万位上的数字能够是.三.解答题(共4小题)23.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处动身去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),D→(﹣4,﹣2);(2)若这只甲虫从A处去P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请运算该甲虫走过的路程.24.某高速公路养护小组,乘车沿南北向公路巡视爱护,假如约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+6(1)养护小组最后到达的地点在动身点的哪个方向?距动身点多远?(2)养护过程中,最远处离动身点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?25.观看下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)差不多上“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是;(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)26.阅读下面文字,依照所给信息解答下面问题:把几个数用大括号括起来,中间用返号隔开,如:{3,4};{﹣3,6,8,18},其中大括号内的数称其为集合的元素.假如一个集合满足:只要其中有一个元素a,使得﹣2a+4也是那个集合的元素,如此的集合称为条件集合.例如;{3,﹣2},因为﹣2×3+4=﹣2,﹣2恰好是那个集合的元素因此吕{3,﹣2}是条件集合:例如;(﹣2,9,8,},因为﹣2×(﹣2)+4=8,8恰好是那个集合的元素,因此{﹣2,9,8,}是条件集合.(1)集合{﹣4,12}是否是条件集合?(2)集合{,﹣,}是否是条件集合?(3)若集合{8,n}和{m}差不多上条件集合.求m、n的值.2021-2021学年度北师大版数学七年级上册同步练习:2.1 有理数(w ord解析版)参考答案与试题解析一.选择题(共12小题)1.【分析】药品的最低温度是(20﹣2)℃,最高温度是(20+2)℃,据此即可求得温度的范畴.【解答】解:20﹣2=18℃,20+2=22℃,则该药品在18℃~22℃范畴内.故选:D.2.【分析】由向南行驶为正,向北行驶为负.即可得到向北行驶3千米应记作﹣3千米.【解答】解:汽车向南行驶5千米记作+5千米,那么向北行驶3千米应记作﹣3千米,故选:C.3.【分析】依照正负数的含义,可得:收入记住“+”,则支出记作“﹣”,据此求解即可.【解答】解:假如收入10元记作+10元,那么支出20元记作﹣20元.故选:B.4.【分析】依照正数的定义进行判定.【解答】解:正数是2,故选:C.5.【分析】依照题目中的数据能够判定各个数是正数依旧负数,从而能够解答本题.【解答】解:∵﹣32=﹣9,﹣(﹣5.7)=5.7,∴在﹣8,0,﹣32,﹣(﹣5.7)中负数是﹣8,﹣32,即负数的个数有2个.故选:B.6.【分析】求出每个数的绝对值,依照绝对值的大小找出绝对值最小的数即可.【解答】解:∵|+0.8|=0.8,|﹣3.5|=3.5,|﹣0.7|=0.7,|+2.1|=2.1,0.7<0.8<2.1<3.5,∴从轻重的角度看,最接近标准的是﹣0.7.故选:C.7.【分析】正整数是指既是正数依旧整数,由此即可判定求解.【解答】解:A、﹣2是负整数,故选项错误;B、﹣1是负整数,故选项错误;C、0是非正整数,故选项错误;D、1是正整数,故选项正确.故选:D.8.【分析】整数包括正整数、负整数和0,依此即可求解.【解答】解:在数﹣2,π,0,2.6,+3,中,整数有﹣2,0,+3,属于整数的个数,3.故选:B.9.【分析】依照负整数的概念和有理数的大小进行判定.【解答】解:负整数是负数且是整数,即最大的负整数是﹣1.故选:C.10.【分析】依照负分数的概念,选项必须既是负数又是分数.【解答】解:A、﹣(﹣0.)是正数,不是负分数;B、π是无理数,不是负分数;C、0.341是正数,不是负分数;D、﹣既是负数,又是分数,因此是负分数.故选:D.11.【分析】本题需先依照有理数的定义,找出不符合题意得数即可求出结果.【解答】解:依照题意得:﹣2021既是负数,也是整数,但它也是有理数故选:C.12.【分析】利用分数及负数的定义判定即可得到结果.【解答】解:下列选项中,既是分数又是负数的是﹣0.125.故选:C.二.填空题(共10小题)13.【分析】此题要紧用正负数来表示具有意义相反的两种量:盈利记为正,则亏损记为负,直截了当得出结论即可.【解答】解:“正”和“负”相对,把盈利200元记作+200元,则亏损80元记作﹣80元.故答案为﹣80.14.【分析】明确“正”和“负”所表示的意义,再依照题意作答.【解答】解:∵向东走10米记作+10米,∴向西走15米记作﹣215米.故答案为:﹣15.15.【分析】此题要紧用正负数来表示具有意义相反的两种量:向西记为负,则向东就记为正,由此解答即可;【解答】解:假如把向东走4米记作+4米,那么向西走6米记作:﹣6米.故答案为:﹣616.【分析】依照正数和负数表示相反意义的量,高于平均水位记为正,可得低于平均水位的表示方法.【解答】解:将高于平均水位2m记作“+2m”,那么低于平均水位0. 5m记作﹣0.5m.故答案为:﹣0.5m.17.【分析】由赚钱为正,亏本为负.赚钱500元记作+500,即可得到亏本300元应记作﹣300元.【解答】解:依照题意,亏本300元,记作﹣300元,故答案为:﹣300.18.【分析】先从排列中总结规律,再利用规律代入求解.【解答】解:依照题意,每一行最末的数字的绝对值是行数的平方,且奇数前带有负号,偶数前是正号;如第四行最末的数字是42=16,第9行最后的数字是﹣81,∴第10行从左边数第9个数是81+9=90,∵﹣201=﹣(142+5),∴是第15行从左边数第5个数.故应填:90;15;5.19.【分析】依照正有理数的定义解答即可.【解答】解:正有理数有:+0.01,120.故答案为:+0.01,120.20.【分析】依照有理数的分类:进行解答即可.【解答】解:非负数有+8.3,0,90,,+24;负分数有﹣0.8,;故答案为:+8.3,0,90,,+24;﹣0.8,.21.【分析】利用分数定义判定即可.【解答】解:下列各数:2,﹣5,0,﹣0.06,+,20%,0.1,其中分数有4个,故答案为:422.【分析】找出最小的素数,最小的自然数,以及最小的合数,再依照题意求出万位上的数即可.【解答】解:依照题意得:最小的素数是2,最小的自然数为0,最小的合数为4,能被2,3,5整除,个位上是0,其余各位上数字的和能够被3整除,可得那个数万位上的数字能够是3或6或9.故答案为:3或6或9.三.解答题(共4小题)23.【分析】(1)依照规定及实例可知A→C记为(3,4)B→C记为(2,0)D→A记为(﹣4,﹣2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P的坐标,在图中标出即可;(3)依照点的运动路径,表示出运动的距离,相加即可得到行走的总路径长.【解答】解:(1)规定:向上向右走为正,向下向左走为负∴A→C记为(3,4)B→C记为(2,0)D→A记为(﹣4,﹣2);(2)P点位置如图所示.(3)据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C →D记为(1,﹣1);该甲虫走过的路线长为1+4+2+1+2=10.故答案为:(3,4);(2,0);A;24.【分析】(1)依照有理数的加法,可得答案;(2)依照有理数的加法,可得每次行程,依照绝对值的意义,可得答案;(3)依照单位耗油量乘以路程,可得答案.【解答】解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+6=5(千米),答:养护小组最后到达的地点在动身点的北方距动身点5千米;(2)第一次17千米,第二次17+(﹣9)=8,第三次8+7=15,第四次15+(﹣15)=0,第五次0+(﹣3)=﹣3,第六次﹣3+11=8,第七次8+(﹣6)=2,第八次2+(﹣8)=﹣6,第九次﹣6+5=﹣1,第十次﹣1+6=5,答:最远距动身点17千米;(3)(17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+6)×0.5=87×0.5=43. 5(升),答:这次养护共耗油43.5升.25.【分析】(1)依照“椒江有理数对”的定义即可判定;(2)依照“椒江有理数对”的定义,构建方程即可解决问题;(3)依照“椒江有理数对”的定义即可判定;(4)依照“椒江有理数对”的定义即可解决问题.【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,解得a=2.(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)=﹣(﹣n)×(﹣m)+1=﹣[(﹣n)×(﹣m)﹣1],∴(﹣n,﹣m)不是“椒江有理数对”,(4)(5,1.5)等.故答案为:(5,);不是;(5,1.5).26.【分析】(1)依据一个集合满足:只要其中有一个元素a,使得﹣2a+ 4也是那个集合的元素,如此的集合我们称为条件集合,即可得到结论;(2)依据一个集合满足:只要其中有一个元素a,使得﹣2a+4也是那个集合的元素,如此的集合我们称为条件集合,即可得到结论;(3)分情形讨论:当﹣2×8+4=n,解得:n=12;当﹣2n+4=8,解得:n=﹣2;当﹣2n+4=n,解得:n=;当﹣2m+4=m,解得:m=.【解答】解:(1)∵﹣2×(﹣4)+4=12,∴集合{﹣4,12}是条件集合;(2)∵﹣2×(﹣)+4=,∴{,,是条件集合;(3)∵集合{8,n}和{m}差不多上条件集合,∴当﹣2×8+4=n,解得:n=12;当﹣2n+4=8,解得:n=﹣2;当﹣2n+4=n,解得:n=;当﹣2m+4=m,解得:m=.。
2.1 有理数 北师大版数学七年级上册同步作业(含答案)

2.1 有理数一.选择题。
1.在0,﹣1,﹣2,﹣3,53,8,﹣1,这8个有理数中,负数的个数是( )A.1B.2C.3D.42.下列各数:﹣3,,0,π,0.25,,其中有理数的个数为( )A.3B.4C.5D.63.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果水位升高5米记为+5米,那么水位下降3米应记为( )A.﹣5米 B.+5米 C.﹣2米 D.﹣3米4下列不是具有相反意义的量是( )A.前进5米和后退5米B.收入30元和支出10元C.超过5克和不足2克D.向东走10米和向北走10米5.下列说法中,正确的是( )A.在有理数中,零的意义表示没有B.正有理数和负有理数组成全体有理数C.0.7既不是整数也不是分数,因此它不是有理数D.0是最小的非负整数,它既不是正数,也不是负数6.用﹣a表示的数一定是( )A.负数B.正数或负数C.0或负数D.以上全不对7.在防治新型冠状病毒的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”.记录一被测人员在一周内的体温测量结果分别为+0.1,﹣0.3,﹣0.5,+0.1,﹣0.6,+0.2,﹣0.4,那么,该被测者这一周中测量体温的平均值是( )A.37.1℃B.37.31℃C.36.8℃D.36.69℃8.如图所示的是图纸上一个零件的标注,Φ30±表示这个零件直径的标准尺寸是30mm,实际合格产品的直径最小可以是29.98mm,最大可以是( )A.30mmB.30.03mmC.30.3mmD.30.04mm9.纽约与北京的时差为﹣13小时(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数),当北京10月11日9时,纽约的时间是( )A.10月10日6时B.10月10日20时C.10月11日20时D.10月11日22时二.填空题。
2020年北师大版数学七年级上册《有理数》课堂练习

七年级数学上册2.1《有理数》课堂练习一、选择题1.下面四个数中,负数是( )A.-3 B.0 C.0.2 D.32.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A.-1 B.0 C.1 D.23.如果+10%表示“增加10%”,那么“减少8%”可以记作( )A.-18% B.-8% C.+2% D.+8%4.下列说法正确的是()A.一个数前面加上“-”号,这个数就是负数;B.零既不是正数也不是负数C.零既是正数也是负数;D.若a是正数,则-a不一定就是负数5.下列语句:①不带“-”号的数都是正数;②正数前面加上“-”号表示的数就是负数;③不存在既不是正数,也不是负数的数;④0℃表示没有温度,其中正确的有( ) A.0个B.1个C.2个D.3个二、填空题6.向东走10米记作-10米,那么向西走5米,记作____________.7.某城市白天的最高气温为零上6℃,到了晚上8时,气温下降了8℃,该城市当晚8时的气温为_________.8.如果某股票第一天跌了3.01%,应表示为________,第二天涨了4.21%,?应表示为_____________.9.一种零件标明的要求是10±0.02 mm,表示这种零件的标准尺寸为直径10mm,该零件最大直径不超过____________mm,最小不小于____________mm,为合格产品.10.在图纸上零件的加工尺寸为20±0.003(mm),甲工人加工出来的零件尺寸为20.002mm,乙工人加工出来的零件尺寸为19.995mm,_______工人加工出来的零件合格,加工出来的零件允许的最小尺寸是_______mm.三、解答题11.把下列各数填在相应的括号内-7,3.5,-3.14,227,13,0,1713,0.03%,-314,10,-708.(1)自然数集合{ …}(2)负数集合{ …}(3)负分数集合{ …}12.在一次数学测验中,小丽得了95分,记为+15分,小强和小明分别得了100分和75分,他们的成绩应记多少?13.某老师把某一小组五名同学的成绩简记为:+20,-5,0,+18,-8,又知道记为0的成绩表示90分,正数表示超过90分,则五名同学的平均成绩为多少分?14.测量一座公路桥的长度,各次测得的数据是:255m,270m,265m,267m,258m(1)求这5次测量的平均值;(2)以求出的平均值为基准数,用正数、负数表示出各次测量的数值与平均值的差.15.某厂每月计划用煤500吨,把超过计划的用煤量用正数表示,不足计划的用煤量用负数表示,有5个月的用煤量记录如下:+1吨、-2吨、+1.5吨、-0.5吨、-1吨.(1)分别求出每个月的实际用煤量.(2)请说明,5个月的实际用煤量与5个月的计划用煤量相比节约了吗?1、在最软入的时候,你会想起谁。
七年级数学上册第2章《有理数的混合运算》课堂练习(北师大版)

2.11 有理数的混合运算一、选择题1.若m>0,n<0,则有( ) .A .0>-n mB .0>+n mC .032>+m mD .032>+n n2.已知523--+=x x x y ,当x=-3时,y=-20,当x=3时,y 的值是( ) .A .-17B .44C .28D .173.如果()()01122=-++b a ,那么()b a -2的值为( ) . A .0 B .4 C .-4 D .24.代数式()522+-a 取最小值时,a 值为( ) .A .a=0B .a=2C .a=-2D .无法确定5.六个整数的积36-f e d c b a =⋅⋅⋅⋅⋅,f e d c b a 、、、、、互不相等,则 =+++++f e d c b a ( ) .A .0B .4C .6D .86.计算()()2002200122-+-所得结果为( ) .A .2B .20012C .20012-D .20022二、填空题1.有理数混合运算的顺序是__________________________.2.已知m 为有理数,则2m _________0,12+m _________0,22--m _______0. (填“>”、“<”或“≥”=)3.平方得16的有理数是_________,_________的立方等于-8.4.()()()()=----10099654321Λ__________.5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为__________.6.1-(-2)×(-3)÷3=____________;7.1-(-2)÷(-3)×3=____________.三、解答题1.计算(1)331624⨯÷+; (2))532(0)21(312-÷⨯--; (3))157125(24)3153(15-⨯-+-⨯; (4))8(161571)36()1855(-⨯+-⨯-; (5))]3()6.0321(4[2-÷⨯-+---; (6)])3(2[31)5.01(124--⨯⨯---. 2.计算:.)34()32()1()3(2)2.0(1)1(2220012222002÷+-⨯---+-⨯- 3.当n 为奇数时,计算nn2)1(1-+的值. 4.试设计一个问题,使问题的计算结果是26a .5.某户搬入新楼,为了估计一下该月的用水量(按30天计算).对该月的头6天水表的显示数进行了记录,如下表:而在搬家之前由于搞房屋装修等已经用了15吨水.问:(1)这6在每天的用水量;(2)这6天的平均日用水量;(3)这个月大约需要用多少吨水.6.如图,把一个面积为1的正方形等分成两个面积为21的长方形,接着把其中一个面积为21的长方形等分成两个面积为41的正方形,再把其中一个面积为41的正方形等分成两个面积为81的长方形,如此进行下去,试观察图形来计算:.2561814121++++Λ7.小明靠勤工俭学的收入维持上大学的费用,下面是小明一周的收支情况表(收入为正,单位:元)周一 周二 周三 周四 周五 周六 周日+15 +10 0 +20 +15 +10 +14-8 -12 -19 -10 -9 -11 -8(1)在一周内小明有多少节余;(2)照这样一个月(按30天计算)小明能有多少节余;(3)按以上支出,小明一个月(按30天计算)至少要赚多少钱,才以维持正常开支.参考答案一、选择题1.C 2.C 3.C 4.B 5.A 6.B二、填空题1.略;2.≥,>,<;3.4±,-2;4.1;5.-2.6.-17. -1三、解答题1.(1)70 (2)312 (3)542- (4)-385.5 (5)2.2 (6)61 2.4337- 3.04.以a 为棱长的正方体的表面积为26a 。
北师大版数学七年级上册《有理数》同步精品练习题

2.1 有理数一、填空题.(每空格2分,共46分)1. 在-3和2之间的整数有 .2. )10(--的相反数是 .3. 数轴上的A 点与表示-2的点距离3个单位长度,则A 点表示的数为 .4. 比较大小:71- 61-;332 1338. 5.常熟市某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。
6.绝对值大于1而不大于3的整数有 ,它们的和是 。
7.有理数-3,0,20,-1.25,143, -12- ,-(-5) 中,正整数是 ,负整数是 , 正分数是 , 非负数是 。
8.观察下面一列数,根据规律写出横线上的数, -11;21;-31;41; ; ;……;第2003个数是 。
9.321-的倒数是 ,321-的相反数是 ,321-的绝对值是 , 10.已知|a|=4,那么a = 。
11.最小的正整数是 ;绝对值最小的有理数是 。
绝对值等于3的数是 。
绝对值等于本身的数是二、选择题.(每小题3分,共18分)1. 温度从C 05下降C 08后为( )A .C 03B .C 013 C .C 03-D .C 013-2. 对-1的叙述正确的是( )A .是最小的负数B .是最大的负数C .是最小的整数D .是最大的负整数3. 下列说法中:(1)0是最小的自然数;(2)0是最小的正数;(3)0是最大的负整数;(4)0属于整数集合;(5)0既非正数也非负数.正确的是( )A .(1)(2)(4)B .(4)(5)C .(1)(4)(5)D .(1)(2)(5)4.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在 ( )A. 在家B. 在学校C. 在书店D. 不在上述地方5.下列判断中,正确的是( )(A)正整数和负整数统称为整数 (B)正数和负数统称为有理数(C)整数和分数统称为有理数 (D)自然数和负数统称为有理数6.零是( )(A)奇数 (B)偶数 (C)质数 (D)正数三、解答题:(每小题9分,共36分)1.把下列各数填在相应的大括号内:1.2-,3,1,41,0,-14.3,101-,6.20,25-,1056,-7. 正分数集合:{ …}; 非负数集合:{ …}; 正整数集合:{ …}; 负整数集合:{ …}.2.一条笔直的公路旁边建有3个公路养护站,已知A 距C 站10千米,B 站距C 站4千米,请你用数轴的知识分析一下A 站和B 站的距离可能是多少?3.画出数轴,在数轴上表示下列各数,并用“<”连接:5+ ,5.3-,21,211-,4,0,5.24.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?二.及时讲评,分析解答情况,小结测试情况。
北师大版七年级数学上册《2.2有理数的加减运算》同步练习题-带答案

北师大版七年级数学上册《2.2有理数的加减运算》同步练习题-带答案考试时间:60分钟满分100分班级:________________ 姓名:________________ 考号:________________一、单选题(本大题共8小题,总分24分)1.下列结论中,正确的是()A.有理数减法中,被减数一定比减数大B.减去一个数,等于加上这个数的相反数C.0减去一个数,仍得这个数D.互为相反数的两个数相减等于02.计算﹣2﹣8的结果是()A.﹣6B.﹣10C.10D.63.甲地的海拔高度是5m,乙地比甲地低9m,乙地的海拔高度是()m.A.9B.﹣9C.4D.﹣44.春节期间冰雪旅游大热,杭州的小明同学准备去旅游,考虑温差准备着装时,他查询气温,杭州的气温是19℃,长春的气温是﹣14℃,则此刻两地的温差是()A.33℃B.19℃C.14℃D.5℃5.将式子3﹣10﹣7写成和的形式正确的是()A.3+(﹣10)+(﹣7)B.﹣3+(﹣10)+(﹣7)C.3﹣(+10)﹣(+7)D.3+10+76.已知|a|=8,|b|=6,若|a+b|=a+b,则b﹣a的值为()A.﹣2B.﹣4C.﹣2或﹣4D.﹣2或﹣147.若|m|=5,|n|=4,且|m+n|=|m|﹣|n|,则m﹣n=()A.﹣9或﹣1B.1或9C.9或﹣9D.1或﹣98.对于若干个数,先将每两个数作差,再将这些差的绝对值进行求和,这样的运算称为对这若干个数的“差绝对值运算”,例如,对于1,2,3进行“差绝对值运算”,得到:|1﹣2|+|2﹣3|+|1﹣3|=4.①对﹣2,3,5,9进行“差绝对值运算”的结果是35;②x,−52,5的“差绝对值运算”的最小值是152;③a,b,c的“差绝对值运算”化简结果可能存在的不同表达式一共有8种;以上说法中正确的个数为()A.0个B.1个C.2个D.3个二、填空题(本大题共6小题,总分24分)9.计算:(−5.2)−145=.10.已知:|x|=8,y=﹣5,且x<y,则x﹣y的值为.11.如图是某市连续5天的天气情况,最大的日温差是℃.12.A、B、C三地的海拔高度分别是﹣112米、﹣80米、﹣25米,则最高点比最低点高米.13.某超市出售的一种品牌大米袋上,标有质量为(20±0.2)kg的字样,则从该超市里任意拿出这种品牌的大米两袋,它们的质量最多相差kg.14.若|x|=7,|y|=6,|x+y|=﹣(x+y),则x﹣y的值为.三、解答题(本大题共6小题,总分52分)15.计算:(1)﹣3﹣1﹣13.(2)−(+416)−6−(−0.125).16.已知|a|=3,|b|=5,且a>b,求a﹣b的值.17.请列式计算:(1)求绝对值小于5的所有整数的和;(2)设m为5与﹣12的差,n比6的相反数大5,求m+n的值.18.已知|x|=12,|x﹣y|=5.(1)求x,y的值:(2)当x﹣y<0,求x+y的值.19.(1)若|x+3|+|y﹣5|=0,那么x+y的值是多少?(2)已知|a|=7,|b|=3,|a﹣b|=b﹣a,求a+b的值.20.(1)阅读思考:小唐在学习过程中,发现“数轴上两点间的距离”可以用“表示这两点数的差”来表示.【探索】:如图1,线段AB,BC,CD的长度可表示为:AB=3=4﹣1,BC=5=4﹣(﹣1),CD=3=(﹣1)﹣(﹣4);于是他归纳出这样的结论:如果点A表示的数为a,点B表示的数为b,当b>a时,AB=b﹣a(较大数﹣较小数).(2)尝试应用:①如图2所示,计算:OE=,EF=.②把一条数轴在数m对应的点处对折,使表示1和3两数的点恰好互相重合,则m=;若把数轴在数n对应的点处对折,使表示﹣5和3两数的点恰好互相重合,数n=.(3)问题解决:如图3所示,点P表示数x,点M表示数﹣2,点N表示数2x+8,且MN=4PM,求出点P和点N分别表示的数.参考答案一、单选题(本大题共8小题,总分24分)1.BBDA.5.ADCB.【点评】本题考查了新定义运算,化简绝对值符号,整式的加减运算,掌握绝对值运算,整式的运算是解题的关键.二、填空题(本大题共6小题,总分24分)9.﹣7.10.﹣3.11.10.12.87.13.0.4.14.﹣1或﹣13.三、解答题(本大题共6小题,总分52分)15.解:(1)原式=﹣4﹣13=﹣17;(2)原式=﹣416−6+18 =﹣10−16+18=﹣10−424+324=﹣10124.16.解:∵|a |=3,|b |=5∴a =±3或b =±5∵a >b∴a =3时,b =﹣5a ﹣b =3﹣(﹣5)=3+5=8a =﹣3时,b =﹣5a ﹣b =﹣3﹣(﹣5)=﹣3+5=2综上所述,a ﹣b 的值为8或2.17.解:(1)绝对值小于5的整数有:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4 所以﹣4﹣3﹣2﹣1+0+1+2+3+4=0;(2)由题意得m =5﹣(﹣12)=5+12=17,n =﹣6+5=﹣1所以m +n =17+(﹣1)=16.18.解:(1)∵|x |=12∴x =±12∵|x ﹣y |=5∴x =12,y =7或y =17,或者x =﹣12,y =﹣7或y =﹣17;(2)∵x ﹣y <0∴x =12,y =17或x =﹣12,y =﹣7;∴x +y 的值为:29或﹣19.19.解:(1)∵|x +3|+|y ﹣5|=0∴x =﹣3,y =5∴x +y =﹣3+5=2;(2)∵|a ﹣b |=b ﹣a∴b≥a∵|a|=7,|b|=3∴a=﹣7,b=±3∴a+b=﹣7±3=﹣10或﹣4.20.解:(2)①OE=0﹣(﹣5)=0+5=5,EF=3﹣(﹣5)=3+5=8②由题意得:3﹣m=m﹣1∴m=2把一条数轴在数m对应的点处对折,使表示1和3两数的点恰好互相重合,则m=2由题意得:3﹣n=n﹣(﹣5)∴n=﹣1∴若把数轴在数n对应的点处对折,使表示﹣5和3两数的点恰好互相重合,数n=﹣1故答案为:①5,8②2,﹣1;(3)由题意得:MN=2x+8﹣(﹣2)=2x+10,PM=﹣2﹣x∵MN=4PM∴2x+10=4(﹣2﹣x)解得:x=﹣3∴2x+8=2∴点P表示的数是:﹣3,点N表示的数是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一上册数学有理数随堂练习北大师版
同学们是不是有着聪明的头脑呢?接下来,查字典数学网为同学们整理了初一上册数学有理数随堂练习,来供同学们练习从而巩固自己所学过的知识,大家一定要认真做哦!
1. 某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:+10,-2,+3,-1,+9,-3,-2,+11,+3,-4,+6.
(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?
(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?
2. 一只蚂蚁从某点P出发在一条直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬行的各段路程依次为(单位:米):
+5,-4,+10,-8,-5,+12,-10
(1)蚂蚁最终回到出发点了吗?
(2)若蚂蚁共用了9分钟完成上面的路程,那么蚂蚁每分钟走多少路程?
3. 某检修小组在一条东西走向的公路上检修公路(约定向
东为正).某天,该小组从A地出发,到收工时,行走记录为(单位:千米):+15、-2、+5、-1、-10、-3、-2、+12、+4、-5.
(1)你知道他们收工的时候在A地的哪一边,并且距A地多少千米吗?
(2)如果汽车每千米耗油0.5升,求检修组这天耗油多少升? 现在是不是感觉查字典数学网为大家准备的初一上册数学
有理数随堂练习很关键呢?欢迎大家阅读与选择!。