2012年普通高等学校招生全国统一考试山东文科数学分析
2012年山东省高考文科数学试卷含答案(免费)

2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为 (A)3+5i (B)3-5i (C)-3+5i (D)-3-5i(2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为 (A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4} (3)函数1()ln(1)f x x =++(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数 (B)平均数 (C)中位数 (D)标准差 (5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2-(7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为 (A)2 (B)3 (C)4 (D)5 (8)函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为(A)2- (B)0 (C)-1(D)1--(9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为(A)内切 (B)相交 (C)外切 (D)相离 (10)函数cos 622xxx y -=-的图象大致为(11)已知双曲线1C :22221(0,0)x y a b ab-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 23x y=(B) 23x y=(C)28x y = (D)216x y =(12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 (A)12120,0x x y y +>+> (B)12120,0x x y y +>+<(C)12120,0x x y y +<+> (D)12120,0x x y y +<+<第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____.(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.(15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP的坐标为____. 三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列; (Ⅱ)若1,2a c ==,求△ABC 的面积S .(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.(19) (本小题满分12分)如图,几何体E ABC D -是四棱锥,△ABD 为正三角形,,C B C D E C B D=⊥.(Ⅰ)求证:BE DE =;(Ⅱ)若∠120BC D =︒,M 为线段AE 的中点, 求证:D M ∥平面BEC .(20) (本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .(21) (本小题满分13分)如图,椭圆2222:1(0)x y M a b ab+=>>2,直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||P Q ST 的最大值及取得最大值时m 的值.(22) (本小题满分13分)已知函数ln ()(exx k f x k+=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.参考答案:一、选择题:(1)A (2)C (3)B (4)D (5)C (6)A (7)B (8)A (9)B (10)D (11)D (12)B(12)解:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b=.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b =.不妨设12x x <,则223x b ==.所以21()()(2)F x x x =-,比较系数得1x -=,故1x =-.120x x +=>,由此知12121212110x x y y x x x x ++=+=<,故答案为B.二、填空题 (13)16以△1ADD 为底面,则易知三棱锥的高为1,故111111326V =⋅⋅⋅⋅=.(14)9 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9. (15)14当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =为减函数,不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.(16)(2sin 2,1cos 2)-- 三、解答题 (17)(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=, sin sin()sin sin B A C A C +=, 2sin sin sin B A C =,再由正弦定理可得:2b ac =, 所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==, ∴2223cos 24a c bB ac+-==,sin 4C ==,∴△ABC的面积11sin 122244S ac B ==⨯⨯⨯=.(18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =.(19)(I)设BD 中点为O ,连接OC ,OE ,则由B C C D =知,C O BD ⊥,又已知C E BD ⊥,所以BD ⊥平面OCE . 所以BD O E ⊥,即OE 是BD 的垂直平分线, 所以BE DE =.(II)取AB 中点N ,连接,M N D N , ∵M 是AE 的中点,∴M N ∥BE , ∵△ABD 是等边三角形,∴D N AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥, 所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC . (20)(I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=. (II)由277m n a n =≤,得217m n -≤, 即217m m b -=. ∵211217497m k m kb b ++-==,∴{}m b 是公比为49的等比数列, ∴7(149)7(491)14948mmm S -==--.(21)(I)222324c a b e aa-==⇒=……①矩形ABCD 面积为8,即228a b ⋅=……② 由①②解得:2,1a b ==,∴椭圆M 的标准方程是2214xy +=.(II)222244,58440,x y x m x m y x m ⎧+=⇒++-=⎨=+⎩, 设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=,由226420(44)0m m ∆=-->得m <.||PQ ==.当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST ==其中3t m =+,由此知当134t=,即45,(1)33t m ==-∈-时,||||P Q ST .②由对称性,可知若1m <<53m =时,||||P Q ST .③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||P Q ST .综上可知,当53m =±和0时,||||P Q ST .(22)(I)1ln ()exx k xf x --'=,由已知,1(1)0e kf -'==,∴1k =.(II)由(I)知,1ln 1()exx xf x --'=.设1()ln 1k x x x=--,则211()0k x xx'=--<,即()k x 在(0,)+∞上是减函数,由(1)0k =知,当01x <<时()0k x >,从而()0f x '>, 当1x >时()0k x <,从而()0f x '<.综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立.当01x <<时,e x >1,且()0g x >,∴1ln ()1ln exx x xg x x x x--=<--.设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+, 当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<, 所以当2e x -=时,()F x 取得最大值22()1e F e --=+. 所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.。
2012年山东省高考文科数学真题及标准答案

2012年山东省高考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数z满足z(2﹣i)=11+7i(i为虚数单位),则z为()A.3+5iﻩB.3﹣5i C.﹣3+5iD.﹣3﹣5i2.(5分)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4}ﻩB.{2,3,4}ﻩC.{0,2,3,4}D.{0,2,4}3.(5分)函数f(x)=+的定义域为( )A.[﹣2,0)∪(0,2] B.(﹣1,0)∪(0,2]C.[﹣2,2]ﻩD.(﹣1,2]4.(5分)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数 B.平均数ﻩC.中位数 D.标准差5.(5分)设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线x=对称.则下列判断正确的是()A.p为真ﻩB.¬q为假C.p∧q为假D.p∨q为真6.(5分)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B. C.[﹣1,6]D.7.(5分)执行如图的程序框图,如果输入a=4,那么输出的n的值为()A.5ﻩB.4ﻩC.3ﻩD.28.(5分)函数y=2sin(﹣)(0≤x≤9)的最大值与最小值之和为() A.2﹣ﻩB.0 C.﹣1ﻩD.﹣1﹣9.(5分)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为( )A.内切B.相交 C.外切ﻩD.相离10.(5分)函数y=的图象大致为()A.ﻩB.ﻩC.ﻩD.11.(5分)已知双曲线C1:﹣=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的涟近线的距离是2,则抛物线C2的方程是( )A.B.x2=yC.x2=8yD.x2=16y12.(5分)设函数,g(x)=﹣x2+bx.若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()。
2012年高考数学山东文解析版

2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为 (A)3+5i (B)3-5i (C)-3+5i (D)-3-5i 【答案】A【解析】由题目可知,()()()()11721171525352225i i i iz i ii i +⋅+++====+--⋅+,故答案选A.【点评】本题考查了复数的除法运算,考查了对学生计算能力,属于基础题.明年基本还会考查复数的运算.(2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为 (A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4} 【答案】C【解析】由题意可知,{}{}0,4,0,2,4UUA AB == 故而痧,故而选择答案选C.【点评】本题考查了集合的概念和集合的运算,考查了考生的运算能力,明年可能考到子集与真子集的知识. (3)函数1()ln(1)f x x =++(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]- 【答案】B【解析】要使得函数有意义,应满足21011100240x x x x x ⎧+>⎪+≠⇒-<<<≤⎨⎪-≥⎩或【点评】本题考查函数定义域的求法, 本题中由于分母为ln(1)x +, 很容易忽略ln(1)0x +≠这个条件,另外求上述三个不等式的交集才能得到最后的定义域, 往往求出并集. 明年可以考查函数的值域问题.(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数 (B)平均数 (C)中位数 (D)标准差 【答案】D【解析】根据特征数的定义和特征是公式已知标准差始终没有改变.【点评】本题考查统计中常见的数字特征, 考查了学生的识记以及公式的应用能力.明年仍然会围绕着数字特征考查.(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真 【答案】C【解析】命题p 中,函数sin 2y x =最小正周期应为22T ππ==,故而命题p 是假命题, 命题q :函数cos y x =的图象关于直线0x =对称,关于,02π⎛⎫⎪⎝⎭成中心对称,故而命题q 也是假命题.所以q ⌝为真, )p q ∨为假, p q ∧为假, 故而正确选项为C.【点评】本题考查简易逻辑中命题的问题,考查了学生的推断能力, “或”“且”联结两个命题,这两个命题的真假确定了“或”命题和“且”命题的真假,其中“或”命题是一真即真,“且”命题是一假即假,“非”是对一个命题的否定,命题与其“非”命题一真一假.明年可能考查全称命题与特称命题关系.明年可能结合命题考查充要条件.(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2-【答案】A【解析】由所给的不等式组可知所表示的可行域如图所示,而目标函数可以看做3y x z =-,截距最小时z 值最大,当截距最大时z 值最小,根据条件242220x y x x y y +==⎧⎧⇒⎨⎨+==⎩⎩,故当目目标函数过()2,0时,取到z 的最大,m a x 6z =,由1412243x y x x y y ⎧-=-=⎧⎪⇒⎨⎨+=⎩⎪=⎩,当目标函数经过1,32⎛⎫⎪⎝⎭时,z 取到最小值,m in 32z =-,故而答案为A.【点评】本题考查了线性规划问题,是典型的线性规划求最值问题,体现了数形结合法思想的应用.在线性约束条件下,线性约束条件所表示的区域一般是一个多边形区域或者一个以直线为边界的无限区域,如果目标函数是线性的,则可以根据目标函数的几何意义确定目标函数取得最大值和最小值的位置,如本题中的目标函数3z x y =-变换后即3y x z =- z ,则目标函数z 的几何意义即直线3y x z =-在y 轴上的截距相反数,截距最大(小)时的位置就是目标函数取得最小(大)值的位置,在一些含有参数的线性规划问题中这个思想显得更为重要;明年可能结合线性规划考查参数的取值.(7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为 (A)2 (B)3 (C)4 (D)5 【答案】B【解析】由题意可知,当第一次执行循环体时,1,3,1P Q n ===这时,当第二次执行循环体时,145,2317,P Q n =+==⨯+==这时,当第三次执行循环体时,214421,27115,3P Q n =++==⨯+==这时,而此时Q P <,故而程序结束,这时3n =,故答案选B.【点评】本题考察了程序框图的应用,根据程序框图推算结果,程序框图明年还会进行考查. (8)函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为(A)2- (B)0 (C)-1 (D)1--【答案】A【解析】因为09x ≤≤,所以73636x ππππ-≤-≤,结合函数图象易知sin 1263x ππ⎛⎫-≤-≤ ⎪⎝⎭,即2y ≤≤, 故最大值为2,而最小值为, 所以最大值与最小值之和为2-【点评】本题考查本题考查了三角函数图象与性质,预测明年结合图象的变换考查. (9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为 (A)内切 (B)相交 (C)外切 (D)相离 【答案】B【解析】由题意可知,两个圆的圆心分别为()122,0,(2,1)O Q -, 对应的半径为122,3r r ==,两个圆圆心距为12O O ==,所以211212r r O O r r -<<+, 故而两个圆相交.【点评】本题考查判断圆与圆位置关系的方法;预测明年考查求圆的方程. (10)函数cos 622xxx y -=-的图象大致为【答案】D【解析】根据条件cos(6)cos 6()()2222xxxxx x f x f x ----==-=---,所以函数为奇函数,排除选项A,由因为,当x 取很小的正数时有cos 60,220,xxx ->->故而()0f x >,故而排除B,当x 取很大的正数时,分母为非常大的正数,而分子始终[]1,1-之间,故而排除C,所以选D.【点评】】本题考查了函数的奇偶性的性质特点,结合图象语言,考查了数形结合法的思想. 图象的考查也是固定的考点,预测明年可能结合函数的性质考查. (11)已知双曲线1C :22221(0,0)x y a b ab-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 23x y=(B) 23x y=(C)28x y = (D)216x y =【答案】D【解析】双曲线的一条渐近线为by x a =, 即0bx ay -=,抛物线的焦点为,2p o ⎛⎫ ⎪⎝⎭,抛物线焦点到渐近线距离为2482a p d p e c==⋅=⇒==,故而抛物线方程为216x y =.【点评】本题考查圆锥曲线的性质,点的直线的距离公式等解析几何知识,属于知识的综合考察.预测明年结合抛物线的概念与性质考查. (12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 (A)12120,0x x y y +>+> (B)12120,0x x y y +>+< (C)12120,0x x y y +<+> (D)12120,0x x y y +<+< 【答案】B【解析】设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b=.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b =.不妨设12x x <,则223x b ==.所以21()()(2)F x x x =-,比较系数得1x -=,故1x =-120x x +=>,由此知12121212110x x y y x x x x ++=+=<,故答案为B.【点评】本题考察了函数与方程知识,反比例函数与二次函数图象的应用是数形结合法思想的应用;明年预测结合函数零点考查.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____. 【答案】16【解析】由题意可知,11111111113326DE D FF D E D D E D V V D C S --==⨯⨯∆=⨯⨯⨯⨯=.【点评】本题考察多面体与体积公式的应用,同时考察了学生的空间想象能力;预测明年结合三视图考查体积与表面积.(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____. 【答案】9【解析】 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9.【点评】本题考查直方图的应用,考察了学生的识图、用图能力,频率分布直方图直观形象地表示了样本的频率分布,从这个直方图上可以求出样本数据在各个组的频率分布.根据频率分布直方图估计样本(或者总体)的平均值时,一般是采取组中值乘以各组的频率的方法.茎叶图也是统计中重要的知识点,预测明年结合茎叶图考查.(15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.【答案】14【解析】 当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.【点评】本题考查本函数单调性与最值问题,属于对应初等函数的综合考察.可以结合分段函数考查基本初等函数,估计明年可能这样考查.(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP的坐标为____.【答案】()2sin 2,1cos 2--【解析】根据题意可知圆滚动了2单位个弧长,点P 旋转 了212=弧度,此时点P 的坐标为)2cos 1,2sin 2(,2cos 1)22sin(1,2sin 2)22cos(2--=-=-+=-=--=OP y x P P ππ.另解1:根据题意可知滚动制圆心为(2,1)时的圆的参数方程为⎩⎨⎧+=+=θθsin 1cos 2y x ,且223,2-==∠πθPCD ,则点P 的坐标为⎪⎩⎪⎨⎧-=-+=-=-+=2cos 1)223sin(12sin 2)223cos(2ππy x ,即)2c o s 1,2s i n 2(--=OP .【点评】本题考察了三角函数与向量知识的灵活应用,属于知识点交汇处的题目.解决好本题的关键是充分利用图象语言,属于典型的数形结合法思想的应用,数形结合的重点是研究“以形助数”,这在解选择题、填空题中更显其优越,要注意培养这种思想意识,做到心中有图,见数想图,以开拓自己的思维视野.这种创新情景题明年还会继续考察. 三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列; (Ⅱ)若1,2a c ==,求△ABC 的面积S .【解析】(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=,sin sin()sin sin B A C A C +=,2sin sin sin B A C =,再由正弦定理可得:2b ac =, 所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==, ∴2223cos 24a c bB ac+-==,sin 4C ==,∴△ABC 的面积11sin 122244S ac B ==⨯⨯⨯=.【点评】本题考查三角恒等变换和解三角形知识,是对应三角部分内容的综合考察.解三角形依靠的就是正弦定理和余弦定理.正弦定理解决的是已知三角形两边和一边的对角、三角两内角和其中一边两类问题,余弦定理解决的是已知三角形两边及其夹角、已知三角形三边的两类问题.在解题中只要分析清楚了三角形中的已知元素,就可以选用这两个定理中的一个求解三角形中的未知元素.本例的第二小题中的不等式看上去是角的正弦的一个不等式,实际上给出的是边的不等式,正弦定理在三角形的边角关系互化中起关键作用.三角函数的性质也是常考内容,故而明年会这样考查.(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【解析】(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =.【点评】本题考查古典概型的应用,属于典型考法,考察了学生的计算能力,明年还会继续考察.(19) (本小题满分12分)如图,几何体E ABC D -是四棱锥,△ABD 为正三角形,,C B C D E C B D =⊥. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BC D =︒,M 为线段AE 的中点, 求证:D M ∥平面BEC .【解析】 (I)设BD 中点为O ,连接OC ,OE ,则由B C C D =知,C O BD⊥,又已知C E BD ⊥,所以BD ⊥平面OCE . 所以BD O E ⊥,即OE 是BD 的垂直平分线, 所以BE DE =.(II)取AB 中点N ,连接,M N D N , ∵M 是AE 的中点,∴M N ∥BE , ∵△ABD 是等边三角形,∴D N AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥, 所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC .【点评】本题考查空间几何中量的关系,以及证明线面平行的方法,考察了学生的空间想象能力以及推理证明能力;垂直问题同样重要,故明年可能围绕线面或者面面垂直考察. (20) (本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a = (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .【解析】 (I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩ 解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=. (II)由277m n a n =≤,得217m n -≤, 即217m m b -=. ∵211217497m k m k b b ++-==,∴{}m b 是公比为49的等比数列,∴7(149)7(491)14948mmm S -==--.【点评】本题考查本题考察了数列的求通项与求和的方法,属于数列的典型问题.考查灵活运用基本知识解决问题的能力,运算求解能力和创新思维能力.在等差数列问题中其最基本的量是其首项和公差,在解题时根据已知条件求出这两个量,其他的问题也就随之解决了,这就是解决等差数列问题的基本方法,其中蕴含着方程思想的运用.数列求通项与求和是常见的考法,故而明年会继续围绕这些内容进行考察.(21) (本小题满分13分)如图,椭圆2222:1(0)x y M a b ab+=>>2,直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||P Q ST 的最大值及取得最大值时m 的值.【解析】(21)(I)222324c a b e a a-==⇒=……①矩形ABCD 面积为8,即228a b ⋅=……② 由①②解得:2,1a b ==, ∴椭圆M 的标准方程是2214xy +=.(II)222244,58440,x y x m x m y x m ⎧+=⇒++-=⎨=+⎩,设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=,由226420(44)0m m ∆=-->得m <.||PQ =.当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST =其中3t m =+,由此知当134t=,即45,(1)33t m ==-∈-时,||||P Q ST .②由对称性,可知若1m <<53m =时,||||P Q ST .③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||P Q ST .综上可知,当53m =±和0时,||||P Q ST .一是点明本题体现了今年考纲中的哪一点,二是本题对明年高考命题的指导意义.【点评】本题考查椭圆方程的求法以及直线与椭圆的位置关系问题.解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理.估计明年还会这样考查.(22) (本小题满分13分) 已知函数ln ()(e x x kf x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.【解析】 (I)1ln ()e x x kxf x --'=,由已知,1(1)0e k f -'==,∴1k =.(II)由(I)知,1ln 1()e x x x f x --'=. 设1()ln 1k x x x =--,则211()0k x x x '=--<,即()k x 在(0,)+∞上是减函数,由(1)0k =知,当01x <<时()0k x >,从而()0f x '>,当1x >时()0k x <,从而()0f x '<.综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立.当01x <<时,e x >1,且()0g x >,∴1ln ()1ln e x x x xg x x x x --=<--.设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+,当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<,所以当2e x -=时,()F x 取得最大值22()1e F e --=+.所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.【点评】本题考察了导数的几何意义,利用导数求函数的单调区间以及导数在函数与不等式中的应用,体现了等价转换思想应用.函数与导数考查属于固定题型,明年也不例外.。
2012年山东高考数学试卷分析

2012年高考数学试卷分析特邀名师:牛瑞兰(山大附中实验班班主任、备课组组长、省教学能手)总体来看,今年的高考数学题型不变,各题型内容所占比例也基本不变,各题型顺序大同小异,但在传统题目上却非常新颖,别具一格。
在难易的顺序上可谓是在挑战极限。
具体来讲:集合内容占0.03%、排列组合占0.03%、复数占0.03%、向量占0.03%、线性规划占0.03%、算法占0.03%、数列占0.06%、概率占0.114%、立体几何占0.15%、解析几何占0.15%、函数占0.15%、三角函数占0.114%,试题覆盖面广,涉猎高中数学的所有内容。
当学生满怀信心,摩拳擦掌地投入到战斗中去时,才恍然发觉,今非昔比。
和去年相比较,试题的难度着实上了一个很高的台阶。
第一题,第二题是常规的集合和排列组合题,属容易题,所有考生都能轻松应对。
第三题是复数题,应该属于基础题,但却比往常加大了运算量,考查了复数的代数运算,复数的模,共轭复数,复数的实部与虚部。
一道题考查了复数的所有内容,学生大抵从这道题便开始慌乱起来。
接下来的第四第五题比较简单,是解析几何和数列题,属于基础题。
第六题是算法题,新课程改革后,算法题都是最基本题,学生都可以目测得到结论,但今年的算法题学生却让四个选项给唬住了。
情绪再一次波动。
但冷静下来后会发现还是基础题。
其实很简单。
恍惚一种被欺骗的感觉。
静下心来再做第七第八题,是立体几何三视图,解析几何题题,比较容易。
第九题是三角函数题,和以往的题型有所不同,如果用排除法会比较简单快速。
概念清晰时计算也不难。
接下来的第十第十二题是函数图象,函数的最值问题,但都和导数有关,尤其第十二题,综合了反函数的概念,超越函数最值的求法(转化法),如果转化不成,是断然难求出结果的。
第十一题是立体几何题,常规的三棱锥的外接球题型,同十二题,如果不能很好转化的话,也是一只拦路虎。
回顾十二个选择题,考生需要经过三波三折,才能闯关成功,时间也会耗去多半。
2012年普通高等学校招生全国统一考试 文数(新课标卷)解析版

2012年普通高等学校招生全国统一考试文科数学解析【试卷总评】本试卷遵循考纲的要求,保持了近几年新课标卷的命题风格,注重基础检测,深化能力立意,突出思维考查。
试卷覆盖了高中数学的主干内容,在题型、题量、难度等方面保持了相对稳定,重视对数学思想方法的考查,着重考查了思维能力、运算能力、空间想象能力、实践能力和创新意识,体现了“多考点想,少考点算”的命题理念。
试题能较好地检测考生的数学素养和进入高等学校继续学习的潜能,有利于高校选拔新生,有利于中学实施素质教育,有利于向新课程高考过渡。
试题具有入手易、深入难、区分好等特点,试题编排由易到难,有利于不同层次考生的水平发挥。
试题立足于现行高中数学教材和教学实际,是一套特色鲜明、亮点突出的好试题。
一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅2、复数z =-3+i 2+i 的共轭复数是( )(A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12 (D )14、设12,F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 是直线32a x =上一点,21,F PF ∆是底角为30︒的等腰三角形,则E 的离心率为( )A 、12B 、23C 、34D 、455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内6、如果执行右边的程序图,输入正整数N (N ≥2)和实数a 1.a 2,…a n ,输入A,B,则(A) A+B 为a 1a 2,…,a n 的和(B )2A B +为a 1a 2.…,a n 的算式平均数 (C )A 和B 分别是a 1a 2,…a n 中最大的数和最小的数(D )A 和B 分别是a 1a 2,…a n 中最小的数和最大的数7、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )(A )6 (B)9 (C)12 (D)18考点定位:本题考查三视图,意在考查考生三视图与几何体之间的转化能力。
2012年普通高等学校招生全国统一考试数学文试题(山东卷)(Word版 含解析)

2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为(A)3+5i (B)3-5i (C)-3+5i (D)-3-5i 【解析】i i i i i i i i z 5352515)2)(2()2)(711(2711+=+=+-++=-+=.故选A. 【答案】A(2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则B A C U )(为(A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4}【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C.【答案】C(3)函数1()ln(1)f x x =++ (A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-【解析】要使函数有意义则有⎪⎩⎪⎨⎧≥-≠+>+040)1ln(012x x x ,即⎪⎩⎪⎨⎧≤≤-≠->2201x x x ,即01<<-x 或20≤<x ,选B.【答案】B(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数 (B)平均数 (C)中位数 (D)标准差【解析】设A 样本的数据为变量为X ,B 样本的数据为变量为Y ,则满足2+=X Y ,根据方差公式可得DX X D DY =+=)2(,所以方差相同,标准差也相同,选D.【答案】D(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真【解析】函数x y 2sin =的周期为ππ=22,所以命题p 为假;函数x y cos =的对称轴为Z k k x ∈=,π,所以命题q 为假,所以q p ∧为假,选C.【答案】C(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是 (A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2-【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)0,2(E 时,直线z x y -=3的截距最小,此时z 最大为63=-=y x z ,当直线经过C 点时,直线截距最大,此时z 最小,由⎩⎨⎧=+-=-4214y x y x ,解得⎪⎩⎪⎨⎧==321y x ,此时233233-=-=-=y x z ,所以y x z -=3的取值范围是]6,23[-,选A. 【答案】A(7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为(A)2 (B)3 (C)4 (D)5【解析】当4=a 时,第一次1,3,140====n Q P ,第二次2,7,441====n Q P ,第三次3,15,1642====n Q P ,此时Q P <不满足,输出3=n ,选B.【答案】B(8)函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为(A)2 (B)0 (C)-1 (D)1-【解析】因为90≤≤x ,所以6960ππ≤≤x ,369363πππππ-≤-≤-x ,即67363ππππ≤-≤-x ,所以当336πππ-=-x 时,最小值为3)3sin(2-=-π,当236πππ=-x 时,最大值为22sin 2=π,所以最大值与最小值之和为32-,选A.【答案】A(9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为(A)内切 (B)相交 (C)外切 (D)相离【解析】两圆的圆心分别为)0,2(-,)1,2(,半径分别为2=r ,3=R 两圆的圆心距离为17)10()22(22=-+--,则r R r R +<<-17,所以两圆相交,选B.【答案】B(10)函数cos622x xx y -=-的图象大致为【解析】函数为奇函数,所以图象关于原点对称,排除A,令0=y 得06cos =x ,所以ππk x +=26,ππ612k x +=,函数零点有无穷多个,排除C,且y 轴右侧第一个零点为)0,12(π,又函数x x y --=22为增函数,当120π<<x 时,022>-=-x x y ,06cos >x ,所以函数0226cos >-=-x x x y ,排除B ,选D. 【答案】D(11)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 2x y = (B) 2x y = (C)28x y = (D)216x y =。
2012年高考文科数学山东卷(含详细答案)

数学试卷 第1页(共30页)数学试卷 第2页(共30页) 数学试卷 第3页(共30页)绝密★启用前2012年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡上和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高.如果事件A ,B 互斥,那么()()()P A B P A P B +=+.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足(2i)117i z -=+(i 为虚数单位),则z 为( )A . 35i +B . 35i -C . 35i -+D . 35i --2. 已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为 ( )A . {1,2,4}B . {2,3,4}C . {0,2,4}D . {0,2,3,4}3.函数1()ln(1)f x x =+( ) A . [2,0)(0,2]-B . (1,0)(0,2]-C . [2,2]-D . (1,2]-4. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A . 众数B . 平均数C . 中位数D . 标准差5. 设命题p :函数sin 2y x =的最小正周期为π2;命题q :函数cos y x =的图象关于直线π2x =对称.则下列判断正确的是( )A . p 为真B . q ⌝为假C . p q ∧为假D . p q ∨为真6. 设变量x ,y 满足约束条件22,24,41,x y x y x y +⎧⎪+⎨⎪--⎩≥≤≥则目标函数3z x y =-的取值范围是( )A . 3[,6]2- B . 3[,1]2--C . [1,6]-D . 3[6,]2-7. 执行下面的程序图,如果输入4a =,那么输出的n 的值为( )A . 2B . 3C . 4D . 58. 函数ππ2sin()(09)63x y x =-≤≤的最大值与最小值之和为 ( )A .2B . 0C . 1-D .1-9. 圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为 ( )A . 内切B . 相交C . 外切D . 相离 10. 函数cos622x xxy -=-的图象大致为( )A .B .C .D .11. 已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为( )A .2x y =B .2x y =C . 28x y =D . 216x y =12. 设函数1()f x x=,2()g x x bx =-+,若()y f x =的图象与()y g x =图象有且仅有两个不同的公共点11(,)A x y ,22(,)B x y ,则下列判断正确的是 ( )A . 120x x +>,120y y +>B . 120x x +>,120y y +<C . 120x x +<,120y y +>D . 120x x +<,120y y +<姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------数学试卷 第4页(共30页)数学试卷 第5页(共30页) 数学试卷 第6页(共30页)第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13. 如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_________.14. 下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图.其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.,[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃ 的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为_________.15. 若函数()(0,1)xf x a a a =>≠在[1,2]-上的最大值为4,最小值为m ,且函数()(1g x =-[0,)+∞上是增函数,则a =_________. 16. 如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为_________.三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在ABC △中,内角A ,B ,C所对的边分别为a ,b ,c ,已知s i n (t a n t a n B A C A C+=. (Ⅰ)求证:a ,b ,c 成等比数列; (Ⅱ)若1a =,2c =,求ABC △的面积S .18.(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (Ⅱ)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.19.(本小题满分12分)如图,几何体E ABCD -是四棱锥,ABD △为正三角形,CB CD =,EC BD ⊥. (Ⅰ)求证:BE DE =;(Ⅱ)若120BCD ∠=,M 为线段AE 的中点,求证:DM ∥平面BEC .20.(本小题满分12分)已知等差数列{}n a 的前5项和为105,且1052a a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b ,求数列{}m b 的前m 项和m S .21.(本小题满分13分)如图,椭圆2222:1(0)x y M a b a b +=>>,直线x a =±和y b =±所围成的矩形ABCD 的面积为8. (Ⅰ)求椭圆M 的标准方程;(Ⅱ)设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点P ,Q .l 与矩形ABCD 有两个不同的交点S ,T .求||||PQ ST 的最大值及取得最大值时m 的值.22.(本小题满分13分)已知函数ln ()ex x kf x +=(k 为常数,e 2.71828=⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意0x >,2()1e g x -<+.- 3 - / 10【提示】复数的除法运算,化简,直接求得答案。
2012年普通高等学校招生全国统一考试山东文科数学word解析版

2012年普通高等学校招生全国统一考试(山东卷)数学(文科)第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)若复数z 满足z(2-i)=11+7i(i 为虚数单位),则z 为A 3+5iB 3-5iC -3+5iD -3-5i 答案:A考点:复数的运算。
值得注意的是21i =-. 解析:因为z(2-i)=11+7i ,所以1172iz i+=-,分子分母同时乘以2i +, 得22(117)(2)221114722725152535(2)(2)4415i i i i i i i z i i i i +++++-++=====+-+-+ (2) 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA ) B 为 A {1,2,4} B {2,3,4}C {0,2,4}D {0,2,3,4} 答案:C考点:集合运算解析:}4,2,0{)(},4,0{==B A C A C U U 。
答案选C 。
(3)函数()()1ln 1f x x =+ )A [)(]2,00,2-B ()(]1,00,2-C []2,2-D (]1,2-答案:B考点:求函数的定义域,对指对幂函数性质的考察。
解析:函数式若有意义需满足条件:210,1,l n (1)0,0,22,40,x x xx x x ⎧+>>-⎧⎪⎪+≠⇒≠⎨⎨⎪⎪-≤≤-≥⎩⎩取交集可得:()(]1,00,2x ∈- 。
答案:B. (4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数 (B)平均数 (C)中位数 (D)标准差 答案:D考点:求样本方差、标准差解析: A 样本的平均数为86,B 样本的平均数为88 A 样本的方差为4)8688(104)8686(103)8684(102)8682(1012222=-+-+-+-=σ A 样本的标准差为2 B 样本的方差为4)8890(104)8888(103)8886(102)8884(1012222=-+-+-+-=σ B 样本的标准差为2,,两者相等(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x = 的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B) ⌝q 为假 (C) p ∨q 为假 (D)p ∧q 为真 答案:C考点:主要考点是常用逻辑用语,三角函数的周期性和对称性,但是这个题目中对三角函数的考察是相当简单的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012普通高等学校招生全国统一考试(山东卷)分析
文科数学
一、整体分析:
1、总体评价
总体来说本次山东文科数学考试不是很难。
选择题及填空题大部分以基础和中等题为主,总共16题,其中基础题和中等题占13题,较难题和难题占3个。
大题来说秉承一贯作风,六个答题中,前三个答题属于基础中等题,认真细心做分拿到手没有问题,其中第二十题对等比数列定义的考查做了一个拐弯考查,理解后即可;第二十一答题第二问考查直线与
椭圆交点考查弦的问题,需讨论比较复杂属于难题;第二十二题主要考查了函数导数的性质,前两问属于基础中等题,最后一问考查了不等式、导数、单调性的总体考查,属于难题。
本次文科考试主要对基础及中等题的考察,考生保证这些基本题不丢分即可取得不错成绩。
2
- 1 -
- 2 -
二、逐题分析
- 3 -
- 4 -
三、教学反思
1.今后更要加强对基础、中等题目的训练
2.在教学中多讲解一些各模块相结合的题目,训练学生解题技巧的能力
3.在教学中加大对模块的训练,使学生掌握知识循序渐近、系统完整。
- 5 -。