(完整word版)高等数学上课程教学大纲

合集下载

高等数学上册教材目录

高等数学上册教材目录

高等数学上册教材目录1. 微积分导论1.1. 实数与数集1.1.1. 实数的概念与性质1.1.2. 数集的分类与运算1.1.3. 上确界与下确界1.2. 极限与连续性1.2.1. 函数极限的定义1.2.2. 极限的性质1.2.3. 无穷小量与无穷大量1.2.4. 连续性的定义与性质2. 函数与极限2.1. 函数的基本概念2.1.1. 函数的定义与表示2.1.2. 函数的图像与性质2.2. 函数的极限2.2.1. 函数极限的计算方法2.2.2. 无穷小量对函数极限的影响2.3. 极限存在与连续性2.3.1. 极限存在的条件2.3.2. 连续函数与间断点3. 导数与微分3.1. 导数的概念与性质3.1.1. 导数的定义3.1.2. 导数的运算法则3.1.3. 高阶导数与导数的应用3.2. 微分的概念与应用3.2.1. 微分的定义与计算3.2.2. 微分中值定理与导数的应用3.3. 函数的凸性与最值3.3.1. 函数的单调性与凸性3.3.2. 最值问题与应用4. 微分中值定理与导数应用4.1. 罗尔中值定理与拉格朗日中值定理4.2. 柯西中值定理与洛必达法则4.3. 震荡定理与不等式的应用4.4. 张贴问题与曲线追踪5. 积分与不定积分5.1. 积分的概念与性质5.1.1. 不定积分的定义5.1.2. 积分运算法则5.2. 牛顿-莱布尼兹公式与变限积分 5.2.1. 牛顿-莱布尼兹公式的应用 5.2.2. 变限积分的计算5.3. 定积分的概念与性质5.3.1. 定积分的定义5.3.2. 定积分的计算方法5.4. 积分中值定理与上积分5.4.1. 积分中值定理的应用5.4.2. 上积分的概念与计算6. 积分应用与定积分计算6.1. 曲线的长度与平面图形的面积6.1.1. 曲线长度的计算6.1.2. 平面图形面积的计算6.2. 旋转体的体积与平面曲线的求弧长6.2.1. 旋转体的体积计算6.2.2. 平面曲线弧长的计算6.3. 曲线的参数方程与极坐标方程6.3.1. 参数方程与极坐标方程的基本概念6.3.2. 参数方程与极坐标方程的应用7. 微分方程初步7.1. 微分方程的基本概念与解的存在唯一性 7.2. 一阶微分方程的解法7.2.1. 可分离变量的微分方程7.2.2. 齐次与一阶线性微分方程7.2.3. 可降阶的高阶微分方程7.3. 二阶线性齐次微分方程7.3.1. 齐次线性微分方程的基本概念7.3.2. 常系数齐次线性微分方程的解法 7.4. 可降阶的高阶线性微分方程7.4.1. 高阶线性微分方程的基本概念7.4.2. 可降阶的高阶线性微分方程的解法8. 多元函数微分学8.1. 二元函数与偏导数8.1.1. 二元函数的概念与性质8.1.2. 偏导数的定义与计算8.2. 多元函数的微分8.2.1. 多元函数的全微分8.2.2. 隐函数与反函数的微分8.2.3. 多元函数的全微分与偏导数8.3. 多元函数的极值与条件极值8.3.1. 多元函数的极值及其判定条件8.3.2. 多元函数的条件极值及其求解9. 重积分9.1. 二重积分的概念与性质9.1.1. 二重积分的定义9.1.2. 二重积分的计算方法9.2. 二重积分的应用9.2.1. 平面图形的质心与重心 9.2.2. 轴对称曲面的体积计算 9.3. 三重积分的概念与性质9.3.1. 三重积分的定义9.3.2. 三重积分的计算方法9.4. 三重积分的应用9.4.1. 空间图形的体积计算9.4.2. 质量和质心的计算10. 曲线积分与曲面积分10.1. 曲线积分的概念与计算10.1.1. 第一类曲线积分10.1.2. 第二类曲线积分10.2. Green公式与环流量10.2.1. Green公式的推导与应用10.2.2. 曲线的环流量计算10.3. 曲面积分的概念与计算10.3.1. 第一类曲面积分10.3.2. 第二类曲面积分10.4. Stokes公式与散度定理10.4.1. Stokes公式的应用10.4.2. 散度定理的应用11. 序列与级数11.1. 数列的极限与收敛性11.1.1. 数列极限的概念与性质11.1.2. 数列收敛性的判定准则11.2. 函数项级数11.2.1. 函数项级数的收敛性判定11.2.2. 常见函数项级数的性质11.3. 幂级数与Taylor展开11.3.1. 幂级数的概念与收敛半径11.3.2. Taylor级数与Maclaurin级数11.4. 函数的一致收敛性11.4.1. 函数列的逐点收敛与一致收敛11.4.2. 一致收敛的判定条件以上为《高等数学上册》教材目录的简要内容概述,各章节内容详细,适合根据教材目录迅速定位所需知识点并展开学习。

(完整版)《高等数学》课程教学大纲

(完整版)《高等数学》课程教学大纲

《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学的思想方法解决应用问题。

三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。

难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。

《高等数学》课程教学大纲

《高等数学》课程教学大纲

《高等数学》课程教学大纲一、课程基本信息课程编码:课程名称:《高等数学》总学时:112学时适用专业:长春大学旅游学院商学院、旅游管理学院、工学院相关专业开课单位:基础部计算机与数学教研室课程类别:公共基础课课程性质:必修课二、课程性质、目的与任务高等数学课程的教学内容由3个数学分支的内容组成,即《微积分》(52学时)、《线性代数》(30学时)、《概率论及数理统计》(30学时)。

本课程是一门培养学生具有一定的抽象概括问题能力、逻辑推理能力、熟练的运算能力,综合运用所学知识去分析问题,解决问题能力的公共基础课,是商学院、旅游管理学院、工学院相关专业一门必修的课程。

通过本课程的学习,使学生掌握高等数学的基本知识、基本理论和基本方法,为学生解决实际问题提供有效的数学方法,以及将高等数学的知识在自然科学和工程技术中的广泛应用奠定良好的数学基础。

本课程的主要任务是为专业课提供必不可少的数学基础知识,在传授知识的同时,努力培养学生进行抽象思维和逻辑推理的理性思维能力,综合运用所学的知识分析问题和解决问题的能力,以及较强的自主学习能力,逐步培养学生的创新精神和创新能力。

三、课程的内容及要求、教学重点与难点(一)函数、极限、连续1.主要教学内容函数的概念;数列的极限;函数的极限;无穷小量与无穷大量;极限运算法则;极限存在准则、两个重要极限;函数的连续性与间断点;连续函数的运算、初等函数的连续性;闭区间上的连续函数的性质。

2.知识点与能力点(1)知识点:加深对函数概念的理解,了解函数性质(奇偶性、单调性、周期性和有界性);理解复合函数的概念,了解反函数的概念;理解极限的概念,了解极限的,Nεεδ--定义、理解左、右极限的定义;掌握极限的四则运算法则;了解极限的性质(唯一性、有界性、保号性)和两个存在准则(夹逼准则与单调有界准则);掌握两个重要极限;了解无穷小、无穷大,理解高阶无穷小和等价无穷小的概念;理解函数在一点连续和在区间上连续的概念;了解函数间断点的概念;了解初等函数的连续性和闭区间上连续函数的介值定理,最大值、最小值定理。

(完整版)《高等数学》课程教学大纲

(完整版)《高等数学》课程教学大纲

《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学的思想方法解决应用问题。

三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。

难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。

高等数学(一)1课程教学大纲

高等数学(一)1课程教学大纲
课程内容:
第一章矢量与坐标
【目的要求】能正确理解矢量的概念,并且能灵活运用这些概念解决一些具体问题;掌握矢量的线性关系及矢量的分解;熟练掌握矢量各种运算的定义、性质、法则以及矢量的各种位置关系及其对应的代数表示式,在此基础上能进行正确的证明、计算;能正确理解矢量的坐标与点的坐标的内在联系和区别,掌握矢量运算的坐标表示及其各种位置关系的坐标表示,并且能熟练地进行运算和论证。
三、泰勒公式
四、函数单调性的判别法
五、函数的极值及其求法
六、函数的最大值和最小值
七、函数的凹凸性与拐点
八、函数图形的描绘
九、曲率
●实践教学内容与安排(4学时)
一、第一章习题
二、描绘函数图形
【作业与思考】第一章部分习题
思考:函数一阶导、二阶导数与函数极值点和拐点有哪些联系?
第六章定积分
【目的要求】掌握积分概念,性质,换元积分法和分部积分法、有理函数、三角函数有理式、简单无理式的积分方法。
【作业与思考】第三章部分习题
思考:微分与积分的联系。
学时分配表
课程内容
学时
理论
第一章中值定理与导数应用
16
第二章不定积分
10
第三章定积分
10
实践
一各章节习题
19
二描绘函数图形
2
三讨论:定积分与不定积分换元法的区别
1
考核
1.第一、二章内容
2
合计
60
教学策略与方法建议:以讲授法为主,辅以练习法、谈话法、讨论法、引导发现法。教学策略上宜以问题的呈现引发学生思考,帮助学生建立数学模型,找出解决问题的一般方法,从而建立概念,掌握有关数学思想方法,巩固定理和法则。
【重点与难点】重点是求导公式及法则。难点是导数与微分概念。

《高等数学》 课程教学大纲

《高等数学》 课程教学大纲

二、课程基本内容和要求
1. 函数、极限、连续
教学内容
(1) 函数概念、性质、基本初等函数图象的性质,复合函数,初等函数,建立函数关系举例。
(2) 函数极限的概念,极限的四则运算,两个重要极限,无穷小量与无穷大量概念及性质,无穷小的比较
(3) 函数的连续性,初等函数的连续性,间断点,闭区间上连续函数的性质
制定人:朱铭扬
审核人:高 枫
(2)偏导数概念,多元复合函数与隐函数的微分法
(3)全微分及其应用
(4)多元函数的极值和最值
教学要求
(1) 理解多元函数的基本概念,其定义域及图象特点,知道二元函数的极限、连续性等概念,知道有界闭区域上连续函数的性质。
(2) 理解偏导数,熟练地计算函数的一阶偏导数,熟练掌握复合函数的求导法则,会求隐函数的偏导数。
《高等数学》 课程教学大纲
总学时:128 学分:8
一、课程性质、任务和目的
高等数学是大学专科工学和理学专业一门必修的重要公共基础课,通过本课程的学习着重使学生理解极限的思想方法,掌握微积分学、级数、微分方程等内容,并通过各教学内容的有机结合,培养学生的逻辑思维能力和比较熟练的运算能力,为学生学习后继课程和解决实际问题提供必不可少的数学基础知识及常用数学方法。
(2)直角坐标系与极坐标系下二重积分的计算
(3)二重积分在几何上的应用:曲顶柱体体积计算
教学要求
(1) 理解二重积分概念及几何意义,知道其性质
(2) 掌握直角坐标系下二重积分的计算,会利用极坐标系计算二重积分。
(3) 会利用二重积分计算一些简单曲顶柱体的体积。
重点与难点:二重积分(包括概念、计算与应用);化重积分为累次积分;元素法

高等数学教学大纲

高等数学教学大纲

《高等数学》课程教学大纲一、课程的性质、目的和任务高等数学是工科本科各专业学生的一门必修的重要基础理论课,通过本课程的学习,要使学生获得:1.函数与极限;2.一元函数微积分学;3. 常微分方程;4.向量代数和空间解析几何;5.多元函数微积分学;6.无穷级数(包括傅立叶级数)等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。

在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题的能力。

二、课程教学的基本要求及基本内容说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。

高等数学(上)一、函数、极限、连续1. 理解函数的概念及函数的奇偶性、单调性、周期性和有界性。

2. 理解复合函数和反函数的概念。

3. 熟悉基本初等函数的性质及其图形。

4. 会建立简单实际问题中的函数关系式。

5. 理解极限的概念(对极限的-N、-定义不作高要求),掌握极限四则运算法则及换元法则。

6. 理解极限存在的夹逼准则,了解单调有界准则,掌握运用两个重要极限求极限的方法。

7. 了解无穷小、无穷大以及无穷小的阶的概念。

会用等价无穷小求极限。

8. 理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。

9. 了解初等函数的连续性和闭区间上连续函数的性质(介值定理和最大、最小值定理)。

二、一元函数微分学1. 理解导数和微分的概念,理解导数的几何意义及函数的可导性与连续性之间的关系。

2. 掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数的导数公式。

了解微分的四则运算法则和一阶微分形式不变性。

3. 了解高阶导数的概念。

4. 掌握初等函数一阶、二阶导数的求法。

知道某些初等函数n阶导数的求法与公式。

5. 会求隐函数和参数式所确定的函数的一阶、二阶导数。

高等数学教学大纲

高等数学教学大纲

《高等数学》课程教学大纲课程代码:500107学时数: 64课程类别:必修开课学期:第1学期适用专业:理工管各专业开课单位:基础部编写时间:2011年11月一、课程性质和目的《高等数学》是高等院校工程造价等专业学生一门必修的重要基础理论课,是培养高层次人才所需的基本课程。

通过《高等数学》课程的学习应使学生具备函数极限和连续、一元函数微分学、一元函数积分学、多元函数微积分、微分方程等方面的基本概念,为学生提供必不可少的数学基础知识和常用的数学方法。

在能力培养上,在传授知识的同时通过各教学环节逐步培养学生用极限的方法分析的方法解决问题的能力。

培养学生具有一定的逻辑思维能力,初步的抽象概括问题的能力和综合运用所学知识分析问题、解决问题的能力。

二、课程教学内容、学时分配和基本要求第一章函数极限连续第二章一元函数微分学及其应用第三章一元函数积分学及其应用第四章多元函数微积分第五章无穷级数第六章微分方程与数学建模第七章行列式三、各教学环节学时分配四、本课程与其他课程的联系和分工前期课程:高中数学知识。

后续课程:工程数学、化学、物理、力学及其它工科和管理专业课程。

五、本课程的考核方式本课程考核方式为闭卷考试,时间120分钟。

其中平时成绩占总成绩的 30%,期末考试题占70% 。

每次课作业布置4~5题,作业,出勤,小测试的成绩算平时成绩。

六、建议教材和教学参考书1.同济大学数学教研室主编,《高等数学》上下册。

高等教育出版社,1996.2.谭光兴主编,《线性代数》,中国人民大学出版社,2006年版.七、大纲说明在教学过程中,可根据实际情况,对大纲中的学时分配作适当调整。

执笔人:程婧审核人:王瑞金系部主任:王勇院学术委员会:主管院长:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“高等数学(上)”课程教学大纲
一、课程基本信息
开课单位:经济学院
课程名称:高等数学(上)
课程编号:101001212
英文名称:Advanced Mathematics
课程类型:专业基础课
总学时: 72 理论学时:72 实验学时:0
学分:3
开设专业:所有专业
先修课程:无
二、课程任务目标
(一)课程任务
本课程是理科院校经管类专业的一门专业基础课,又是全国硕士研究生入学考试统考科目。

通过本课程的学习,要使学生掌握一元函数极限、微分学、积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

(二)课程目标
在学完本课程之后,学生能够:基本了解一元函数极限、微积分学的基础理论;充分理解一元函数极限、微积分学的背景及数学思想。

掌握极限、微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用极限、微积分学的思想方法解决应用问题。

三、教学内容和要求
第一章函数、极限与连续
1.内容概要
函数,初等函数,数列的极限,函数的极限,无穷小与无穷大,极限运算法则,极限存在准则及两个重要极限,无穷小的比较,函数的连续性与间断点,连续函数的运算与初等函数的连续性,闭区间上连续函数的性质。

2.重点与难点
重点:函数的概念、性质;极限的概念,无穷大、无穷小的概念;极限的运算;连续的概念。

难点:函数的记号及所涉及到的函数值的计算;极限的ε—Ν,ε—δ定义;极限中一些定理的论证方法;极限存在性的判定,连续性的判断。

3.学习目的与要求
(1)了解函数的概念、函数的单调性,反函数和复合函数的概念,熟悉基本初等函数的性质及其图形,能列出简单实际问题中的函数关系。

(2)了解极限的ε—Ν,ε—δ定义;能根据定义证明本课程内容中有关极限的简单定理(对于给出的ε,求Ν或δ不作过高要求),在学习过程中逐步加深对极限思想的理解。

(3)掌握极限的四则运算法则,了解两个极限存在准则(夹逼准则和单调有界准则),会灵活使用两个重要极限。

(4)理解无穷大、无穷小的概念,掌握无穷小的比较,特别是常见的等价无穷小。

(5)理解函数在一点连续的概念,会判断间断点的类型。

(6)了解初等函数的连续性,掌握闭区间上连续函数的性质。

第二章导数与微分
1.内容概要
导数的概念,函数的求导法则,高阶导数,隐函数及由参数方程所确定的函数的导数,函数的微分。

2.重点和难点
重点:导数和微分的概念;复合函数微分法。

难点:微分的概念;隐函数及参数式二阶导数。

3.学习目的与要求
(1)理解导数和微分的概念,了解导数的几何意义及函数的可导性与连续性之间的关系。

(2)熟悉导数和微分的运算法则(包括微分形式不变性)和导数的基本公式,了解高阶导数概念,能熟练的求一阶、二阶导数。

(3)掌握隐函数和由参数式所确定的函数的一阶、二阶导数的求法。

(4)了解微分是函数增量的线性主部的概念及函数局部线性化的思想。

第三章中值定理与导数的应用
1.内容
中值定理,洛必达法则,泰勒公式,函数的单调性与曲线的凹凸性,函数的极值与最大值最小值,函数图形的描绘。

2.重点和难点
重点:微分中值定理,洛必达法则,极值及最大值、最小值。

难点:泰勒定理,中值定理应用于证明问题。

3.学习目的与要求
(1)理解罗尔定理和拉格朗日定理,了解柯西定理和泰勒定理,会应用罗尔、拉格朗日定理。

(2)理解函数的极值概念,掌握求函数的极值、判断函数的单调性和函数图形的凹凸性、求函数图形的拐点等方法。

能描绘函数的图形(包括水平与铅直渐进线),会求解较简单的最大值与最小值的应用问题。

第四章不定积分
1.内容
不定积分的概念与性质,换元积分法,分部积分法,有理函数的积分。

2.重点和难点
重点:不定积分的概念,基本积分公式;不定积分的换元积分法与分部积分法。

难点:不定积分的换元积分法。

3.学习目的与要求
(1)理解不定积分的概念和性质。

(2)熟悉不定积分的基本公式,熟练掌握不定积分的换元法和分部积分法,掌握较简单的有理函数的不定积分。

第五章定积分
1.内容
定积分的概念与性质,定积分的性质,微积分基本公式,定积分的换元积分法和分部积分法,定积分的应用。

2.重点和难点
重点:定积分的概念,定积分的中值定理;积分上限函数及其导数,牛顿—莱布尼兹公式;定积分的换元积分法、分部积分法。

难点:定积分的概念;积分上限函数及其导数;定积分的换元积分法、分部积分法。

3.学习目的与要求
(1)理解定积分的概念和性质。

(2)理解积分上限的函数及其求导定理。

(3)熟练掌握牛顿—莱布尼兹公式。

(4)熟练掌握定积分的换元法和分部积分法。

(5)了解定积分在几何及经济学中的应用。

四、学时分配
五、考核说明
考核方法:闭卷
成绩评定法法:平时成绩+⨯%30考试成绩%70⨯
六、主要教材及教学参考书目
(一)主要教材
1.吴赣昌 编《微积分》上册(经管类.第四版),中国人民大学出版社,20011年。

(二)主要参考书目
1.同济大学数学系 编《高等数学》上册 第六版,高等教育出版社,2007年。

2.四川大学数学系高等数学教研室 编 《高等数学》第一册 第三版,高等教育出版社,2006年。

3. 吴礼斌 主编 《经济数学基础》,高等教育出版社,2005年。

4. 范培华等编《微积分》,中国商业出版社,2006年。

相关文档
最新文档