生产者与消费者之间的同步与互斥问题
进程同步机制与互斥-生产者消费者问题

学习中心:专业:年级:年春/秋季学号:学生:题目:进程同步与互斥生产者-消费者问题1.谈谈你对本课程学习过程中的心得体会与建议?转眼间,学习了一个学期的计算机操作系统课程即将结束。
在这个学期中,通过老师的悉心教导,让我深切地体会到了计算机操作系统的一些原理和具体操作过程。
在学习操作系统之前,我只是很肤浅地认为操作系统只是单纯地讲一些关于计算机方面的操作应用,并不了解其中的具体操作过程1.1设计思路在这次设计中定义的多个缓冲区不是环形循环的,并且不需要按序访问。
其中生产者可以把产品放到某一个空缓冲区中,消费者只能消费被指定生产者生产的产品。
本设计在测试用例文件中指定了所有生产和消费的需求,并规定当共享缓冲区的数据满足了所有有关它的消费需求后,此共享才可以作为空闲空间允许新的生产者使用。
本设计在为生产者分配缓冲区时各生产者之间必须互斥,此后各个生产者的具体生产活动可以并发。
而消费者之间只有在对同一个产品进行消费时才需要互斥,它们在消费过程结束时需要判断该消费者对象是否已经消费完毕并释放缓冲区的空间。
1.2程序流程图1.3基本内容在设计程序时主要有三个主体部分、三个辅助函数和一个数据结构。
其中主体部分为一个主函数main (),用于初始化缓冲区和各个同步对象,并完成线程信息的读入,最后根据该组的线程记录启动模拟线程,并等待所有线程的运主函数初始化缓冲区,消费请求队列及部分同步对象提取线程信息完成线程相关同步对象的初始化等待所有线程结束创建线程模拟生产和消费程序结束消费者有消费请求?此请求可满足?确定产品位置此产品正被消费?进入临界区(对同一产品进行请求的消费者之间互斥)消费产品、并判断是否应该释放产品所占缓冲区 结束消费进程生产者存在空缓冲区?另一生产者正在生产?进入临界区 (所有生产者之间互斥)从空缓冲区中为本生产者的产品分配一个空间退出临界区在该缓冲区放入产品通过信号量通知等待本产品的消费者结束生产进程退出临界区 YYYNNNNYYN行结束后退出程序;生产者函数Produce()和消费者函数Consume(),生产者和消费者函数运行于线程中完成对缓冲区的读、写动作,根据此处生产消费的模型的特点,生产者和消费者之间通过使用同步对象实现了生产和消费的同步与互斥,是本实验的核心所在。
操作系统pv操作

引言概述:正文内容:一、概念介绍1.pv操作的定义及由来:pv操作是一种用于进程间同步和互斥的操作,其中p表示“pass”(等待)操作,v表示“vacate”(释放)操作。
它最早由Dijkstra在1965年提出,并被广泛应用于操作系统中的进程间通信。
2.信号量的概念及与pv操作的关系:信号量是一种计数器,用于同步和互斥。
pv操作是通过操作信号量来实现进程间的同步与互斥,其中p操作用于申请资源时的等待,v操作用于释放资源。
3.pv操作的作用:pv操作允许进程进行同步和互斥操作,保证资源的正确访问顺序,避免竞态条件和死锁问题。
二、pv操作的使用场景1.生产者消费者问题:在多线程或多进程环境下,生产者和消费者之间的数据通信和同步是一个常见的问题。
pv操作可以用来同步生产者和消费者的操作,确保生产者和消费者的操作顺序正确。
2.进程间互斥访问共享资源:当多个进程需要同时访问某个共享资源时,需要使用pv操作来进行互斥操作,避免多个进程同时访问导致数据不一致的问题。
3.进程间信号通知:pv操作也可以用于进程间的信号通知,例如一个进程等待某个事件的触发,另一个进程通过v操作来触发该事件。
4.进程管道通信:pv操作也可以用于进程之间通过管道进行通信,通过p操作来等待管道中有数据可读,通过v操作来通知管道中有新数据写入。
5.进程调度和同步:操作系统中的进程调度和同步往往需要使用pv操作来保证进程的正确执行顺序和互斥性。
三、pv操作的实现原理与方法1.pv操作的实现原理:pv操作的实现通常依赖于操作系统中的信号量机制。
当一个进程进行p操作时,它会尝试将指定的信号量值减1,若结果为负,则表示资源不可用,该进程会被阻塞。
当一个进程进行v操作时,它会将指定的信号量值加1,并唤醒一个等待中的进程。
2.pv操作的实现方法:pv操作可以通过系统调用来进行实现,例如在Unixlike系统中,可以使用semop()系统调用来进行pv操作。
用多线程同步方法解决生产者-消费者问题

目录1.需求分析 (2)1.1 课程设计题目 (2)1.2 课程设计任务 (2)1.3 课程设计原理 (2)1.4 课程设计要求 (2)1.5 实验环境 (2)2. 概要设计 (3)2.1 课程设计方案概述 (3)2.2 课程设计流程图 (3)3.详细设计 (4)3.1 主程序模块 (4)3.2 生产者程序模块 (5)3.3 消费者程序模块 (6)4.调试中遇到的问题及解决方案 (6)5.运行结果 (7)6.实验小结 (7)参考文献 (8)附录:源程序清单 (8)1.需求分析1.1 课程设计题目用多线程同步方法解决生产者-消费者问题1.2 课程设计任务(1)每个生产者和消费者对有界缓冲区进行操作后,即时显示有界缓冲区的全部内容、当前指针位置和生产者/消费者线程的标识符。
(2)生产者和消费者各有两个以上。
(3)多个生产者或多个消费者之间须共享对缓冲区进行操作的函数代码。
1.3 课程设计原理生产者和消费者问题是从操作系统中的许多实际同步问题中抽象出来的具有代表性的问题,它反映了操作系统中典型的同步例子,生产者进程(进程由多个线程组成)生产信息,消费者进程使用信息,由于生产者和消费者彼此独立,且运行速度不确定,所以很可能出现生产者已产生了信息而消费者却没有来得及接受信息这种情况。
为此,需要引入由一个或者若干个存储单元组成的临时存储区(即缓冲区),以便存放生产者所产生的信息,解决平滑进程间由于速度不确定所带来的问题。
1.4 课程设计要求(1)有界缓冲区内设有20个存储单元,放入/取出的数据项设定为1~20这20个整型数。
(2)每个生产者和消费者对有界缓冲区进行操作后,即时显示有界缓冲区的全部内容、当前指针位置和生产者/消费者线程的标识符。
(3)生产者和消费者各有两个以上。
(4)多个生产者或多个消费者之间须共享对缓冲区进行操作的函数代码。
1.5 实验环境系统平台:LINUX开发语言:C开发工具:PC机一台2. 概要设计2.1 课程设计方案概述本设计中设置一个长度为20的一维数组buff[20]作为有界缓冲区,缓冲区为0时,代表该缓冲区内没有产品,buff[i]=i+1表示有产品,产品为i+1。
进程同步问题分析——生产者和消费者问题

一、讨论课名称:计算机操作系统中进程同步与互斥问题分析二、讨论课目的:1.熟悉临界资源、信号量及PV操作的定义与物理意义;2.掌握进程互斥与进程同步的相关知识;3.掌握用信号量机制解决进程之间的同步与互斥问题;4.实现生产者-消费者问题,深刻理解进程同步问题。
三、讨论课内容:1.进程同步的基本概念在多道程序环境下,系统中可能存在许多的进程,在这些进程之间必定存在一些制约关系,这种制约关系表现为以下两种形式:①资源共享关系。
进程之间不知道其他进程的存在,而这些进程又处在同一个系统中,对系统资源必须共享使用,而有些资源不允许进程同时访问,例如打印机。
系统只能保证进程间互斥地使用这种临界资源,称这种资源共享关系叫做互斥;②相互合作关系。
在某些进程间还存在一种相互合作的关系。
例如在某个系统中存在两个进程,输入进程A和计算进程B,A负责向B提供数据,当缓冲区空时,B进程因不能获得所需数据而等待。
当A把数据送入缓冲区后,并向B发送一个信号将B唤醒,B才能取走数据。
同样,当B没有提取数据,也就是说缓冲区满时,进程A也无法向其中投入数据而等待。
这就是一种相互合作关系,称之为进程间的同步关系。
2.信号量机制实现进程同步本文分析的生产者-消费者问题就是一种相互合作问题的代表,对进程同步问题的解决,早在1965年,荷兰科学家Dijkstra就提出信号量机制是一种卓有成效的进程同步工具。
在信号量机制中,信号量仅能通过两个标准的原子操作wait(s)和singnal(s)来访问。
这两个操作被称为P,V操作。
在信号量机制中,除了需要一个用于代表资源数目的整型变量value外,还应增加一个进程链表L,用于链接上述的所有等待进程。
记录型信号量是由于它采用了记录型的数据结构而得名的。
它所包含的上述两个数据项可描述为:type semaphore=recordvalue:integer;L:list of process;End相应地,wait(s)和singal(s)操作可描述为:Procedure wait(s)var s:semaphore;BeginS.value:=S.value-1;If S.value<0 then block(S,L)EndProcedure signal(s)var S:semaphore;BeginS.value:=S.value+1;If S.value<=0 then wakeup(S,L);End每次的wait操作,意味着进程请求一个单位的资源,因此描述为S.value:=S.value-1;当S.value<0时,表示资源已分配完毕,因而进程调用block原语,进行自我阻塞,放弃处理机,并插入到信号量链表S.L中。
进程的同步与互斥之生产者消费者问题:对信号量设置的理解及PV操作顺序分析

进程的同步与互斥之⽣产者消费者问题:对信号量设置的理解及PV操作顺序分析问题描述系统中有⼀组⽣产者进程和⼀组消费者进程,⽣产者进程每次⽣产⼀个产品放⼊缓冲区,消费者进程每次从缓冲区取出⼀个产品并使⽤;缓冲区在同⼀时刻只能允许⼀个进程访问。
问题分析⽣产者、消费者共享⼀个初始为空、⼤⼩为n的缓冲区,我们把缓冲区中未存放数据的⼀个块,当作⼀个“空位”;把其中按块存放的数据当作“产品”。
同步关系:⽣产者与消费者只有缓冲区有空位时,⽣产者才能把产品放⼊缓冲区⽣产者把“空位”当作资源,缓冲区初始为空,即空位数量为n(n:空的缓冲区⼤⼩)所以可以设置信号量empty,初始nempty>0时,有空位,⽣产者可以消耗“空位”这种资源即P(empty);empty<=0时,⽣产者⽆“空位”资源可⽤,便会挂起到阻塞队列等待。
只有缓冲区有产品时,消费者才能从缓冲区中取出产品消费者把“产品”当作资源,缓冲区初始为空,即产品数量为0所以可以设置信号量full,初始为0full<=0,消费者⽆“产品”这种资源可⽤,便会挂起到阻塞队列full>0,有产品,消费者可以消耗“产品”这种资源即P(full)进⼀步:empty>0时,有空位,⽣产者可以消耗“空位”这种资源即P(empty)的同时:⽣产了“产品这种资源”,即V(full);full>0时,有产品,消费者可以消耗“产品”这种资源即P(full)的同时:⽣产了“空位”这种资源,即V(empty);互斥关系:所有进程之间缓冲区是临界资源,各个进程必须互斥地访问设置信号零mutex,初始为1在进⼊区P(mutex)申请资源在退出区V(mutex)释放资源设计typedef struct{int value;Struct process *L; //等待序列}semaphore;semaphore full;semaphore empty;semaphore mutex;//某进程需要使⽤资源时,通过wait原语申请:P操作void wait(semaphore S){S.value--;if(S.value < 0){block(S.L);//阻塞原语,将当前进程挂载到当前semaphore的阻塞队列}}//进程使⽤完资源后,通过signal原语释放:V操作void signal(semaphore S){S.value++;if(S.value <= 0){wakeup(S.L);//唤醒原语,将当前semaphore的阻塞队列中的第⼀个进程唤醒}}full.value=0; //缓冲区 “产品”资源数(初始为0),⽤于实现⽣产者与消费者进程的同步empty.value=n; //缓冲区 “空位”资源数(初始为n),⽤于实现⽣产者与消费者进程的同步mutex.value=1; //互斥信号量,⽤于实现所有进程之间互斥地访问缓冲区//⽣产者producer(){while(1){Produce(); //⽣产“产品”P(empty); //“空位”数-1P(mutex); //临界区上锁Storage(); //摆放产品V(mutex); //临界区解锁V(full); //“产品”数+1}}//消费者consumer(){while(1){P(full); //“产品”数-1P(mutex); //临界区上锁TakeOut(); //拿⾛产品V(mutex); //临界区解锁V(empty); //“空位”数+1Use(); //使⽤“产品”}}对于各个操作顺序的理解:1. 对于⼀部分操作的顺序,我们很好理解,符合我们的认知://⽣产者Produce(); //⽣产产品P(empty); //“空位”数-1,可能有⼈在这⾥会问这个操作为什么不可以放在“Storage甚⾄是V(full)”后⾯,考虑⼀种情况:当空位数为0时,我们是不能摆放产品的,⽽这个操作正是在检查是否还有“空位”这种资源;所以它⼀定在Storage前⾯ Storage(); //摆放产品V(full); //“产品”数+1,可能有⼈在这⾥会问这个操作为什么不可以放在“Storage甚⾄是P(empty)”前⾯,考虑⼀种情况:当产品数为n时,我们是不能再摆放产品的,因为缓冲区已满,再向其中添加数据(执⾏Storage)是要出问题的;所 //消费者P(full); //“产品”数-1,同上⾯⼀样,可能有⼈在这⾥会问这个操作为什么不可以放在“TakeOut甚⾄是V(empty)”后⾯,考虑⼀种情况:当产品数为0时,我们是不能拿⾛产品的,⽽这个操作正是在检查是否还有“产品”这种资源;所以它⼀定 TakeOut(); //拿⾛产品V(empty); //“空位”数+1,同上⾯⼀样,可能有⼈在这⾥会问这个操作为什么不可以放在“TakeOut甚⾄是P(full)”前⾯,考虑⼀种情况:当空位数为n时,我们是不能拿⾛产品的,因为缓冲区已经空了,再拿⾛(执⾏TakeOut)拿⾛个寂寞 Use(); //使⽤“产品”2. 对于其他操作:实现同步的P操作⼀定要在实现互斥的P操作之前,为什么呢?反向分析:我们考虑若调换⽣产者上述两个P操作的顺序://⽣产者producer(){while(1){Produce(); //⽣产产品P(mutex); //临界区上锁P(empty); //“空位”数-1Storage(); //摆放产品V(mutex); //临界区解锁V(full); //“产品”数+1}}//消费者consumer(){while(1){P(full); //“产品”数-1P(mutex); //临界区上锁TakeOut(); //拿⾛产品V(mutex); //临界区解锁V(empty); //“空位”数+1Use(); //使⽤“产品”}}若此时缓冲区已经放满产品,则empty=0,full=n⽣产者进程执⾏P(mutex),mutex变为0,由于empty为0即没有“空位”了,需要⽣产者进程阻塞,等待消费者拿⾛产品切换⾄消费者进程,消费者进程执⾏到P(mutex),由于mutex为0即⽣产者未释放临界资源,需要⽣产者释放临界资源,消费者进程阻塞互相等待,进⼊死锁结论:不要让因同步引起的进程阻塞(P操作可能产⽣结果)发⽣在为临界区上锁之后,因为:1. 临界区上锁,表⽰临界资源已被占⽤;若对临界区未解锁之前,发⽣了因同步引起的进程阻塞(上例中即需要⽣产者进程阻塞,等待消费者拿⾛产品)。
操作系统之进程(生产者---消费者)实验报告

操作系统实验报告——生产者和消费者问题姓名:学号: 班级:一、实验内容1、模拟操作系统中进程同步和互斥;2、实现生产者和消费者问题的算法实现;二、实验目的1、熟悉临界资源、信号量及PV操作的定义与物理意义;2、了解进程通信的方法;3、掌握进程互斥与进程同步的相关知识;4、掌握用信号量机制解决进程之间的同步与互斥问题;5、实现生产者-消费者问题,深刻理解进程同步问题;三、实验题目在Windows操作系统下用C语言实现经典同步问题:生产者—消费者,具体要求如下:(1)一个大小为10的缓冲区,初始状态为空。
(2)2个生产者,随机等待一段时间,往缓冲区中添加数据,若缓冲区已满,等待消费者取走数据之后再添加,重复10次.(3)2个消费者,随机等待一段时间,从缓冲区中读取数据,若缓冲区为空,等待生产者添加数据之后再读取,重复10次。
四、思想本实验的主要目的是模拟操作系统中进程同步和互斥。
在系统进程并发执行异步推进的过程中,由于资源共享和进程间合作而造成进程间相互制约。
进程间的相互制约有两种不同的方式.(1)间接制约。
这是由于多个进程共享同一资源(如CPU、共享输入/输出设备)而引起的,即共享资源的多个进程因系统协调使用资源而相互制约。
(2)直接制约。
只是由于进程合作中各个进程为完成同一任务而造成的,即并发进程各自的执行结果互为对方的执行条件,从而限制各个进程的执行速度。
生产者和消费者是经典的进程同步问题,在这个问题中,生产者不断的向缓冲区中写入数据,而消费者则从缓冲区中读取数据.生产者进程和消费者对缓冲区的操作是互斥,即当前只能有一个进程对这个缓冲区进行操作,生产者进入操作缓冲区之前,先要看缓冲区是否已满,如果缓冲区已满,则它必须等待消费者进程将数据取出才能写入数据,同样的,消费者进程从缓冲区读取数据之前,也要判断缓冲区是否为空,如果为空,则必须等待生产者进程写入数据才能读取数据.在本实验中,进程之间要进行通信来操作同一缓冲区。
生产者与消费者之间的同步与互斥问题

•进程间的关系 •生产者生产消息 后 消费者消费的合作 关系 •消费者消费 后 的空白缓冲块由生产者 生产消息的合作关系 •进程间在队列操作上的互斥关系
Var mutex, empty, full:semaphore∶=1,n,0; buffer:array[0, …, n-1] of item; in, out: integer∶=0, 0; proceducer:begin repeat producer an item nextp; wait(empty); wait(mutex); buffer(in)∶=nextp; in∶=(in+1) mod n; signal(mutex); signal(full); until false; end • consumer:begin • repeat • wait(full); • wait(mutex); • nextc∶ =buffer(out); • out∶ =(out+1) mod n; • signal(mutex); • signal(empty); • consumer the item in nextc; • until false; • end
互斥问题:
1.生产者与生产者之间、消费者与消费者之间 互斥访问缓冲池。 2.生产者和消费者之间互斥访问缓冲池。
生产者/消费者问题
• 一个生产者,一个消费者,一个缓冲区 • 确定同步对象 • 确定同步约束条件 • 确定同步时机 • 定义信号量:考虑为每个同步对象设一个 信号量 • 用wait()操作判断同步条件是否满足 • 用signal()操作向其它同步对象发同步信号
Thank you !!
姚俊 朱景焕 宋聪 郭涛 欧阳睿 朱思勇 杨凝 熊伟 唐沐 万骞 闫弈潼
unix系统中同步问题和互斥问题例子

unix系统中同步问题和互斥问题例子同步问题和互斥问题是在多进程或者多线程编程中经常遇到的共享资源管理问题。
在Unix系统中,同步问题和互斥问题具体体现在进程间共享的文件、共享内存和信号量等资源的访问过程中。
一、同步问题同步问题指的是多个进程或线程需要按照一定的次序执行,以实现特定的功能或保证数据的一致性。
以下是一些在Unix系统中常见的同步问题例子:1.多进程文件写入在多个进程同时对同一个文件进行写入操作时,可能会出现数据混乱的问题。
例如,两个进程同时向同一个文件写入一段数据,如果操作不加以控制,可能会导致两个进程的数据交错。
为了解决这一问题,可以使用文件锁(flock)或者互斥锁(mutex)来实现对文件的互斥访问,保证每个进程对文件的独占写入操作。
2.生产者和消费者问题生产者和消费者问题是一种经典的同步问题,常用于描述多个进程或线程之间的协作关系。
在Unix系统中,可以通过共享内存、信号量等机制来实现生产者和消费者之间的同步。
例如,一个进程负责生产数据,另一个进程负责消耗数据,通过信号量来控制两个进程之间的同步,保证数据的正确交换和处理。
3.进程间通信在Unix系统中,进程间通信(IPC)是一种常见的同步问题。
例如,两个进程需要完成某个任务,但是任务的执行需要依赖于另一个进程的结果。
可以通过管道、套接字或者共享内存等方式来实现进程间的通信,保证同步和协作的顺利进行。
二、互斥问题互斥问题是指多个进程或线程对共享资源的访问需要互斥进行,以避免数据竞争和冲突。
以下是一些在Unix系统中常见的互斥问题例子:1.临界区问题临界区问题是指多个进程或线程对共享资源的访问需要互斥进行。
在Unix系统中,可以使用互斥锁(mutex)来实现对临界区的互斥访问。
例如,多个线程对共享变量进行读写操作,通过互斥锁的加锁和解锁操作来保证每次只有一个线程能够访问临界区,避免数据竞争和冲突。
2.信号量问题信号量是一种常见的同步机制,可用于解决多个进程或线程对共享资源的互斥访问问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•进程间的关系 •生产者生产消息 后 消费者消费的合作 关系 •消费者消费 后 的空白缓冲块由生产者 生产消息的合作关系 •进程间在队列操作上的互斥关系
Var mutex, empty, full:semaphore∶=1,n,0; buffer:array[0, …, n-1] of item; in, out: integer∶=0, 0; proceducer:begin repeat producer an item nextp; wait(empty); wait(mutex); buffer(in)∶=nextp; in∶=(in+1) mod n; signal(mutex); signal(full); until false; end • consumer:begin • repeat • wait(full); • wait(mutex); • nextc∶ =buffer(out); • out∶ =(out+1) mod n; • signal(mutex); • signal(empty); • consumer the item in nextc; • until false; • end
互斥问题:
1.生产者与生产者之间、消费者与消费者之间 互斥访问缓冲池。 2.生产者和消费者之间互斥访问缓冲池。
生产者/消费者问题
• 一个生产者,一个消费者,一个缓冲区 • 确定同步对象 • 确定同步约束条件 • 确定同步时机 • 定义信号量:考虑为每个同步对象设一个 信号量 • 用wቤተ መጻሕፍቲ ባይዱit()操作判断同步条件是否满足 • 用signal()操作向其它同步对象发同步信号
Thank you !!
姚俊 朱景焕 宋聪 郭涛 欧阳睿 朱思勇 杨凝 熊伟 唐沐 万骞 闫弈潼
例 1
电子邮件信箱
1 2
……
n
发送进程 A
接收进程 B
当信箱满时,发送进程只有等待接收进程取走信件, 当信箱空时,接收进程必须等待发送进程发送信件。
生产者与消费者之间的同步与互斥问题 同步问题:
1.只要缓冲池未满,生产者便可将消息送入缓 冲池,否则等待。 2.只要缓冲池未空,消费者便可从缓冲池中取 走一个消息,否则等待。
问题描述
• 一个仓库可以存放K件物品。生产者每生产一件 产品,将产品放入仓库,仓库满了就停止生产。 消费者每次从仓库中去一件物品,然后进行消费, 仓库空时就停止消费。 • 生产者与消费者问题是许多相互合作进程的一种 抽象。例如,在输入时,输入进程是生产者,计 算进程是消费者。在输出时,计算进程是生产者, 打印进程是消费者。