北师大版数学七下6.2《频率的稳定性》(第2课时)优秀教学设计
北师大版七下数学6.2第2课时频率的稳定性教学设计

北师大版七下数学6.2第2课时频率的稳定性教学设计一. 教材分析北师大版七下数学6.2第2课时频率的稳定性,主要让学生探究事件发生频率的稳定性,通过大量实验,了解随机事件发生的频率稳定性,并认识概率的意义。
教材通过具体案例,引导学生运用概率知识解决实际问题,培养学生的应用能力。
二. 学情分析学生在六上已经学习了概率的基础知识,对概率有一定的认识。
但是,对于频率稳定性以及如何运用概率解决实际问题,还需要进一步引导和培养。
此外,学生对于实际问题的解决,还需要教师提供更多的实例和操作机会。
三. 教学目标1.让学生了解事件发生频率的稳定性,理解概率的意义。
2.培养学生运用概率知识解决实际问题的能力。
3.培养学生合作探究的学习态度,提高学生的数据分析能力。
四. 教学重难点1.重点:事件发生频率的稳定性,概率的意义。
2.难点:如何运用概率知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生自主探究。
2.运用实例分析,让学生体验概率在实际问题中的应用。
3.小组讨论,培养学生的合作学习能力。
4.采用启发式教学,引导学生思考,提高学生的思维能力。
六. 教学准备1.准备相关案例资料,用于讲解和分析。
2.准备实验器材,让学生进行实验操作。
3.设计好课堂提问和讨论问题,引导学生思考。
4.准备课后作业,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,引入频率稳定性和概率的概念。
例如,抛硬币实验,让学生观察硬币正反面出现的频率,引出频率稳定性。
2.呈现(10分钟)呈现相关案例,让学生分析案例中事件发生的概率。
如,掷骰子实验,分析掷出每个数字的概率。
引导学生运用概率知识解决实际问题。
3.操练(10分钟)学生进行实验操作,验证频率稳定性。
如,让学生抛硬币100次,记录正反面出现的频率,并引导学生分析实验结果。
4.巩固(10分钟)针对实验结果,引导学生进行数据分析,巩固频率稳定性及概率的意义。
如,让学生分析实验中正反面出现的频率是否稳定,并解释原因。
七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教学设计新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性教学设计新版北师大版一. 教材分析本节课的内容是北师大版七年级数学下册第六章频率初步2频率的稳定性6.2.2概率的稳定性。
这部分内容是学生在学习了频率和概率的基础知识后,对概率稳定性进行进一步的探究。
教材通过实例让学生理解概率的稳定性,并学会如何运用概率来解决问题。
本节课的内容对于学生来说是比较抽象的,需要通过大量的实例和实践活动来帮助学生理解和掌握。
二. 学情分析学生在学习本节课之前,已经学习了频率和概率的基础知识,对于频率和概率的概念有一定的了解。
但是,对于概率的稳定性这一概念,学生可能比较陌生,需要通过实例和实践活动来理解和掌握。
学生的思维方式以形象思维为主,需要通过具体的实例和实践活动来帮助学生理解和掌握。
三. 教学目标1.让学生理解概率的稳定性概念,并能够运用概率来解决问题。
2.通过实例和实践活动,培养学生的动手能力和思维能力。
3.培养学生对于数学的兴趣和信心,提高学生的学习积极性。
四. 教学重难点1.概率的稳定性概念的理解和运用。
2.如何通过实例和实践活动帮助学生理解和掌握概率的稳定性。
五. 教学方法采用讲授法和实践活动相结合的方法。
通过讲解实例和引导学生进行实践活动,帮助学生理解和掌握概率的稳定性。
六. 教学准备1.准备相关的实例和实践活动材料。
2.准备多媒体教学设备,如投影仪和计算机等。
七. 教学过程1.导入(5分钟)通过讲解一个简单的实例,引出概率的稳定性概念。
2.呈现(15分钟)讲解几个关于概率稳定性的实例,让学生观察和分析,引导学生理解概率的稳定性。
3.操练(20分钟)学生分组进行实践活动,运用概率的知识来解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(15分钟)学生分组讨论,分享自己小组的实践活动成果,教师总结和点评。
5.拓展(10分钟)引导学生思考概率稳定性在实际生活中的应用,让学生举例说明。
6.小结(5分钟)教师对本节课的内容进行小结,强调概率的稳定性概念和运用。
七年级数学下册第六章频率初步2频率的稳定性6.2.1频率的稳定性教学设计新版北师大版

七年级数学下册第六章频率初步2频率的稳定性6.2.1频率的稳定性教学设计新版北师大版一. 教材分析本节课的内容是北师大版七年级数学下册第六章频率初步的2频率的稳定性6.2.1频率的稳定性。
这部分内容是学生在学习了频率的概念和性质之后,进一步探究频率的稳定性。
教材通过具体的案例和实验,让学生感受频率的稳定性,并学会如何用频率来估计事件的概率。
二. 学情分析学生在学习本节课之前,已经掌握了频率的概念和性质,能够理解频率是事件发生的次数与总次数的比值。
但是,对于频率的稳定性,可能还存在一定的疑惑。
因此,在教学过程中,需要通过具体的案例和实验,让学生感受频率的稳定性,并引导学生运用频率来估计事件的概率。
三. 教学目标1.让学生理解频率的稳定性,学会用频率来估计事件的概率。
2.培养学生的观察能力和实验能力,提高学生的数学思维能力。
3.通过对频率稳定性的学习,激发学生对数学的兴趣和好奇心。
四. 教学重难点1.教学重点:让学生理解频率的稳定性,学会用频率来估计事件的概率。
2.教学难点:如何引导学生理解和感受频率的稳定性。
五. 教学方法1.采用问题驱动的教学方法,通过提问引导学生思考和探究频率的稳定性。
2.利用具体的案例和实验,让学生感受频率的稳定性。
3.采用小组合作的学习方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备具体的案例和实验材料,如硬币、骰子等。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备学习任务单,引导学生进行自主学习和合作学习。
七. 教学过程1.导入(5分钟)通过提问引导学生回顾频率的概念和性质,为新课的学习做好铺垫。
2.呈现(15分钟)利用具体的案例和实验,呈现频率的稳定性。
例如,抛硬币实验,让学生观察和记录硬币正面朝上的频率,并进行数据分析,引导学生发现频率的稳定性。
3.操练(15分钟)让学生进行小组合作,运用频率来估计事件的概率。
例如,掷骰子实验,让学生计算各种情况下的频率,并尝试用频率来估计事件的概率。
北师大版数学七年级下册:6.2频率的稳定性(教案)

-解决实际问题时,如何选择合适的实验次数,以确保频率的稳定性和概率估计的准确性。
-在数据分析过程中,如何处理实验中的偶然性,避免因个别数据的影响而对整体趋势做出错误的判断。
举例:在掷骰子实验中,难点在于引导学生理解为什么需要掷多次骰子,以及如何从这些数据中判断频率的稳定性。同时,解释为什么不能仅仅根据几次实验的结果就断定概率,而是需要足够的实验数据来减少偶然性误差。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解频率的基本概念。频率是大量重复实验中事件发生次数与实验总次数的比值。它是估计概率的重要手段。
2.案例分析:接下来,我们来看一个具体的案例。通过抛硬币实验,观察正面朝上的频率如何随着实验次数的增加而趋于稳定,并如何帮助我们估计概率。
3.重点难点解析:在讲授过程中,我会特别强调频率的概念和频率稳定性定理这两个重点。对于难点部分,我会通过抛硬币实验和数据分析来帮助大家理解。
1.教学重点
-理解频率的概念及其在估计概率中的应用,明确频率作为大量重复实验中事件发生次数与实验总次数的比值。
-掌握频率稳定性定理,即随着实验次数的增加,频率逐渐稳定在一个常数附近,该常数可以作为事件发生概率的估计值。
-学会通过实际操作和数据分析,运用频率稳定性定理来估计简单随机事件发生的概率。
-能够运用频率稳定性定理解决实际问题,如抛硬币、掷骰子等游戏中的概率计算。
3.培养学生的数学抽象素养,让学生从具体的实验现象中抽象出频率稳定性定理,并运用到实际问题中。
4.培养学生的数学建模能力,使学生能够运用频率稳定性定理建立模型,解决实际生活中的概率问题。
北师大版数学七年级下册6.2《频率的稳定性》教案

北师大版数学七年级下册6.2《频率的稳定性》教案一. 教材分析北师大版数学七年级下册6.2《频率的稳定性》是统计学的一个基本概念。
本节内容通过具体实例让学生了解频率的稳定性,掌握频率稳定性概念,并能够运用频率稳定性分析实际问题。
教材通过生活中的实例,引导学生探究频率的稳定性,培养学生的统计观念和数据分析能力。
二. 学情分析学生在学习本节内容前,已经学习了数据的收集、整理和表示方法,对统计学有了一定的了解。
但学生对频率稳定性的理解可能存在一定的困难,需要通过具体实例和活动让学生感受和理解频率的稳定性。
三. 教学目标1.让学生了解频率的稳定性概念,理解频率稳定性在实际问题中的应用。
2.培养学生收集、整理、分析数据的能力,发展学生的统计观念。
3.培养学生通过实例分析问题、解决问题的能力。
四. 教学重难点1.重点:频率稳定性的概念及其在实际问题中的应用。
2.难点:频率稳定性的理解和运用。
五. 教学方法1.采用问题驱动法,让学生在解决问题的过程中理解频率稳定性。
2.采用实例分析法,通过具体实例让学生感受频率稳定性。
3.采用小组合作学习法,培养学生的团队协作能力。
六. 教学准备1.准备相关的生活实例和数据,用于引导学生探究频率稳定性。
2.准备教学课件,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过引入生活中的一些实例,如抛硬币、掷骰子等,引导学生思考:在这些实验中,结果出现的频率是否会发生变化?从而引出频率稳定性的概念。
2.呈现(10分钟)教师呈现一些具体实例,如大量抛硬币实验的数据,让学生观察和分析频率的稳定性。
学生通过观察数据,发现频率在大量实验中趋近于一个稳定的值。
3.操练(10分钟)教师学生进行小组合作学习,让学生自己设计实验,收集数据,分析频率的稳定性。
学生通过自主探究,加深对频率稳定性的理解。
4.巩固(10分钟)教师提出一些问题,让学生回答,以巩固对频率稳定性的理解。
如:频率稳定性是什么意思?为什么频率会趋近于一个稳定的值?频率稳定性在实际问题中的应用等。
北师大版七年级下册数学教学设计:第六章6.2.2《频率的稳定性》

北师大版七年级下册数学教学设计:第六章6.2.2《频率的稳定性》一. 教材分析北师大版七年级下册数学第六章《统计》的6.2.2《频率的稳定性》一节,主要让学生通过大量的实例,感受事件发生频率的稳定性,理解频率与概率的关系,能运用频率估计概率。
教材通过具体案例的引入,引导学生发现频率的稳定性,从而引出概率的概念。
二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,对概率有了一定的了解。
但是,对于频率的稳定性以及频率与概率的关系,可能还比较陌生。
因此,在教学过程中,需要通过具体的实例,让学生感受频率的稳定性,引导学生理解频率与概率的关系。
三. 教学目标1.让学生通过具体的实例,感受事件发生频率的稳定性。
2.让学生理解频率与概率的关系,能运用频率估计概率。
3.培养学生的观察能力、分析能力以及解决问题的能力。
四. 教学重难点1.重点:让学生通过具体的实例,感受事件发生频率的稳定性。
2.难点:让学生理解频率与概率的关系,能运用频率估计概率。
五. 教学方法采用案例教学法、问题驱动法、小组合作法等教学方法。
通过具体的实例,引导学生发现频率的稳定性,从而引出概率的概念。
同时,通过问题驱动法和小组合作法,激发学生的思考,引导学生理解频率与概率的关系。
六. 教学准备1.准备相关的案例,如抛硬币、抽奖等。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备练习题,以便在课堂上进行操练。
七. 教学过程1.导入(5分钟)通过抛硬币的案例,让学生观察并记录硬币正面朝上的频率。
让学生感受到事件发生频率的稳定性。
2.呈现(10分钟)呈现其他相关的案例,如抽奖、掷骰子等,让学生观察并记录事件发生频率的稳定性。
同时,引导学生思考频率与概率的关系。
3.操练(10分钟)让学生分组进行实验,自己设计实验方案,记录实验结果,观察事件发生频率的稳定性。
然后,让学生分享实验结果,交流对频率稳定性的理解。
4.巩固(10分钟)让学生解答练习题,运用频率估计概率。
北师大版七年级下册数学教案:第六章6.2.2《频率的稳定性》x

北师大版七年级下册数学教案:第六章6.2.2《频率的稳定性》x一. 教材分析本节课的内容是北师大版七年级下册第六章6.2.2《频率的稳定性》。
这部分内容是在学生已经掌握了概率的定义和计算方法的基础上进行学习的,旨在让学生通过大量的实验和观察,了解频率的稳定性原理,从而更好地理解概率的概念。
在本节课中,学生将通过具体的实验和数据分析,探究频率在大量重复实验中的稳定性特点。
二. 学情分析在七年级的学生中,大部分学生已经具备了一定的实验操作能力和数据分析能力,能够进行简单的实验设计和数据分析。
但是,对于频率稳定性的概念,学生可能还比较陌生,需要通过大量的实验和观察,来理解和掌握这一概念。
因此,在教学过程中,需要注重学生的实验操作和观察能力的培养,同时引导学生进行数据分析,从而深入理解频率稳定性的原理。
三. 教学目标1.让学生通过大量的实验和观察,了解频率的稳定性原理。
2.培养学生进行实验操作和观察能力,以及数据分析能力。
3.帮助学生深入理解概率的概念。
四. 教学重难点1.重点:让学生通过大量的实验和观察,了解频率的稳定性原理。
2.难点:帮助学生深入理解概率的概念。
五. 教学方法1.实验法:通过让学生进行实验操作,观察频率的变化,从而理解频率的稳定性原理。
2.引导法:在学生进行实验和观察的过程中,教师引导学生进行数据分析,帮助学生深入理解概率的概念。
3.讨论法:在学生进行实验和观察的过程中,教师学生进行讨论,分享自己的观察和发现,从而加深对频率稳定性的理解。
六. 教学准备1.实验材料:骰子、计数器、记录表格等。
2.教学工具:多媒体教学设备。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾概率的定义和计算方法,为新课的学习做好铺垫。
2.呈现(10分钟)教师呈现实验任务:用骰子进行实验,计算抛掷骰子得到1、2、3、4、5、6这六个数字的频率,并记录下来。
3.操练(10分钟)学生分组进行实验,每组进行100次抛掷,记录下每次抛掷得到的数字,并计算出每个数字的频率。
北师大版七下数学第6章频率初步6.2.2频率的稳定性教学设计

北师大版七下数学第6章频率初步6.2.2频率的稳定性教学设计一. 教材分析北师大版七下数学第6章频率初步6.2.2频率的稳定性,主要让学生了解频率的概念,探究频率的稳定性。
通过本节课的学习,学生能够理解频率的概念,掌握频率的稳定性,并能运用频率解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了概率的基础知识,对概率有一定的理解。
但频率的概念和稳定性对于学生来说可能较为抽象,需要通过实例让学生感受和理解。
三. 教学目标1.知识与技能:理解频率的概念,掌握频率的稳定性,能运用频率解决实际问题。
2.过程与方法:通过实例探究频率的稳定性,培养学生的探究能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.重点:频率的概念,频率的稳定性。
2.难点:频率的稳定性的理解与应用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,培养学生的动手实践能力和团队协作精神。
六. 教学准备1.准备相关案例和实例,以便引导学生进行探究。
2.准备课件,以便辅助教学。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生思考:为什么在多次实验中,某个事件的频率会趋于稳定?从而引出频率的概念和稳定性。
2.呈现(10分钟)呈现相关案例和实例,让学生观察和分析,引导学生探究频率的稳定性。
在此过程中,适时给出频率的定义和稳定性。
3.操练(10分钟)让学生进行小组讨论,尝试运用频率的稳定性解决实际问题。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)通过一些练习题,让学生巩固频率的概念和稳定性。
教师及时给予反馈,提高学生的理解。
5.拓展(10分钟)引导学生思考:频率的稳定性在实际生活中的应用。
让学生举例说明,从而加深对频率稳定性的理解。
6.小结(5分钟)对本节课的内容进行简单总结,强调频率的概念和稳定性。
7.家庭作业(5分钟)布置一些有关频率的练习题,让学生课后巩固。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章概率初步2 频率的稳定性(第2课时)一、学生知识状况分析学生的知识技能基础:学生在小学已经会求简单事件发生的可能性。
对简单事件发生的可能性能够做出预测,并阐述自己的理由。
前面一节课中又学习了在实验次数很大时,不确定事件发生的频率,都会在一个常数附近摆动。
学生具备了进一步学习由不确定事件发生的频率来估计事件发生的概率的能力。
学生活动经验基础:在相关知识的学习过程中,学生已经体验实验次数很大时,不确定事件发生的频率,都会在一个常数附近摆动,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析教科书基于学生对事件发生等可能性的认识,提出了本课的具体学习任务:使学生经历“猜测—实验和收集实验数据—分析试验结果—验证猜测”的过程,了解频率的稳定性和如何通过大量重复实验发生的频率来估计事件发生的概率。
但这仅仅是这堂课外显的具体教学目标,或者说是一个近期目标。
数学教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个数学教学的远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。
本课内容从属于“统计与概率”这一数学学习领域,因而务必服务于概率教学的远期目标:“让学生经历数据收集、整理与表示、数据分析以及做出推断的全过程,发展学生的概率意识”,同时也应力图在学习中逐步达成学生的有关情感态度目标。
为此,本节课的教学目标:1.知识与技能:学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力;2.过程与方法:通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法;3.情感态度与价值观:通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值;进一步体会“数学就在我们身边”,发展学生的应用数学的能力教学重点:通过对事件发生的频率的分析来估计事件发生的概率.教学难点:通过对事件发生的频率的分析来估计事件发生的概率.学习方式:学生在教师指导下进行“猜想→实验→分析→交流→发现→应用”的一系列活动,积极思考,独立探索,自己发现并掌握相应的规律。
教学方式:通过具体的现实情境,从学生已有的生活经验出发,通过“猜想→实验→分析→交流→发现→应用”,经历一番前人发现这个结果的“浓缩”过程,培养学生发现问题、解决问题的能力。
三、教学过程分析本节课设计了七个教学环节:课前准备;创设情境,激发兴趣;合作交流,获取数据;操作交流,探究新知;学以致用,发展思维;回忆思考,归纳小结;布置作业。
第一环节课前准备以4人合作小组为单位准备一元硬币,,并回顾知识点。
第二环节创设情境,激发兴趣活动内容:教师首先让学生回顾学过的三类事件,接着让学生抛掷一枚均匀的硬币,硬币落下后,会出现正面朝上、正面朝下两种情况,你认为正面朝上和正面朝下的可能性相同吗?(让学生体验数学来源于生活)。
活动目的:使学生回顾学过的三类事件,并由掷硬币游戏培养学生猜测游戏结果的能力,并从中初步体会猜测事件可能性。
让学生体会猜测结果,这是很重要的一步,我们所学到的很多知识,都是先猜测,再经过多次的试验得出来的。
而且由此引出猜测是需通过大量的实验来验证。
这就是我们本节课要来研究的问题(自然引出课题)。
实际教学效果:学生在一个开放的环境下对生活中存在的问题进行猜测,而且讲解中小组之间互相补充、互相竞争,气氛热烈,使猜测的结果更加准确。
事实上,学生对游戏发生的可能性进行猜测的过程,就已经开始体会事件发生的可能性,这就为下一环节用实验验证事件发生的可能性打好基础。
第三环节合作交流,获取数据活动内容:参照教材提供的任意掷一枚均匀的硬币,出现正面朝上和正面朝下两种结果,让同学猜想正面朝上和正面朝下的可能性是否相同的情境,让学生来做做试验。
请同学们拿出准备好的硬币:(1)同桌两人做20次掷硬币的游戏,并将数据填在下表中:…(2)各组分工合作,分别累计进行到20、40、60、80、100、120、140、160、180、200次正面朝上的次数,并完成下表:活动目的:一是通过实验让学生体验等可能性事件发生的可能性的发现过程,当试验的次数较少时,折线在“0.5水平直线”的上下摆动的幅度较大,与开始的猜测有矛盾,让学生动脑得出造成这种结果的原因是实验的次数不够,培养学生发现问题、解决问题的能力。
从而使学生自发的把全班试验的结果都统计出来,学会进行实验和收集实验数据。
二是培养学生的合作精神,通过实验和收集实验数据的过程使学生之间增进感情,并明白团队精神的重要性。
实际教学效果:学生经过这一环节对等可能性事件发生的可能性的发现过程有了全面地认识,通过实验进一步使学生理解事件发生的可能性,领会数学是来源于生活,进一步了解不确定事件的特点,发展随机观念;在丰富的问题情境中认识到概率是刻画不确定现象的数学模型。
学生在单独一个小组进行试验时各小组之间正面朝上的频率数据差距较大,与猜测产生矛盾,学生对产生的矛盾进行了讨论,最终得出造成这种结果的原因是实验的次数不够,使学生能够自己去发现问题,从而得出把全班各个小组的总试验次数统计出来。
接下来对如何把全班的试验的结果都统计出来产生了激烈的争论,使学生树立在学习过程中找最佳解决办法的思想。
第四环节 操作交流,探究新知活动内容:1.请同学们根据已填的表格,完成下面的折线统计图2.观察上面的折线统计图,你发现了什么规律?3.下表列出了一些历史上的数学家所作的掷硬币试验的数据:1.0表中的数据支持你发现的规律吗?4.总结新知:(1)、在实验次数很大时事件发生的频率,都会在一个常数附近摆动,这个性质称为:频率的稳定性。
(2)、我们把这个刻画事件A发生的可能性大小的数值,称为事件A的概率,记为P(A)。
(3)、一般的,大量重复的实验中,我们常用不确定事件A发生的频率来估计事件A发生的概率。
5.想一想:事件A发生的概率P(A)的取值范围是什么?必然事件发生的概率是多少?不可能事件发生的概率又是多少?必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件A发生的概率P(A)是0与1之间的一个常数。
活动目的:突出本节课的重点:通过对事件发生的频率的分析来估计事件发生的概率,并掌握三类事件的概率值。
实际教学效果:学生通过小组之间的合作、交流,对不确定事件发生的频率的分析来估计事件发生的概率。
再通过对历史上数学家所作掷硬币试验数据的讨论学生的思维变得更加活跃,为回答接下来的新知应用做好准备。
第五环节新知的应用过程(一) 学以致用。
由学生利用刚刚学习的概率的知识解决教材中掷硬币的问题题目内容:1、由上面的实验,请你估计抛掷一枚均匀的硬币,正面朝上和正面朝下的概率分别是多少?他们相等吗?(二) 牛刀小试。
学生利用刚刚学习的由事件发生的频率来估概率解决实际问题,使学生体会数学来源于生活又能解决生活中的实际问题。
1、对某批乒乓球的质量进行随机抽查,结果如下表所示:(1)完成上表;(2)根据上表,在这批乒乓球中任取一个,它为优等品的概率是多少?(3)如果再抽取1000个乒乓球进行质量检查,对比上表记录下数据,两表的结果会一样吗?为什么?(三)是“玩家”就玩出水平。
通过让学生自由选择任务难度,实现分层次教学。
在好学生的引领下,逐步突出本节课的重点知识题目内容:智慧版1、下列事件发生的可能性为0的是()A.掷两枚骰子,同时出现数字“6”朝上B.小明从家里到学校用了10分钟,从学校回到家里却用了15分钟C.今天是星期天,昨天必定是星期六D.小明步行的速度是每小时40千米2、口袋中有9个球,其中4个红球,3个蓝球,2个白球,在下列事件中,发生的可能性为1的是()A.从口袋中拿一个球恰为红球B.从口袋中拿出2个球都是白球C.拿出6个球中至少有一个球是红球D.从口袋中拿出的球恰为3红2白3、小凡做了5次抛掷均匀硬币的实验,其中有3次正面朝上,2次正面朝下,他认为正面朝上的概率大约为53,朝下的概率为52,你同意他的观点吗?你认为他再多做一些实验,结果还是这样吗? 超人版1:给出以下结论,错误的有( )①如果一件事发生的机会只有十万分之一,那么它就不可能发生. ②如果一件事发生的机会达到99.5%,那么它就必然发生. ③如果一件事不是不可能发生的,那么它就必然发生.④如果一件事不是必然发生的,那么它就不可能发生.A.1个B.2个C.3个D.4个2、小明抛掷一枚均匀的硬币,正面朝上的概率为21,那么,抛掷100次硬币,你能保证恰好50次正面朝上吗?3、把标有号码1,2,3,……,10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是______. 设计说明:(一)结合新旧知识发现重要结论。
(二)应用所学新知解决典型概率问题,解决与生活实际联系紧密的问题。
通过分组竞赛的方式培养学生学习数学的积极性。
(三)灵活应用所学知识完成主观问题。
培养学生的有条理表达能力,是学生更好的掌握本节课的内容。
(五)行家看门道:灵活机动的练习题,巩固新知。
题目内容:1、掷一枚均匀的骰子。
(1)会出现哪些可能的结果?(2)掷出点数为1与掷出点数为2的可能性相同吗? 掷出点数为1与掷出点数为3的可能性相同吗?(3)每个出现的可能性相同吗?你是怎样做的?第六环节回忆思考,归纳小结活动内容:对本节课的知识进行回顾,师生互相交流怎样使用统计来估计事件发生的概率,怎样求简单事件的概率。
活动目的:使学生对用统计来估计事件发生的概率,怎样求简单事件的概率加深理解并将所学知识应用到实际生活中去。
实际教学效果:学生畅所欲言自己的切身感受与实际收获,用统计来估计事件发生的概率,怎样求简单事件的概率有了准确的理解,树立正确的随机观念,通过现实世界中熟悉和感兴趣的问题,丰富对概率背景的认识,积累大量的活动经验。
第七环节布置作业课本习题6.3四、教学设计反思1.要创造性的使用教材,不拘泥于教材的形式。
教材为学生的学习活动提供了基本线索,实施新课程目标、实施教学的重要资源。
在教学中要创造性地使用教材。
本节课教师通过具体的现实情境,充分利用学生的生活经验,让学生体验到数学来源于生活,打破了传统的注入式的教学模式,通过一系列精心设计把它改成学生所经历的情境引入课题,激发了学生的学习兴趣。
在教学中引导学生进行“猜想一实验一分析一交流一发现一应用”,学生在操作、思考、交流中不断地发现问题,解决问题,极大地调动了学生的学习的积极性,让学生尝到了成功的喜悦,激发了学生的发现思维的火花,经历了一番前人发现这个结果的“浓缩”过程,从而培养了学生独立探究和解决问题的能力。