高中数学 课时作业8 数列的性质和递推公式 新人教版必修5

合集下载

2020-2021学年高中数学人教A版必修5: 2-1-2 数列的性质与递推公式

2020-2021学年高中数学人教A版必修5: 2-1-2 数列的性质与递推公式
数 λ 的最小值是 -3 .
解析:∵an≤an+1,∴n2+λn≤(n+1)2+λ(n+1), 即 λ≥-(2n+1)对任意 n∈N*成立,∴λ≥-3.
15.已知数列{an}满足 an=n+1 1+n+1 2+n+1 3+…+21n.
∴a14=a11+a12-a11+a13-a12+a14-a13 =a11+3×2=8. ∴a11=2,∴a1=12.
(2)由(1)知a1n=a11+a12-a11+a13-a12+…+a1n-an1-1,∴a1n
=2+ ∴a1n=2n,∴an=21n,n∈N+.
——能力提升类——
12.已知数列{an}中,an=n2+n156(n∈N*),则数列{an}的最
自然数均有 xn+1=f(xn),则 x2 014= 1 .
x 12345 f(x) 4 1 3 5 2
解析:x1=f(x0)=f(5)=2, x2=f(x1)=f(2)=1, x3=f(x2)=f(1)=4, x4=f(x3)=f(4)=5=x0, 从而数列{xn}是周期为 4 的数列, 于是 x2 014=x4×503+2=x2=1.
13.已知数列{an},a1=1,lnan+1-lnan=1,则数列{an}的通 项公式是( C )
A.an=n C.an=en-1
B.an=1n D.an=en1-1
解析:∵lnan+1-lnan=1,∴lnaan+n1=1.∴aan+n 1=e. 由累乘法可得 an=en-1.
14.已知数列{an}满足:an≤an+1,an=n2+λn,n∈N*,则实
9.已知数列{an},an=nbn+a c,其中 a,b,c 均为正数,则
此数列是 递增数列 .(填“递增数列”“递减数列”“摆动数

高中数学必修5数列的递推公式

高中数学必修5数列的递推公式

典型例题解析
例题1
已知等差数列{an}中, a1=2,d=3,求a10。
解析
根据等差数列的通项公 式an=a1+(n-1)d,代 入n=10,a1=2,d=3 ,可得a10=2+(101)×3=29。
例题2
已知等差数列{an}中, a3=7,a7=15,求a5 。
解析
根据等差数列的性质, a5=(a3+a7)/2=(7+15 )/2=11。
递推关系性质
递推关系具有确定性,即对于给 定的初始条件和递推公式,数列 的每一项都是唯一确定的。
递推关系建立
01
等差数列递推关系
等差数列的递推关系为an=a1+(n-1)d,其中a1为首项 ,d为公差,n为项数。
02
等比数列递推关系
等比数列的递推关系为an=a1×qn-1,其中a1为首项, q为公比,n为项数。
,r是公比。
调和数列
调和数列是每一项都是其前一项 的倒数与1的和的数列。递推公 式为1/a_n = 1/a_(n-1) + 1/b,
其中a_1 = b。
05 递推公式在实际问题中应用
数学问题应用举例
等差数列求和
数列通项公式求解
利用递推公式可以快速求解等差数列 的前n项和,如求1+2+3+...+n的和 。
03
其他类型数列递推关系
对于非等差非等比数列,需要根据具体题目条件建立相 应的递推关系。
初始条件确定
初始条件定义
初始条件是数列中已知的第一项或前 几项,用于启动递推过程。
初始条件确定方法
根据题目给出的条件或已知信息,确 定数列的初始条件。例如,题目中可 能会直接给出首项a1和公差d或公比q 等参数。

(完整版)数列公式汇总.doc

(完整版)数列公式汇总.doc

人教版数学必修五第二章数列重难点解析第二章课文目录2. 1数列的概念与简单表示法2. 2等差数列2. 3等差数列的前n 项和2. 4等比数列2. 5等比数列前n 项和【重点】1、数列及其有关概念,通项公式及其应用。

2、根据数列的递推公式写出数列的前几项。

3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。

4、等差数列 n 项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。

5、等比数列的定义及通项公式,等比中项的理解与应用。

6、等比数列的前n 项和公式推导,进一步熟练掌握等比数列的通项公式和前n 项和公式【难点】1、根据数列的前n 项观察、归纳数列的一个通项公式。

2、理解递推公式与通项公式的关系。

3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。

4、灵活应用等差数列前n 项公式解决一些简单的有关问题。

5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。

6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。

一、数列的概念与简单表示法⒈ 数列的定义:按一定次序排列的一列数叫做数列 .注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.⒉ 数列的项:数列中的每一个数都叫做这个数列的项 . 各项依次叫做这个数列的第 1 项(或首项),第2 项,,第 n 项, .⒊数列的一般形式:a1 , a2 , a3 , , a n , ,或简记为a n,其中 a n是数列的第n项⒋数列的通项公式:如果数列 a n 的第 n 项a n与 n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式 .注意:⑴并不是所有数列都能写出其通项公式,如上述数列④;⑵一个数列的通项公式有时是不唯一的,如数列:1, 0, 1, 0, 1 , 0 ,它的通项公式可以是1 ( 1) n 1|.a n ,也可以是 a n | cos n 12 2⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:*数列可以看成以正整数集N(或它的有限子集{1 , 2, 3,, n} )为定义域的函数a n f (n) ,当自变量从小到大依次取值时对应的一列函数值。

人教新课标版数学高二必修5作业设计第二章数列的递推公式(选学)

人教新课标版数学高二必修5作业设计第二章数列的递推公式(选学)

2.1.2 数列的递推公式(选学)课时目标 1.了解数列的递推公式,明确递推公式与通项公式的异同.2.会根据数列的递推公式写出数列的前几项.1.如果数列{a n }的第1项或前几项已知,且从数列{a n }的第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的______公式. 2.一般地,一个数列{a n },如果从______起,每一项都大于它的前一项,即__________,那么这个数列叫做递增数列.如果从______起,每一项都小于它的前一项,即__________,那么这个数列叫做递减数列.如果数列{a n }的各项________,那么这个数列叫做常数列.一、选择题1.已知a n +1-a n -3=0,则数列{a n }是( )A .递增数列B .递减数列C .常数项D .不能确定 2.数列1,3,6,10,15,…的递推公式是( ) A .a n +1=a n +n ,n ∈N +B .a n =a n -1+n ,n ∈N +,n ≥2C .a n +1=a n +(n +1),n ∈N +,n ≥2D .a n =a n -1+(n -1),n ∈N +,n ≥23.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列第4项是( )A .1 B.12C.34D.58 4.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3…a n =n 2,则a 3+a 5等于( ) A.259 B.2516 C.6116 D.31155.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n6.已知数列{a n }中,a 1=a (a 为正常数),a n +1=-1a n +1(n =1,2,3,…),则下列能使a n =a的n 的数值是( )A .15B .16C .17D .18二、填空题7.已知数列{a n }满足:a 1=-14,a n =1-1a n -1(n >1),则a 4=________.8.已知数列{a n }满足:a 1=a 2=1,a n +2=a n +1+a n ,(n ∈N +),则使a n >100的n 的最小值是________.9.某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2010年底全县的绿化率已达30%.从2011年开始,每年将出现这样的局面,即原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化.设全县面积为1,2010年底绿化面积为a 1=310,经过n 年绿化总面积为a n +1.则a n +1用a n 表示为________.10.已知数列{a n }满足a 1=12,a n a n -1=a n -1-a n ,则数列{a n }的通项公式是________.三、解答题11.在数列{a n }中,a 1=12,a n =1-1a n -1 (n ≥2,n ∈N +).(1)求证:a n +3=a n ; (2)求a 2 010.12.某餐厅供应1 000名学生用餐,每星期一有A 、B 两种菜可供选择,调查资料显示星期一选A 菜的学生中有20%在下周一选B 菜,而选B 菜的学生中有30%在下周一选A 菜,用A n 、B n 分别表示在第n 个星期一选A 菜、B 菜的学生数,试写出A n 与A n -1的关系及B n 与B n -1的关系.能力提升13.已知数列{a n }满足a 1=-1,a n +1=a n +1nn +1,n ∈N +,则通项公式a n =________. 14.设{a n }是首项为1的正项数列,且(n +1)·a 2n +1-na 2n +a n +1a n =0(n =1,2,3,…),则它的通项公式是________.1数列的递推公式是给出数列的另一种重要形式,一般地,只要给出数列的首项或前几项以及数列的相邻两项或几项之间的运算关系,就可以依次求出数列的各项. 2.由数列的递推公式求通项公式是数列的重要问题之一.①叠加法:当a n -a n -1=f (n -1)满足一定条件时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+…+f (n -1).②叠乘法:当a n a n -1=f (n -1)满足一定条件时,a n =a 1·a 2a 1·a 3a 2·…·a na n -1=a 1·f (1)·f (2)·…·f (n -1).2.1.2 数列的递推公式(选学)答案知识梳理1.递推 2.第2项 a n +1>a n 第2项 a n +1<a n 都相等 作业设计1.A 2.B 3.B 4.C5.A ln 2-ln 1+ln 3-ln 2+ln 4-ln 3+…+ln n -ln(n -1) 6.B7.-148.129.a n +1=45a n +425解析 由已知可得a n 确定后,a n +1表示如下:a n +1=a n ·(1-4%)+(1-a n )·16%,即a n +1=80%a n +16%=45a n +425.10.a n =1n +1解析 ∵a n a n -1=a n -1-a n ,∴1a n -1a n -1=1.∴1a n =1a 1+(1a 2-1a 1)+(1a 3-1a 2)+…+(1a n -1a n -1)=2+1+1+…+1n -1个1=n +1.∴1a n =n +1,∴a n =1n +1. 11.(1)证明 a n +3=1-1a n +2=1-11-1a n +1=1-11-11-1a n =1-11-a n a n -1=1-1a n -1-a na n -1=1-1-1a n -1=1-(1-a n )=a n . ∴a n +3=a n .(2)解 由(1)知数列{a n }的周期T =3,a 1=12,a 2=-1,a 3=2.又∵a 2 010=a 3×670=a 3=2,∴a 2 010=2. 12.解 由题意知:⎩⎪⎨⎪⎧A n +B n =1 000,A n =0.8A n -1+0.3B n -1,B n =0.2A n -1+0.7B n -1.由A n -1+B n -1=1 000,得B n -1=1 000-A n -1.所以A n =0.8A n -1+0.3×(1 000-A n -1)=0.5A n -1+300. 同理,B n =0.2×(1 000-B n -1)+0.7B n -1=0.5B n -1+200.13.-1n解析 ∵a n +1-a n =1n n +1, ∴a 2-a 1=11×2;a 3-a 2=12×3;a 4-a 3=13×4;… … a n -a n -1=1n -1n;以上各式累加得,a n -a 1=11×2+12×3+…+1n -1n =1-12+12-13+…+1n -1-1n=1-1n.∴a n +1=1-1n ,∴a n =-1n .14.a n =1n解析 ∵(n +1)a 2n +1-na 2n +a n a n +1=0,∴·(a n +1+a n )=0,∵a n >0,∴a n +a n +1>0, ∴(n +1)a n +1-na n =0.方法一 a n +1a n =nn +1.∴a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12·23·34·45·…·n -1n , ∴a n a 1=1n. 又∵a 1=1,∴a n =1n a 1=1n.方法二 (n +1)a n +1-na n =0, ∴na n =(n -1)a n -1=…=1×a 1=1,∴na n =1,a n =1n .。

2021人教版高中数学必修五课件:第2课时数列的通项公式与递推公式

2021人教版高中数学必修五课件:第2课时数列的通项公式与递推公式

掌握数列项的求解步骤和注意事项
掌握利用通项公式求解数列项的方法
利用递推公式求解数列的项
递推公式的定义和性质
示例:利用递推公式求解数列的第n项
利用递推公式求解数列的项的步骤
利用递推公式求解数列的通项公式
通项公式与递推公式的综合应用示例
理解数列的通项公式与递推公式的含义和关系
掌握数列的通项公式与递推公式的综合应用方法
答案:数列{an}的通项公式为an=2^n-1。 练习题三:利用通项公式求解数列的项
练习题三:利用通项公式求解数列的项
题目:已知数列{an}的通项公式为an=n^2,求a5的值。
单击此处添加文本具体内容,简明扼要地阐述您的观点。根据需要可酌情增减文字
解析:将n=5代入通项公式an=n^2中,得到a5=5^2=25。
理解数列的通项公式与递推公式的含义和关系
掌握数列的通项公式与递推公式的应用条件
注意数列的通项公式与递推公式的适用范围和局限性
结合具体问题,灵活运用数列的通项公式与递推公式进行求解
07
数列的通项公式与递推公式的练习题与答案解析
练习题一:利用通项公式求解数列的项
单击此处输入你的项正文,请尽量言简意赅的阐述观点。
练习题三:通项公式与递推公式的综合应用
汇报人:
感谢观看
递推公式的类型
等差数列的递推公式:an+1=an+d
等比数列的递推公式:an+1=;1-an=f(n)
递归方程的递推公式:an+1=g(an)
递推公式的应用
实例:斐波那契数列的递推公式为F(n+2) = F(n+1) + F(n),通过递推公式可以求出斐波那契数列的第n项

人教新课标版数学高二B版必修5课时作业 数列的递推公式

人教新课标版数学高二B版必修5课时作业 数列的递推公式

一、选择题1.数列12,14,18,116,…的递推公式可以是a 1=12且( )A .a n =12n +1(n ∈N *) B .a n =12n (n ∈N *)C .a n +1=12a n (n ∈N *)D .a n +1=2a n (n ∈N *) 【解析】 数列从第二项起,后项是前项的12.【答案】 C2.在数列{a n }中,a 1=3,a 2=6,a n +2=a n +1-a n ,那么这个数列的第5项为( )A .6B .-3C .-12D .-6【解析】 ∵a 1=3,a 2=6,∴a 3=a 2-a 1=3,a 4=a 3-a 2=-3,a 5=a 4-a 3=-6.【答案】 D3.在数列1,1,2,3,5,8,x,21,34,55,…中,x 的值为( )A .10B .11C .12D .13【解析】 a 1=1,a 2=1,a 3=2=a 1+a 2,a 4=3=a 2+a 3,a 5=5=a 3+a 4,a 6=8=a 4+a 5,∴x =5+8=13.【答案】 D4.已知数列a n <0,且2a n +1=a n ,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .无法判断【解析】 a n +1-a n =12a n -a n =-12a n .∵a n <0,∴-12a n >0,∴a n +1>a n ,∴{a n }为递增数列.【答案】 A5.在数列{a n }中,a 1=2,a n +1=a n +ln(1+1n ),则a n =( )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n【解析】 a 2=a 1+ln 2,a 3=a 2+ln 32,a 4=a 3+ln 43,…,a n -1=a n -2+lnn -1n -2,a n =a n -1+ln n n -1,故a n =a 1+ln 2+ln 32+ln 43+…+ln n -1n -2+ln n n -1=a 1+ln(2×32×43×…×n -1n -2×n n -1)=a 1+ln n =2+ln n . 【答案】 A二、填空题6.数列{a n }中,若a n +1-a n -n =0,则a 2 012-a 2 011=________.【解析】 由已知a 2 012-a 2 011-2 011=0,∴a 2 012-a 2 011=2 011.【答案】 2 0117.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 2 012=________.【解析】 a 1=3,a 2=6,a 3=a 2-a 1=3,a 4=a 3-a 2=-3,a 5=a 4-a 3=-3-3=-6,a 6=a 5-a 4=-6+3=-3,a 7=3,a 8=6,a 9=a 3,a 10=a 4,∴a 2 012=a 6×335+2=a 2=6.【答案】 68.依次写出数列a 1=1,a 2,a 3,…,a n (n ∈N *)的法则如下:如果a n 为自然数,则写a n +1=a n -2,否则就写a n +1=a n +3,则a 6=________.(注意0是自然数)【解析】 ∵a 1=1是自然数,∴a 2=a 1-2=-1,∵a 2=-1不是自然数,∴a 3=a 2+3=2,∴a 4=a 3-2=2-2=0,∴a 5=a 4-2=-2.∵a 5不是自然数,∴a 6=a 5+3=-2+3=1.【答案】 1三、解答题9.已知数列{a n }中,a 1=1,a 2=2,以后各项由a n =a n -1+a n -2(n ≥3)给出.(1)写出此数列的前5项;(2)通过公式b n =a n a n +1构造一个新的数列{b n },写出数列{b n }的前4项. 【解】 (1)∵a n =a n -1+a n -2(n ≥3),且a 1=1,a 2=2, ∴a 3=a 2+a 1=3,a 4=a 3+a 2=3+2=5, a 5=a 4+a 3=5+3=8.故数列{a n }的前5项依次为a 1=1,a 2=2,a 3=3,a 4=5,a 5=8.(2)∵b n =a n a n +1,且a 1=1,a 2=2,a 3=3,a 4=5,a 5=8, ∴b 1=a 1a 2=12,b 2=a 2a 3=23,b 3=a 3a 4=35,b 4=a 4a 5=58. 故b 1=12,b 2=23,b 3=35,b 4=58.10.已知数列{a n }中,a 1=1,a n +1=3a n a n +3(n ∈N *),求通项a n . 【解】 ∵a n +1=3a n a n +3,∴a n +1(a n +3)=3a n , ∴a n +1a n =3a n -3a n +1.两边同除以3a n +1·a n 得13=1a n +1-1a n, ∴1a 2-1a 1=13,1a 3-1a 2=13,…,1a n -1a n -1=13, 把以上这(n -1)个式子累加, 得1a n -1a 1=n -13. ∵a 1=1,∴a n =3n +2. 11.已知数列{a n }的通项公式a n =(n +2)·(67)n ,试求数列{a n }的最大项. 【解】 假设第n 项a n 为最大项,则⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1.即⎩⎪⎨⎪⎧ (n +2)·(67)n ≥(n +1)·(67)n -1,(n +2)·(67)n ≥(n +3)·(67)n +1, 解得⎩⎪⎨⎪⎧ n ≤5,n ≥4,即4≤n ≤5, 所以n =4或5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574.。

高中数学课时作业8数列的性质和递推公式新人教版必修5

高中数学课时作业8数列的性质和递推公式新人教版必修5

高中数学课时作业8数列的性质和递推公式新人教版必修51.数列1,3,6,10,15,…的递推公式是( ) A .a n +1=a n +n ,n ∈N *B .a n =a n -1+n ,n ∈N *,n ≥2C .a n +1=a n +(n +1),n ∈N *,n ≥2 D .a n =a n -1+(n -1),n ∈N *,n ≥2 答案 B解析 逐项验证可知B 选项合适.2.已知数列{a n }满足a 1>0,且a n +1=12a n ,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .摆动数列 答案 B解析 由a 1>0,且a n +1=12a n ,则a n >0,又a n +1a n =12<1,∴a n +1<a n . 因此数列{a n }为递减数列. 3.已知数列{a n }的项满足a n +1=nn +2a n ,而a 1=1,通过计算a 2,a 3,猜想a n 等于( ) A.2n +12B.2nn +1C.12n-1D.12n -1答案 B解析 a 1=1=21×2,∵a n +1=n n +2a n ,∴a 2=13=22×3.同理a 3=16=23×4.猜想a n =2n n +1.4.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于( ) A .-165 B .-33 C .-30 D .-21 答案 C解析 由题可得,a 2=a 1+a 1,所以a 1=-3,a 10=a 1+a 9=…=a 1+a 1+…+a 1=-30. 5.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3…a n =n 2,则a 3+a 5等于( )A.259B.2516C.6116D.3115 答案 C6.在数列{a n }中,已知a n =n +cn +1(c ∈R ),则对于任意正整数n 有( ) A .a n <a n +1B .a n 与a n +1的大小关系和c 有关C .a n >a n +1D .a n 与a n +1的大小关系和n 有关 答案 B 解析 ∵a n =n +c n +1=n +1+c -1n +1=1+c -1n +1, ∴a n -a n +1=c -1n +1-c -1n +2=c -1n +1n +2. 当c -1>0时,a n >a n +1;当c -1<0时,a n <a n +1; 当c -1=0时,a n =a n +1.7.下列叙述中正确的个数为( ) ①数列a n =2是常数列; ②数列{(-1)n·1n}是摆动数列;③数列{n2n +1}是递增数列;④若数列{a n }是递增数列,则数列{a n ·a n +1}也是递增数列. A .1 B .2 C .3 D .4 答案 C解析 ①②③正确.对于④,如a n 为-2,-1,0,1,2,3,…,即不合要求.8.已知数列{a n }的通项公式为a n =-2n 2+21n ,则该数列中最大的项为第________项. 答案 5解析 ∵f (n )=-2n 2+21n =-2(n -214)2+4418(n ∈N *),∴n =5或6时a n 最大.∵a 5=55,a 6=54,∴最大项为第5项.9.函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2 012=________.答案 解析 由题意可得x 1,x 2,x 3,x 4,x 5,…的值分别为2,1,5,2,1,…,故数列{x n }为周期为3的周期数列.∴x 2 012=x 3×670+2=x 2=1.10.已知数列{an }的通项公式是an =⎩⎪⎨⎪⎧2-n , n 是奇数,11+n -2, n 是偶数.则它的前4项为________.答案 12,45,18,161711.数列{a n }中a 1=1,a 2=3,a 2n -a n -1·a n +1=(-1)n -1(n ≥2),那么a 4=________.答案 33解析 令n =2,得a 22-a 1·a 3=-1,∴a 3=10. 令n =3代入,得a 23-a 2a 4=(-1)2,∴a 4=33.12.在数列{a n }中,已知a 1=2,a 2=3,a n +2=3a n +1-2a n (n ≥1),写出此数列的前6项,并猜想数列的通项公式.解析 a 1=2,a 2=3,a 3=3a 2-2a 1=3×3-2×2=5, a 4=3a 3-2a 2=3×5-2×3=9, a 5=3a 4-2a 3=3×9-2×5=17, a 6=3a 5-2a 4=3×17-2×9=33.可猜想a n =2n -1+1.13.已知a n =a (12)n(a 为常数且a ≠0),试判断{a n }的单调性.下面是一学生的解法,这种解法对吗?如果不对给出你的结论.∵a n -a n -1=a (12)n -a (12)n -1=-a (12)n<0,∴{a n }是递减数列.解析 这种解法误认为a >0,所以不对,对于非零实数a 应讨论a >0和a <0两种情况. ∵a n -a n -1=-a (12)n(n ≥2),∴当a >0时,a n -a n -1<0.∴a n <a n -1.∴{a n }是递减数列; 当a <0时,a n -a n -1>0, ∴a n >a n -1.∴{a n }是递增数列.14.已知数列{a n }:13,-12,35,-23, …(1)写出数列的通项公式; (2)计算a 10,a 15,a 2n +1;(3)证明:数列{|a n |} 是递增数列.解析 (1)原数列变形为:13,-24,35,-46,…,分别考查数列的分子,分母与项数n的关系以及符号相间出现,第一项为正,所以数列的通项公式为a n =(-1)n +1nn +2.(2)当n =10,则a 10=-1012=-56;当n =15时,则a 15=1517;将a n 中n 换成2n +1时,得a 2n +1=2n +12n +3.(3)令b n =|a n |(n ∈N *), 则b n =|(-1)n +1n n +2|=nn +2. ∵b n +1-b n =n +1n +1+2-n n +2=2n +3n +2>0.∴b n +1>b n .即对一切正整数n ,恒有|a n +1|>|a n |成立.因此数列{|a n |}为递增数列. 讲评 本题求解时,若与函数的定义,函数相关的性质联系容易理解,a n =f (n )即为函数的解析式;a 10=f (10),即是函数在n =10的函数值;a 2n +1=f (2n +1)即为函数代换,将函数中的变量n 换成了2n +1;当|a n +1|>|a n |时,则数列在n ∈N *时为递增数列,这与函数单调递增定义一样,即对一切正整数n 当n +1>n ,都有|a n +1|>|a n |,说明数列中每一项大于前一项,即为递增数列.15.数列{an }满足a 1=1,且an +1+2anan +1-an =0. (1)写出数列{an }的前5项;(2)由(1)写出数列{an }的一个通项公式;(3)实数199是否为这个数列中的项?若是,应为第几项?解析 (1)∵a 1=1,an +1+2anan +1-an =0, ∴a 2+2a 1a 2-a 1=0,解得a 2=13.同理,可以解得a 3=15,a 4=17,a 5=19.∴数列的前5项为1,13,15,17,19.(2)由以上可得an =12n -1. (3)令12n -1=199,得n =50.即199是这个数列的第50项.►重点班·选作题 16.已知a n =n -98n -99,则这个数列的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 30 答案 C17.根据下列5个图形及相应的个数的变化规律,试猜测第n 个图中有多少个点.解析 图(1)只有1个点,无分支;图(2)除中间1个点外,有两个分支,每个分支有1个点;图(3)除中间1个点外,有三个分支,每个分支有2个点;图(4)除中间1个点外,有四个分支,每个分支有3个点;…;猜测第n 个图中除中间一个点外,有n 个分支,每个分支有(n -1)个点,故第n 个图中个数为1+n (n -1)=n 2-n +1.设{a n }是首项为1的正项数列且(n +1)a 2n +1-na 2n +a n +1·a n =0(n ∈N *),求a n . 解析 方法一 (累乘法)由(n +1)a 2n +1-na 2n +a n +1a n =0,得(a n +1+a n )(na n +1-na n +a n +1)=0.由于a n +1+a n >0,∴(n +1)a n +1-na n =0. ∴a n +1a n =n n +1. ∴a n =a 1·a 2a 1·a 3a 2·…·a na n -1=1×12×23×34×…×n -1n =1n.。

数列的递推公式和通项公式总结

数列的递推公式和通项公式总结

数列的递推公式和通项公式总结一、数列的概念1.数列:按照一定顺序排列的一列数。

2.项:数列中的每一个数。

3.项数:数列中数的个数。

4.首项:数列的第一项。

5.末项:数列的最后一项。

6.公差:等差数列中,相邻两项的差。

7.公比:等比数列中,相邻两项的比。

二、数列的递推公式1.等差数列的递推公式:an = a1 + (n-1)d–an:第n项–a1:首项2.等比数列的递推公式:an = a1 * q^(n-1)–an:第n项–a1:首项3.斐波那契数列的递推公式:an = an-1 + an-2–an:第n项–an-1:第n-1项–an-2:第n-2项三、数列的通项公式1.等差数列的通项公式:an = a1 + (n-1)d–an:第n项–a1:首项2.等比数列的通项公式:an = a1 * q^(n-1)–an:第n项–a1:首项3.斐波那契数列的通项公式:an = (1/√5) * [((1+√5)/2)^n - ((1-√5)/2)^n]–an:第n项四、数列的性质1.收敛性:数列的各项逐渐接近某个固定的数。

2.发散性:数列的各项无限增大或无限减小。

3.周期性:数列的各项按照一定周期重复出现。

五、数列的应用1.数学问题:求数列的前n项和、某项的值、数列的收敛性等。

2.实际问题:人口增长、贷款利息计算、等差数列的求和等。

六、数列的分类1.有限数列:项数有限的数列。

2.无限数列:项数无限的数列。

3.交错数列:正负交替出现的数列。

4.非交错数列:同号连续出现的数列。

5.常数数列:所有项都相等的数列。

6.非常数数列:各项不相等的数列。

综上所述,数列的递推公式和通项公式是数列学中的重要知识点,通过这些公式,我们可以求解数列的各种问题。

同时,了解数列的性质和分类,有助于我们更好地理解和应用数列。

习题及方法:1.习题一:已知等差数列的首项为3,公差为2,求第10项的值。

答案:a10 = 3 + (10-1) * 2 = 3 + 18 = 21解题思路:利用等差数列的递推公式an = a1 + (n-1)d,将给定的首项和公差代入公式,求得第10项的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高考调研】2015年高中数学 课时作业8 数列的性质和递推公式 新人教版必修51.数列1,3,6,10,15,…的递推公式是( ) A .a n +1=a n +n ,n ∈N *B .a n =a n -1+n ,n ∈N *,n ≥2C .a n +1=a n +(n +1),n ∈N *,n ≥2 D .a n =a n -1+(n -1),n ∈N *,n ≥2 答案 B解析 逐项验证可知B 选项合适.2.已知数列{a n }满足a 1>0,且a n +1=12a n ,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .摆动数列答案 B解析 由a 1>0,且a n +1=12a n ,则a n >0,又a n +1a n =12<1,∴a n +1<a n . 因此数列{a n }为递减数列. 3.已知数列{a n }的项满足a n +1=nn +2a n ,而a 1=1,通过计算a 2,a 3,猜想a n 等于( ) A.2n +12B.2n n +1C.12n-1D.12n -1答案 B解析 a 1=1=21×2,∵a n +1=n n +2a n ,∴a 2=13=22×3.同理a 3=16=23×4.猜想a n =2n n +1.4.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于( ) A .-165 B .-33 C .-30 D .-21答案 C解析 由题可得,a 2=a 1+a 1,所以a 1=-3,a 10=a 1+a 9=…=a 1+a 1+…+a 1=-30.5.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3…a n =n 2,则a 3+a 5等于( ) A.259 B.2516 C.6116 D.3115答案 C6.在数列{a n }中,已知a n =n +cn +1(c ∈R ),则对于任意正整数n 有( ) A .a n <a n +1B .a n 与a n +1的大小关系和c 有关C .a n >a n +1D .a n 与a n +1的大小关系和n 有关 答案 B 解析 ∵a n =n +c n +1=n +1+c -1n +1=1+c -1n +1, ∴a n -a n +1=c -1n +1-c -1n +2=c -1n +1n +2. 当c -1>0时,a n >a n +1;当c -1<0时,a n <a n +1; 当c -1=0时,a n =a n +1.7.下列叙述中正确的个数为( ) ①数列a n =2是常数列; ②数列{(-1)n·1n}是摆动数列;③数列{n2n +1}是递增数列;④若数列{a n }是递增数列,则数列{a n ·a n +1}也是递增数列. A .1 B .2 C .3 D .4答案 C解析 ①②③正确.对于④,如a n 为-2,-1,0,1,2,3,…,即不合要求.8.已知数列{a n }的通项公式为a n =-2n 2+21n ,则该数列中最大的项为第________项. 答案 5解析 ∵f (n )=-2n 2+21n =-2(n -214)2+4418(n ∈N *),∴n =5或6时a n 最大.∵a 5=55,a 6=54,∴最大项为第5项.9.函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2 012=________.答案 解析 由题意可得x 1,x 2,x 3,x 4,x 5,…的值分别为2,1,5,2,1,…,故数列{x n }为周期为3的周期数列.∴x 2 012=x 3×670+2=x 2=1.10.已知数列{an }的通项公式是an =⎩⎪⎨⎪⎧2-n , n 是奇数,11+n -2, n 是偶数.则它的前4项为________.答案 12,45,18,161711.数列{a n }中a 1=1,a 2=3,a 2n -a n -1·a n +1=(-1)n -1(n ≥2),那么a 4=________.答案 33解析 令n =2,得a 22-a 1·a 3=-1,∴a 3=10. 令n =3代入,得a 23-a 2a 4=(-1)2,∴a 4=33.12.在数列{a n }中,已知a 1=2,a 2=3,a n +2=3a n +1-2a n (n ≥1),写出此数列的前6项,并猜想数列的通项公式.解析 a 1=2,a 2=3,a 3=3a 2-2a 1=3×3-2×2=5, a 4=3a 3-2a 2=3×5-2×3=9, a 5=3a 4-2a 3=3×9-2×5=17, a 6=3a 5-2a 4=3×17-2×9=33.可猜想a n =2n -1+1.13.已知a n =a (12)n(a 为常数且a ≠0),试判断{a n }的单调性.下面是一学生的解法,这种解法对吗?如果不对给出你的结论.∵a n -a n -1=a (12)n -a (12)n -1=-a (12)n<0,∴{a n }是递减数列.解析 这种解法误认为a >0,所以不对,对于非零实数a 应讨论a >0和a <0两种情况. ∵a n -a n -1=-a (12)n(n ≥2),∴当a >0时,a n -a n -1<0. ∴a n <a n -1.∴{a n }是递减数列; 当a <0时,a n -a n -1>0, ∴a n >a n -1.∴{a n }是递增数列.14.已知数列{a n }:13,-12,35,-23, …(1)写出数列的通项公式; (2)计算a 10,a 15,a 2n +1;(3)证明:数列{|a n |} 是递增数列.解析 (1)原数列变形为:13,-24,35,-46,…,分别考查数列的分子,分母与项数n的关系以及符号相间出现,第一项为正,所以数列的通项公式为a n =(-1)n +1nn +2.(2)当n =10,则a 10=-1012=-56;当n =15时,则a 15=1517;将a n 中n 换成2n +1时,得a 2n +1=2n +12n +3.(3)令b n =|a n |(n ∈N *), 则b n =|(-1)n +1n n +2|=nn +2. ∵b n +1-b n =n +1n +1+2-n n +2=2n +3n +2>0.∴b n +1>b n .即对一切正整数n ,恒有|a n +1|>|a n |成立.因此数列{|a n |}为递增数列. 讲评 本题求解时,若与函数的定义,函数相关的性质联系容易理解,a n =f (n )即为函数的解析式;a 10=f (10),即是函数在n =10的函数值;a 2n +1=f (2n +1)即为函数代换,将函数中的变量n 换成了2n +1;当|a n +1|>|a n |时,则数列在n ∈N *时为递增数列,这与函数单调递增定义一样,即对一切正整数n 当n +1>n ,都有|a n +1|>|a n |,说明数列中每一项大于前一项,即为递增数列.15.数列{an }满足a 1=1,且an +1+2anan +1-an =0. (1)写出数列{an }的前5项;(2)由(1)写出数列{an }的一个通项公式;(3)实数199是否为这个数列中的项?若是,应为第几项?解析 (1)∵a 1=1,an +1+2anan +1-an =0, ∴a 2+2a 1a 2-a 1=0,解得a 2=13.同理,可以解得a 3=15,a 4=17,a 5=19.∴数列的前5项为1,13,15,17,19.(2)由以上可得an =12n -1. (3)令12n -1=199,得n =50.即199是这个数列的第50项.►重点班·选作题 16.已知a n =n -98n -99,则这个数列的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 30答案 C17.根据下列5个图形及相应的个数的变化规律,试猜测第n 个图中有多少个点.解析 图(1)只有1个点,无分支;图(2)除中间1个点外,有两个分支,每个分支有1个点;图(3)除中间1个点外,有三个分支,每个分支有2个点;图(4)除中间1个点外,有四个分支,每个分支有3个点;…;猜测第n 个图中除中间一个点外,有n 个分支,每个分支有(n -1)个点,故第n 个图中个数为1+n (n -1)=n 2-n +1.设{a n }是首项为1的正项数列且(n +1)a 2n +1-na 2n +a n +1·a n =0(n ∈N *),求a n . 解析 方法一 (累乘法)由(n +1)a 2n +1-na 2n +a n +1a n =0,得(a n +1+a n )(na n +1-na n +a n +1)=0.由于a n +1+a n >0,∴(n +1)a n +1-na n =0. ∴a n +1a n =n n +1. ∴a n =a 1·a 2a 1·a 3a 2·…·a na n -11 2×23×34×…×n-1n=1n.=1×。

相关文档
最新文档