人教版九年级数学下册 第29章 投影与视图 单元检测试卷(解析版)
【初三数学】长春市九年级数学下(人教版)《第29章 投影与视图》检测试卷(解析版)

人教版九年级数学下册期末高效复习:专题9 投影与视图人教版初中数学九年级下册第28章锐角三角函数专题9投影与视图题型一投影典例下列为某两个物体的投影,其中是在太阳光下形成投影的是(D)A B C D【解析】如答图,故选D.典例答图【点悟】判断是平行投影还是中心投影,关键是看光源,一般太阳光可以近似地看成平行光,因此,在太阳光下的投影是平行投影.在路灯、手电筒等点光源下的投影就是中心投影.变式跟进 1.某舞台的上方共挂有a,b,c,d四个照明灯,当只有一个照明灯亮时,一棵道具树和小玲在照明灯光下的影子如图Z9-1所示,则亮的照明灯是(B)图Z9-1A.a灯B.b灯C.c灯D.d灯题型二直棱柱的展开图典例[2018·雅安]下列图形不能折成一个正方体的是(B)A B C D【解析】B选项图形中含“7”字形,因此不能折成一个正方体,故选B.【点悟】正方体的展开图有“1+4+1”型、“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.变式跟进 2.[2018·大庆]将正方体的表面沿某些棱剪开,展成如图Z9-2所示的平面图形,则原正方体中与“创”字所在面相对的面的上标的字是(A)图Z9-2A.庆B.力C.大D.魅【解析】“141”型上下两个为相对面,其余的相对的面之间一定相隔一个正方形.故选A.3.[2017·海淀区一模]下列选项中,左边的平面图形能够折成右边封闭的立体图形的是(B)A BC D【解析】A.四棱锥的展开图有四个三角形,故A选项错误;B.根据长方体的展开图的特征,故B选项正确;C.正方体的展开图中,不存在“田”字形,故C选项错误;D.圆锥的展开图中只有一个圆,故D选项错误.题型三几何体的三视图典例[2017·开封一模]下列四个几何体中,主视图与左视图相同的几何体有(D)A.1个B.2个C.3个D.4个【解析】①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形.故选D.【点悟】在画三视图时,一定要将物体的边、棱、顶点都体现出来,看得见的轮廓线画成实线,看不见的轮廓线画成虚线,不能漏掉.变式跟进 4.[2018·遂宁]如图Z9-3,5个完全相同的小正方体组成一个几何体,则这个几何体的主视图是(D)图Z9-3A B C D 5.[2017·聊城]如图Z9-4是由若干个小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则这个几何体的主视图是(C)图Z9-4 A B C D【解析】主视图是从前往后看,由俯视图可知从左到右最高层数依次为2,3,1,∴这个几何体的主视图是C.6.[2017·烟台]如图Z9-5所示的工件,其俯视图是(B)图Z9-5 A B C D题型四由视图确定几何体的形状或组成个数典例[2017·峄城区模拟]如图Z9-6,是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是(C)图Z9-6A.3个B.4个C.5个D.6个【解析】由俯视图可知,这个几何体的底层有4个小正方体,结合主视图、左视图可知上层后排左侧有1个正方体,所以组成该几何体的小正方体的个数是5个.【点悟】通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了.在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数.变式跟进7.[2018·武汉]一个几何体由若干个相同的正方体组成,其主视图和俯视图如图Z9-7所示,则这个几何体中正方体的个数最多是(C)A.3 B.4 C.5 D.6图Z9-7变式跟进7答图【解析】由主视图知,俯视图中在该位置上最多小正方体的个数如答图所示(图中的数字表示在该位置上的小正方体的个数),则这个几何体中正方体的个数最多是2+2+1=5.故选C.8.[2018·齐齐哈尔]三棱柱的三视图如图Z9-8所示,已知在△EFG中,EF=8 cm,EG=12 cm,∠EFG=45°,则AB的长为图Z9-8【解析】由三视图的性质可知,在△EFG中,边FG上的高长等于AB的长,∵EF=8 cm,∠EFG=45°,∴AB=8×sin45°=4 2 cm.人教版九年级数学下册《第29章投影与视图》单元测试卷(解析版)一.选择题(共10小题,满分30分,每小题3分)1.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定2.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长3.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③4.在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为()A.逐渐变长B.逐渐变短C.影子长度不变D.影子长短变化无规律5.如图,太阳光线与地面成60°的角,照在地面的一只排球上,排球在地面的投影长是14cm,则排球的直径是()A.7cm B.14cm C.21cm D.21cm 6.同一灯光下两个物体的影子可以是()A.同一方向B.不同方向C.相反方向D.以上都有可能7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②8.下列几何体中,其主视图为三角形的是()A.B.C.D.9.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.10.一幢4层楼房只有一个房间亮着灯,一棵小树和一根电线杆在窗口灯光下的影子如图所示,则亮着灯的房间是()A.1号房间B.2号房间C.3号房间D.4号房间二.填空题(共6小题,满分18分,每小题3分)11.如图所示,此时树的影子是在(填太阳光或灯光)下的影子.12.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是m.13.写出一个在三视图中俯视图与主视图完全相同的几何体.14.如图是由若干个相同的小正方形组合而成的几何体,则三个视图中面积最小的是.15.如图,正三棱柱的底面周长为15,截去一个底面周长为6的正三棱柱,所得几何体的俯视图的周长是,面积是.16.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要块正方体木块,至多需要块正方体木块.三.解答题(共8小题,满分72分)17.(8分)如图,AB、DE是直立在地面上的两根立柱,某一时刻立柱AB在阳光下的投影为BC,请你在图中画出此时立柱DE在阳光下的投影.18.(8分)如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号)19.(8分)如图所示的几何体是由5 个相同的正方体搭成的,请分别画出这个几何体的三视图.20.(8分)如图是一个由小正方体摆成的几何体,无论从正面,还是从左面都可以看到如图所示的图形,请你判断一下:最多可以用几个小正方体?最少可以用几个小正方体?21.(8分)一个几何体从三个方向看到的图形如图所示(单位:cm).(1)写出这个几何体的名称:;(2)若其从上面看为正方形,根据图中数据计算这个几何体的体积.22.(10分)已知,如图,AB、DE是直立在地面上的两根立柱,AB=12m,某一时刻AB在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长6m,请你计算DE的长.23.(10分)在长、宽都为4m,高为3m的房间的正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8cm,灯泡离地面2m,为了使光线恰好照在墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,≈1.414)24.(12分)如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm),计算出这个立体图形的表面积.2019年春人教版九年级数学下册《第29章投影与视图》单元测试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定【分析】根据中心投影的特点,小红和小花在同一路灯下的影长与他们到路灯的距离有关,虽然他们的身高一样,也不能判断谁的身高的高与矮.【解答】解:小红和小花在路灯下的影子一样长,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断谁的身高的高与矮.故选:D.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.2.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长【分析】小亮由A处径直路灯下,他得影子由长变短,再从路灯下到B处,他的影子则由短变长.【解答】解:晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选:B.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.3.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③【分析】太阳光可以看做平行光线,从而可求出答案.【解答】解:太阳从东边升起,西边落下,所以先后顺序为:③④①②故选:C.【点评】本题考查平行投影,解题的关键是熟练知道太阳光是平行光线,本题属于基础题型.4.在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为()A.逐渐变长B.逐渐变短C.影子长度不变D.影子长短变化无规律【分析】根据平行投影的定义结合题意可得.【解答】解:在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为逐渐变短,故选:B.【点评】本题主要考查平行投影,解题的关键是熟练掌握平行投影的定义.5.如图,太阳光线与地面成60°的角,照在地面的一只排球上,排球在地面的投影长是14cm,则排球的直径是()A.7cm B.14cm C.21cm D.21cm【分析】由于太阳光线为平行光线,根据切线的性质得到AB为排球的直径,CD =AB,CE=14cm,在Rt△CDE中,利用正弦的定义可计算出CD的长,从而得到排球的直径.【解答】解:如图,点A与点B为太阳光线与球的切点,则AB为排球的直径,CD=AB,CE=14cm,在Rt△CDE中,sin E=,所以CD=14•sin60°=14×=21,即排球的直径为21cm.故选:C.【点评】本题考查了解直角三角形和平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影;平行投影中物体与投影面平行时的投影是全等的.6.同一灯光下两个物体的影子可以是()A.同一方向B.不同方向C.相反方向D.以上都有可能【分析】由于物体所处的位置不确定,所以同一灯光下两个物体的影子三种情况都有可能.【解答】解:由于物体所处的位置不同所形成的影子方向和长短也不同,所以同一灯光下两个物体的影子可以是同一方向、不同方向、相反方向.故选D.【点评】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.【解答】解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:B.【点评】本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.8.下列几何体中,其主视图为三角形的是()A.B.C.D.【分析】找出四个选项中几何体的主视图,由此即可得出结论.【解答】解:A、圆柱的主视图为矩形,∴A不符合题意;B、正方体的主视图为正方形,∴B不符合题意;C、球体的主视图为圆形,∴C不符合题意;D、圆锥的主视图为三角形,∴D符合题意.故选:D.【点评】本题考查了简单几何体的三视图,牢记圆锥的主视图为三角形是解题的关键.9.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.【分析】根据主视图的定义,并从实线和虚线想象几何体看得见部分和看不见部分的轮廓线,据此可得.【解答】解:由主视图定义知,该几何体的主视图为:故选:A.【点评】本题主要考查简单几何体的三视图,解题的关键是熟练掌握三视图的定义及从实线和虚线想象几何体看得见部分和看不见部分的轮廓线.10.一幢4层楼房只有一个房间亮着灯,一棵小树和一根电线杆在窗口灯光下的影子如图所示,则亮着灯的房间是()A.1号房间B.2号房间C.3号房间D.4号房间【分析】根据给出的两个物高与影长即可确定点光源的位置.【解答】解:如图所示,故选:B.【点评】本题综合考查了中心投影的特点和规律:物高与影长确定点光源的传播路线.二.填空题(共6小题,满分18分,每小题3分)11.如图所示,此时树的影子是在太阳光(填太阳光或灯光)下的影子.【分析】连接两个实物顶点与像的对应顶点,得到的两条直线平行可得为太阳光下的投影.【解答】解:此时的影子是在太阳光下(太阳光或灯光)的影子,理由是:通过作图发现相应的直线是平行关系.故答案为:太阳光【点评】此题考查平行投影问题,解决本题的关键是理解平行投影的特点:实物顶点与像对应顶点的连线是平行关系.12.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是14m.【分析】设水塔的高为xm,根据同一时刻,平行投影中物体与影长成正比得到x:42=1.7:5.1,然后利用比例性质求x即可.【解答】解:设水塔的高为xm,根据题意得x:42=1.7:5.1,解得x=14,即水塔的高为14m.故答案为14.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻,平行投影中物体与影长成正比.13.写出一个在三视图中俯视图与主视图完全相同的几何体球或正方体.【分析】主视图、俯视图是分别从物体正面和上面看,所得到的图形.【解答】解:球的俯视图与主视图都为圆;正方体的俯视图与主视图都为正方形.故答案为:球或正方体(答案不唯一).【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.14.如图是由若干个相同的小正方形组合而成的几何体,则三个视图中面积最小的是左视图.【分析】如图可知该几何体的正视图由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,易得解.【解答】解:如图,该几何体正视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图.故答案为:左视图【点评】本题考查的是三视图的知识以及学生对该知识点的巩固,难度属简单.解题关键是找到三种视图的正方形的个数.15.如图,正三棱柱的底面周长为15,截去一个底面周长为6的正三棱柱,所得几何体的俯视图的周长是13,面积是.【分析】根据从上边看得到的图形是俯视图,梯形的周长公式,面积的和差,可得答案.【解答】解:从上边看是一个梯形:上底是2,下底是5,两腰是3,周长是2+3+3+5=13.原三角形的边长是5,截去的三角形的边长是2,梯形的面积=原三角形的面积﹣截去的三角形的面积=××52﹣××22=﹣=,故答案为:13,.【点评】本题考查了简单组合体的三视图,从上边看是一个等腰梯形是解题关键.16.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要6块正方体木块,至多需要16块正方体木块.【分析】利用从正面和从左面看到的形状图进而得出每层的最少与最多数量,进而得出答案.【解答】解:易得第一层最少有4个正方体,最多有12个正方体;第二层最少有2个正方体,最多有4个,故最少有6个小正方形,至多要16块小正方体.故答案为:6,16.【点评】此题考查由三视图探究几何体.可从主视图上分清物体的上下和左右的层数,从左视图上分清物体的左右和前后位置,综合上述条件,可知摆出图形至少以及至多要多少块木块.三.解答题(共8小题,满分72分)17.(8分)如图,AB、DE是直立在地面上的两根立柱,某一时刻立柱AB在阳光下的投影为BC,请你在图中画出此时立柱DE在阳光下的投影.【分析】根据已知连接AC,过点D作DM∥AC,即可得出EM就是DE的投影.【解答】解:(1)如图所示:EM即为所求.【点评】本题考查了平行投影的性质,掌握平行投影的画法是解题关键.18.(8分)如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号)【分析】由几何体的三视图,得到它是一个六棱柱,求出其侧面积与表面积即可.【解答】解:根据该密封纸盒的三视图知道它是一个六棱柱,∵其高为12cm,底面边长为5cm,∴其侧面积为6×5×12=360(cm2),密封纸盒的上、下底面的面积和为:12×5××5×=75(cm2),∴其表面积为(75+360)cm2.【点评】此题考查了由三视图判断几何体,弄清三视图的概念是解本题的关键.19.(8分)如图所示的几何体是由5 个相同的正方体搭成的,请分别画出这个几何体的三视图.【分析】由已知条件可知,主视图有3列,每列正方形的个数为2,1,1;左视图有2列,每列小正方形数目分别为1,2;俯视图有3列,每列小正方数形数目分别为2,1,1.据此可画出图形.【解答】解:如图所示:.【点评】此题主要考查了作三视图,关键是掌握主视图从正面看、左视图是从左边看,俯视图是从上面看.20.(8分)如图是一个由小正方体摆成的几何体,无论从正面,还是从左面都可以看到如图所示的图形,请你判断一下:最多可以用几个小正方体?最少可以用几个小正方体?【分析】根据主视图和左视图画出小正方体最少和最多时几何体的俯视图,从而确定最少和最多小正方体的个数.【解答】解:画出小正方体最少和最多时几何体的俯视图,所以这个几何体最少可以用5个小正方体,最多可以用13个小正方体.【点评】本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.熟悉常见几何体的三视图.21.(8分)一个几何体从三个方向看到的图形如图所示(单位:cm).(1)写出这个几何体的名称:长方体;(2)若其从上面看为正方形,根据图中数据计算这个几何体的体积.【分析】(1)根据长方体的三视图可得;(2)根据长方体的体积公式计算可得.【解答】解:(1)由三视图知该几何体是高为4、底面边长为3的长方体,故答案为:长方体;(2)这个几何体的体积是3×3×4=36(cm3).【点评】本题主要考查几何体的三视图,解题的关键是熟练掌握常见几何体的三视图.22.(10分)已知,如图,AB、DE是直立在地面上的两根立柱,AB=12m,某一时刻AB在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长6m,请你计算DE 的长.【分析】(1)利用平行投影的性质得出即可;(2)利用同一时刻影长与实际物体比值相等进而求出即可.【解答】解:(1)如图所示:EM即为所求;(2)∵AB=12m,某一时刻AB在阳光下的投影BC=4m,DE在阳光下的投影长6m,∴设DE的长为xm,则=,解得:x=18,答:DE的长18米.【点评】此题主要考查了平行投影的性质,利用相同时刻影长与实际物体的关系得出是解题关键.23.(10分)在长、宽都为4m,高为3m的房间的正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8cm,灯泡离地面2m,为了使光线恰好照在墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,≈1.414)【分析】根据题意画出几何图,则AN=0.08m,AM=2m,计算出DE=4m,再证明△ABC∽△ADB,然后利用相似比可计算出BC.【解答】解:如图,光线恰好照在墙角D、E处,AN=0.08m,AM=2m,由于房间的地面为边长为4m的正方形,则DE=4m,∵BC∥DE,∴△ABC∽△ADB,∴=,即=,∴BC≈0.23(m).答:灯罩的直径BC约为0.23m.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.合理使用相似的知识解决有关计算,计算时注意单位要统一.24.(12分)如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm),计算出这个立体图形的表面积.【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面人教版九年级数学下册第29章投影与视图单元评估检测试题(有答案)一、单选题(共10题;共30分)1.(2016•杭州)下列选项中,如图所示的圆柱的三视图画法正确的是()A. B. C. D.2.如图是某几何题的三视图,下列判断正确的是()A. 几何体是圆柱体,高为2B. 几何体是圆锥体,高为2C. 几何体是圆柱体,半径为2D. 几何体是圆锥体,半径为23.如图,这是一个机械模具,则它的主视图是()A. B. C.D.4.如图,下列水平放置的几何体中,左视图不是长方形的是()A. B. C.D.5.如图,一天晚上,小颖由路灯A下的B处走到C处时,测得影子CD的长为1米,当她继续往前走到D处时,测得此时影子DE的长刚好是自己的身高,已知小颖的身高为1.5米,那么路灯A的高度AB为()A. 3米B. 4.5米C. 6米 D. 8米6.下列几何体是由4个相同的小正方体搭成的,其中左视图和主视图不相同的是()A. B. C.D.7.下列几何体中,正视图、左视图、俯视图完全相同的是()A. 圆柱B. 圆锥C. 棱锥D. 球8.(2016•惠安县二模)下列四个图形中,是三棱锥的表面展开图的是()A. B. C. D.9.如图,是一个用若干个相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是()A. 2B. 3C. 4D. 510.一个几何体的三视图如图所示,则该几何体外接球的表面积为()A. 4π/3B. 8π/3C. 16π/3D. π/3二、填空题(共10题;共30分)11.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B内的数为________.12.将如图所示的平面展开图折叠成正方体,则a对面的数字是________.13.如图两个图形分别是某个几何体的俯视图和主视图,则该几何体是。
人教版九年级数学下《第29章投影与视图》单元检测试卷(有答案)

2018-2019学年度第二学期人教版九年级数学下册第29章投影与视图单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.一根电线杆的接线柱部分AB在阳光下的投影CD的长为1.2,太阳光线与地面的夹角∠ACD=60∘,则AB的长为()A.12B.0.6C.65√3 D.25√32.由若干个大小相同的小正方体组成的几何体的三视图如图所示,则这个几何体只能是()A. B.C. D.3.给出以下命题,命题正确的有()①太阳光线可以看成平行光线,这样的光线形成的投影是平行投影;②物体的投影的长短在任何光线下,仅与物体的长短有关;③物体的俯视图是光线垂直照射时,物体的投影;④物体的左视图是灯光在物体的左侧时所产生的投影;⑤看书时人们之所以使用台灯是因为台灯发出的光线是平行的光线.A.1个B.2个C.3个D.4个4.下列立体图形的正视图是长方形的有()A.1个B.2个C.3个D.4个5.下列基本几何体中,从正面、上面、左面观察都是相同图形的是()A.圆柱B.三棱柱C.球D.长方体6.一个几何体由一些小正方体摆成,其主视图与左视图如图所示,其俯视图不可能()A. B.C. D.7.如图,该几何体的主视图是()A. B.C. D.8.与如图所示的三视图对应的几何体是()A. B. C. D.9.下列几何体中,主视图是三角形的是()A. B.C. D.10.如图是由几块小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,则该几何体的左视图是()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如图,是由小立方块搭成几何体的俯视图,上面的数字表示,该位置小立方块的个数画出主视图:________,左视图:________.12.由6个大小相同的正方体搭成的几何体如图所示,则它的三种视图中,面积最大的是________(A、主视图B、左视图C、俯视图)13.下面是一天中四个不同时刻两个建筑物的影子,将它们按时间先后顺序排列为________14.如图是同一时刻两根木杆的影子,则它们是________的光线形成的影子.15.一个圆锥是由一个平面和一个曲面所组成,它们相交成一个圆,且这个锥体从正面看到的形状图为一个边长为2cm的等边三角形,求其从上面看到的形状图的面积________.16.在一盏路灯旁的地面上竖直立着两根木杆,两根木杆在这盏路灯下形成各自的影子,则将它们各自的顶端与自己的影子的顶端连线所形成的两个三角形________相似.(填“可能”或“不可能”).17.小刚在高18米的塔上看远方,离塔5米处有一高12米的障碍物,小刚看不见离塔________米远的地方(小刚身高忽略不计).18.如图,右边的图形是物体的________图.19.如图,直角坐标平面内,小明站在点A(−10, 0)处观察y轴,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则小明在y轴上的盲区(即OE的长度)为________米.20.在桌面上摆有一些大小一样的正方体木块,其主视图如图(1)所示,左视图如图(2)所示,要摆出这样的图形至多需要用________块正方体木块,至少需要用________块正方体木块.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图是一个食品包装盒的三视图,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.22.如图是由几个小立方块所搭几何体从上面看到的图形,小正方形中的数字表示在该位置小立方块的个数,请画出相应几何体从正面、从左面看到的图形.23.如图,若干个完全相同的小正方体堆成一个几何体.(1)请画出这个几何体的三视图;(2)现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,那么在这个几何体上最多可以再添加________个小正方体.24.如图所示是由若干个大小相同的小立方体所组成几何体从上面看的图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面看到的图,从左面看到的图.25.如图:是一个由棱长为1cm的正方体垒成的立体图形.(1)从正面、左面、上面观察几何体,分别画出所看到的几何体的形状图.(2)求出几何体的表面积.26.小明和小彬观察同一个物体,从俯视图看都是一个等腰梯形,但小明所看到的主视图如图(1)所示,小彬看到的主视图如图(2)所示.你知道这是一个什么样的物体?小明和小彬分别是从哪个方向观察它的?答案 1.C 2.B 3.B 4.B 5.C 6.C 7.B 8.B 9.B 10.D 11.12.C13.③④①② 14.点光源 15.πcm 2 16.可能 17.5∼15 18.主视 19.2.5 20.29721.解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为12cm ,5cm , ∴菱形的边长=√62+(52)2=132,棱柱的侧面积=132×4×15=390(cm 2).22.解:如图所示:. 23.4.24.解:如图所示:25.解:(1)如图所示:;(2)表面积为:(6+6+4+4+6+12)×1=38.26.解:底面为等腰梯形的四棱柱(如图所示).小明是从前面观察的,而小彬则是从后面观察的(答案不惟一).。
新人教版九年级数学下册《第29章 投影与视图》单元测试卷(解析版)

新人教版九年级数学下册《第29章投影与视图》单元测试卷(解析版)一.选择题(共10小题,满分30分,每小题3分)1.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m 2.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化3.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234B.4312C.3421D.42314.下面四幅图是在同一天同一地点不同时刻太阳照射同一根旗杆的影像图,其中表示太阳刚升起时的影像图是()A.B.C.D.5.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是()A.与窗户全等的矩形B.平行四边形C.比窗户略小的矩形D.比窗户略大的矩形6.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()A.始终不变B.越来越远C.时近时远D.越来越近7.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D8.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.9.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.10.下图是某学校操场上单杠(图中实线部分)在地面上的影子(图中虚线部分),根据图中所示,可判断形成该影子的光线为()A.太阳光线B.灯光光线C.可能为太阳光线或灯光光线D.该影子实际不可能存在二.填空题(共6小题,满分18分,每小题3分)11.如图,在路灯的同侧有两根高度相同的木棒,请分别画出这两根木棒的影子.12.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD 等于2米,若树根到墙的距离BC等于8米,则树高AB等于米.13.请写出一个主视图、左视图和俯视图完全一样的几何体.14.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=.15.如图是由若干个大小相同的小正方体摆成的几何体.那么,其三种视图中,面积最小的是.16.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要个小立方体.三.解答题(共8小题,满分72分)17.(8分)有两根木棒AB,CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图所示,请你在图中画出这时木棒CD的影子.18.(8分)一个几何体由几块相同的小正方体叠成,它的三视图如下图所示.请回答下列问题:(1)填空:①该物体有层高;②该物体由个小正方体搭成;(2)该物体的最高部分位于俯视图的什么地方?(注:在俯视图上标注,并有相应的文字说明)19.(8分)下列物体是由六个棱长为1cm的正方体组成如图的几何体.(1)该几何体的体积是,表面积是;(2)分别画出从正面、左面、上面看到的立体图形的形状.20.(8分)根据如图视图(单位:mm),求该物体的体积.21.(8分)一个几何体是由若干个棱长为3cm的小正方体搭成的,从正面、左面、上面看到的几何体的形状图如图所示:(1)在“从上面看”的图中标出各个位置上小正方体的个数;(2)求该几何体的体积.22.(10分)已知:如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻,AB在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影长时,同时测出DE在阳光下的投影长为6m,请你计算DE的长.23.(10分)如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD =2.1m,求灯泡的高.24.(12分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?2019年春新人教版九年级数学下册《第29章投影与视图》单元测试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m 【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=;,∴y=,∴x﹣y=3.5,故变短了3.5米.故选:C.【点评】此题考查相似三角形对应边成比例,应注意题中三角形的变化.2.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化【分析】连接路灯和旗杆的顶端并延长交平面于一点,这点到旗杆的底端的距离是就是旗杆的影长,画出相应图形,比较即可.【解答】解:由图易得AB<CD,那么离路灯越近,它的影子越短,故选:B.【点评】此题主要考查了中心投影,用到的知识点为:影长是点光源与物高的连线形成的在地面的阴影部分的长度.3.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234B.4312C.3421D.4231【分析】由于太阳早上从东方升起,则早上树的影子向西;傍晚太阳在西边落下,此时树的影子向东,于是可判断四个时刻的时间顺序.【解答】解:时间由早到晚的顺序为4312.故选:B.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.4.下面四幅图是在同一天同一地点不同时刻太阳照射同一根旗杆的影像图,其中表示太阳刚升起时的影像图是()A.B.C.D.【分析】太阳从东方升起,故物体影子应在西方,所以太阳刚升起时,照射一根旗杆的影像图,应是影子在西方.【解答】解:太阳东升西落,在不同的时刻,同一物体的影子的方向和大小不同,太阳从东方刚升起时,影子应在西方.故选:C.【点评】本题考查平行投影的特点和规律.在不同的时刻,同一物体的影子的方向和大小也不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.5.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是()A.与窗户全等的矩形B.平行四边形C.比窗户略小的矩形D.比窗户略大的矩形【分析】太阳光照射一扇矩形的窗户,根据在同一时刻,不同物体的物高和影长成比例,且平行物体的投影仍旧平行.故可知矩形的窗户的投影是与窗户全等的矩形.【解答】解:太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是与窗户全等的矩形.故选:A.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,且平行物体的投影仍旧平行.6.小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间的距离始终与小阳的影长相等.在这种情况下,他们两人之间的距离()A.始终不变B.越来越远C.时近时远D.越来越近【分析】由题意易得,小阳和小明离光源是由远到近的过程,根据中心投影的特点,即可得到身影越来越短,而两人之间的距离始终与小阳的影长相等,则他们两人之间的距离越来越近.【解答】解:因为小阳和小明两人从远处沿直线走到路灯下这一过程中离光源是由远到近的过程,所以他在地上的影子会变短,所以他们两人之间的距离越来越近.故选D.【点评】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.7.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D【分析】主视图是从几何体的正面看所得到的视图,俯视图是从几何体的上面看所得到的图形.【解答】解:主视图是矩形且中间有两道竖杠,俯视图是两个同心圆,故选:D.【点评】此题主要考查了三视图,关键是掌握主视图和俯视图所看的位置.8.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【分析】主视图有2列,每列小正方形数目分别为2,1.【解答】解:几何体的主视图有2列,每列小正方形数目分别为2,1,故选:A.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.9.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.10.下图是某学校操场上单杠(图中实线部分)在地面上的影子(图中虚线部分),根据图中所示,可判断形成该影子的光线为()A.太阳光线B.灯光光线C.可能为太阳光线或灯光光线D.该影子实际不可能存在【分析】解答本题关键是要区分开平行投影和中心投影.若形成的影子是由太阳光照射形成的影子,则两直线一定平行;若形成的影子是由灯光照射而形成的影子,则两直线一定相交.据此判断即可.【解答】解:若形成的影子是由太阳光照射形成的影子,则两直线一定平行;若形成的影子是由灯光照射而形成的影子,则两直线一定相交.所以可判断形成该影子的光线为灯光光线.故选B.【点评】本题综合考查了平行投影和中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.二.填空题(共6小题,满分18分,每小题3分)11.如图,在路灯的同侧有两根高度相同的木棒,请分别画出这两根木棒的影子.【分析】根据光源和两根木棒的物高得影子长即可.【解答】解:如图所示:【点评】本题考查中心投影的特点与应用,解决本题的关键是根据光源和两根木棒的物高得影子长.12.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD 等于2米,若树根到墙的距离BC等于8米,则树高AB等于10米.【分析】作DH⊥AB于H,如图,易得四边形BCDH为矩形,则DH=BC=8m,CD=BH=2m,利用平行投影得到∠ADH=45°,则可判断△ADH为等腰直角三角形,所以AH=DH=8m,然后计算AH+BH即可.【解答】解:作DH⊥AB于H,如图,则DH=BC=8m,CD=BH=2m,根据题意得∠ADH=45°,所以△ADH为等腰直角三角形,所以AH=DH=8m,所以AB=AH+BH=8m+2m=10m.故答案为10.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.13.请写出一个主视图、左视图和俯视图完全一样的几何体正方体.【分析】主视图、左视图、俯视图是物体分别从正面、左面和上面看,所得到的图形.【解答】解:球的三视图都为圆;正方体的三视图都为正方形.故答案为:正方体.【点评】本题考查学生对三视图的掌握程度以及灵活运用能力,同时也体现了对空间想象能力方面的考查.14.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=16.【分析】这种题需要空间想象能力,可以想象这样的小立方体搭了左中右三排,但最左排可以为4~6个小正方体,依此求出m、n的值,从而求得m+n的值.【解答】解:最少需要7块如图(1),最多需要9块如图(2)故m=9,n=7,则m+n=16.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力.15.如图是由若干个大小相同的小正方体摆成的几何体.那么,其三种视图中,面积最小的是左视图.【分析】如图可知该几何体的正视图由6个小正方形组成,左视图是由34小正方形组成,俯视图是由6个小正方形组成,易得解.【解答】解:如图,该几何体正视图是由6个小正方形组成,左视图是由4个小正方形组成,俯视图是由6个小正方形组成,故三种视图面积最小的是左视图.故答案为:左视图.【点评】本题考查的是三视图的知识以及学生对该知识点的巩固,难度属简单.解题关键是找到三种视图的正方形的个数.16.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要8个小立方体.【分析】由主视图求出这个几何体共有3层,再求出第二层、第三层最少的个数,由俯视图可得第一层正方体的个数,相加即可.【解答】解:由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层只有1个,故组成这个几何体的小正方体的个数最少为:5+2+1=8(个).故答案为:8.【点评】本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”.三.解答题(共8小题,满分72分)17.(8分)有两根木棒AB,CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图所示,请你在图中画出这时木棒CD的影子.【分析】连接AE,过点C作AE的平行线,过点D作BE的平行线,相交于点F,DF即为所求.【解答】解:【点评】本题考查平行投影的作图,难度不大,体现了学数学要注重基础知识的新课标理念.会灵活运用性质作图.18.(8分)一个几何体由几块相同的小正方体叠成,它的三视图如下图所示.请回答下列问题:(1)填空:①该物体有3层高;②该物体由8个小正方体搭成;(2)该物体的最高部分位于俯视图的什么地方?(注:在俯视图上标注,并有相应的文字说明)【分析】(1)由三视图中的主视图和左视图可得,该物体有3层高;依据俯视图即可得到该物体由8个小正方体搭成;(2)由三视图中的主视图和左视图可得,该物体的最高部分位于俯视图的左上角.【解答】解:(1)由三视图中的主视图和左视图可得,该物体有3层高;俯视图中各位置的正方体的个数如下:∴该物体由8个小正方体搭成;故答案为:3,8;(2)如图所示,该物体的最高部分位于俯视图的左上角,即阴影部分:【点评】本题考查了由三视图判断几何体,由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.19.(8分)下列物体是由六个棱长为1cm的正方体组成如图的几何体.(1)该几何体的体积是6cm3,表面积是24cm2;(2)分别画出从正面、左面、上面看到的立体图形的形状.【分析】(1)根据几何体的形状得出立方体的体积和表面积即可;(2)主视图有3列,从左往右每一列小正方形的数量为2,2,1;左视图有2列,小正方形的个数为2,1;俯视图有3列,从左往右小正方形的个数为1,2,1.【解答】解:(1)几何体的体积:1×1×1×6=6(cm3),表面积:5+5+3+3+4+4=24(cm2);故答案为:6cm3,24cm2;(2)如图所示:【点评】本题考查组合几何体的计算和三视图的画法;用到的知识点为:主视图、左视图、俯视图分别是从物体的正面、左面、上面看到的平面图形.20.(8分)根据如图视图(单位:mm),求该物体的体积.【分析】首先判断该几何体的形状由上下两个圆柱组合而成,然后计算体积即可.【解答】解:由三视图知:该几何体是两个圆柱叠放在一起,上面圆柱的底面直径为8,高为4,下面圆柱的底面直径为16,高为16,故体积为π(16÷2)2×16+π(8÷2)2×4=1088πmm3.【点评】考查了由三视图判断几何体的知识,解题的关键是能够根据该几何体的三视图得到该几何体的形状.21.(8分)一个几何体是由若干个棱长为3cm的小正方体搭成的,从正面、左面、上面看到的几何体的形状图如图所示:(1)在“从上面看”的图中标出各个位置上小正方体的个数;(2)求该几何体的体积.【分析】(1)根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答即可得;(2)根据每个正方体的体积乘以正方体的个数即可得.【解答】解:(1)如图所示:(2)该几何体的体积为33×(2+3+2+1+1+1)=27×10=270(cm3).【点评】本题考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.22.(10分)已知:如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻,AB在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影长时,同时测出DE在阳光下的投影长为6m,请你计算DE的长.【分析】(1)根据已知连接AC,过点D作DF∥AC,即可得出EF就是DE的投影;(2)利用三角形△ABC∽△DEF.得出比例式求出DE即可.【解答】解:(1)作法:连接AC,过点D作DF∥AC,交直线BE于F,则EF就是DE的投影.(画图(1分),作法1分).(2)∵太阳光线是平行的,∴AC∥DF.∴∠ACB=∠DFE.又∵∠ABC=∠DEF=90°,∴△ABC∽△DEF.∴=,∵AB=5m,BC=4m,EF=6m,∴,∴DE=7.5(m).【点评】此题主要考查了平行投影的画法以及相似三角形的应用,根据已知得出△ABC∽△DEF是解题关键.23.(10分)如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD =2.1m,求灯泡的高.【分析】(1)连接CB延长CB交DE于O,点O即为所求.(2)连接OG,延长OG交DF于H.线段FH即为所求.(3)根据=,可得=,即可推出DE=4m.【解答】(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,=,∴=,∴OD=4m.∴灯泡的高为4m.【点评】本题考查中心投影、解题的关键是正确画出图形,记住物长与影长的比的定值,属于基础题,中考常考题型.24.(12分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?【分析】(1)根据三视图可分别得出俯视图上小立方体的个数;(2)根据(1)可得小正方体的个数为10,然后利用1个小正方体的体积乘以10即可;(3)根据三视图可得该物体的表面有多少个小正方形,然后利用1个小正方形的面积乘以个数即可.【解答】解:(1)如图所示:(2)3×3×3×10=270(cm3),答:该物体的体积是270cm3;(3)3×3×38=342(cm2),答:该物体的表面积是342cm2.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.人教版九年级数学下册期末高效复习:专题9 投影与视图人教版初中数学九年级下册第28章锐角三角函数专题9投影与视图题型一投影典例下列为某两个物体的投影,其中是在太阳光下形成投影的是(D)A B C D【解析】如答图,故选D.典例答图【点悟】判断是平行投影还是中心投影,关键是看光源,一般太阳光可以近似地看成平行光,因此,在太阳光下的投影是平行投影.在路灯、手电筒等点光源下的投影就是中心投影.变式跟进 1.某舞台的上方共挂有a,b,c,d四个照明灯,当只有一个照明灯亮时,一棵道具树和小玲在照明灯光下的影子如图Z9-1所示,则亮的照明灯是(B)图Z9-1A.a灯B.b灯C.c灯D.d灯题型二直棱柱的展开图典例[2018·雅安]下列图形不能折成一个正方体的是(B)A B C D【解析】B选项图形中含“7”字形,因此不能折成一个正方体,故选B.【点悟】正方体的展开图有“1+4+1”型、“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.变式跟进 2.[2018·大庆]将正方体的表面沿某些棱剪开,展成如图Z9-2所示的平面图形,则原正方体中与“创”字所在面相对的面的上标的字是(A)图Z9-2A.庆B.力C.大D.魅【解析】“141”型上下两个为相对面,其余的相对的面之间一定相隔一个正方形.故选A.3.[2017·海淀区一模]下列选项中,左边的平面图形能够折成右边封闭的立体图形的是(B)A BC D【解析】A.四棱锥的展开图有四个三角形,故A选项错误;B.根据长方体的展开图的特征,故B选项正确;C.正方体的展开图中,不存在“田”字形,故C选项错误;D.圆锥的展开图中只有一个圆,故D选项错误.题型三几何体的三视图典例[2017·开封一模]下列四个几何体中,主视图与左视图相同的几何体有(D)A.1个B.2个C.3个D.4个【解析】①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形.故选D.【点悟】在画三视图时,一定要将物体的边、棱、顶点都体现出来,看得见的轮廓线画成实线,看不见的轮廓线画成虚线,不能漏掉.变式跟进 4.[2018·遂宁]如图Z9-3,5个完全相同的小正方体组成一个几何体,则这个几何体的主视图是(D)图Z9-3A B C D 5.[2017·聊城]如图Z9-4是由若干个小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则这个几何体的主视图是(C)图Z9-4 A B C D【解析】主视图是从前往后看,由俯视图可知从左到右最高层数依次为2,3,1,∴这个几何体的主视图是C.6.[2017·烟台]如图Z9-5所示的工件,其俯视图是(B)图Z9-5 A B C D题型四由视图确定几何体的形状或组成个数典例[2017·峄城区模拟]如图Z9-6,是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是(C)图Z9-6A.3个B.4个C.5个D.6个【解析】由俯视图可知,这个几何体的底层有4个小正方体,结合主视图、左视图可知上层后排左侧有1个正方体,所以组成该几何体的小正方体的个数是5个.【点悟】通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了.在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数.变式跟进7.[2018·武汉]一个几何体由若干个相同的正方体组成,其主视图和俯视图如图Z9-7所示,则这个几何体中正方体的个数最多是(C)A.3 B.4 C.5 D.6图Z9-7变式跟进7答图。
【初三数学】福州市九年级数学下(人教版)《第29章 投影与视图》单元测试(解析版)

人教版数学九年级下册第二十九章投影与视图单元测试卷含答案一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)1.将一个圆形纸板放在太阳光下,它在地面上所形成的影子的形状不可能是( )A.圆 B.三角形 C.线段 D.椭圆2.下列几何体的主视图与其他三个不同的是( )3.下列几何体中,主视图和左视图都为矩形的是( )4.下列四幅图中,图中的灯光与影子的位置正确的是( )5.如图是由七个棱长为1的正方体组成的一个几何体,其俯视图的面积是( )A.3 B.4 C.5 D.66.如图所示,小明从左面观察一个圆柱体和一个正方体,看到的是( )7.如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为( )A.120° B.约156° C.180° D.约208°8.如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是( )A.6个 B.7个 C.8个 D.9个二、填空题(本大题共6个小题,每小题3分,共18分)9.如图是某几何体的三视图,则这个几何体是________.10.如图,方桌正上方的灯泡(看作一个点)发出的光线照射方桌后,在地面上形成阴影(正方形)示意图,已知方桌边长1.2m,桌面离地面1.2m,灯泡离地面3.6m,则地面上阴影部分的面积为________.11.如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,则x的值为________.12.如图是一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠AMC=30°,窗户的高在教室地面上的影长MN =23米,窗户的下檐到教室地面的距离BC=1米(点M,N,C在同一直线上),则窗户的高AB为________米.13.三棱柱的三视图如图所示,在△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为________cm.14.如图,在一次数学活动课上,张明用17个边长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状人教版九年级数学下册《第29章投影与视图》单元测试卷(解析版)一.选择题(共10小题,满分30分,每小题3分)1.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定2.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长3.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③4.在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为()A.逐渐变长B.逐渐变短C.影子长度不变D.影子长短变化无规律5.如图,太阳光线与地面成60°的角,照在地面的一只排球上,排球在地面的投影长是14cm,则排球的直径是()A.7cm B.14cm C.21cm D.21cm 6.同一灯光下两个物体的影子可以是()A.同一方向B.不同方向C.相反方向D.以上都有可能7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②8.下列几何体中,其主视图为三角形的是()A.B.C.D.9.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.10.一幢4层楼房只有一个房间亮着灯,一棵小树和一根电线杆在窗口灯光下的影子如图所示,则亮着灯的房间是()A.1号房间B.2号房间C.3号房间D.4号房间二.填空题(共6小题,满分18分,每小题3分)11.如图所示,此时树的影子是在(填太阳光或灯光)下的影子.12.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是m.13.写出一个在三视图中俯视图与主视图完全相同的几何体.14.如图是由若干个相同的小正方形组合而成的几何体,则三个视图中面积最小的是.15.如图,正三棱柱的底面周长为15,截去一个底面周长为6的正三棱柱,所得几何体的俯视图的周长是,面积是.16.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要块正方体木块,至多需要块正方体木块.三.解答题(共8小题,满分72分)17.(8分)如图,AB、DE是直立在地面上的两根立柱,某一时刻立柱AB在阳光下的投影为BC,请你在图中画出此时立柱DE在阳光下的投影.18.(8分)如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号)19.(8分)如图所示的几何体是由5 个相同的正方体搭成的,请分别画出这个几何体的三视图.20.(8分)如图是一个由小正方体摆成的几何体,无论从正面,还是从左面都可以看到如图所示的图形,请你判断一下:最多可以用几个小正方体?最少可以用几个小正方体?21.(8分)一个几何体从三个方向看到的图形如图所示(单位:cm).(1)写出这个几何体的名称:;(2)若其从上面看为正方形,根据图中数据计算这个几何体的体积.22.(10分)已知,如图,AB、DE是直立在地面上的两根立柱,AB=12m,某一时刻AB在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长6m,请你计算DE 的长.23.(10分)在长、宽都为4m,高为3m的房间的正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8cm,灯泡离地面2m,为了使光线恰好照在墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,≈1.414)24.(12分)如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm),计算出这个立体图形的表面积.2019年春人教版九年级数学下册《第29章投影与视图》单元测试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定【分析】根据中心投影的特点,小红和小花在同一路灯下的影长与他们到路灯的距离有关,虽然他们的身高一样,也不能判断谁的身高的高与矮.【解答】解:小红和小花在路灯下的影子一样长,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断谁的身高的高与矮.故选:D.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.2.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长【分析】小亮由A处径直路灯下,他得影子由长变短,再从路灯下到B处,他的影子则由短变长.【解答】解:晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选:B.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.3.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③【分析】太阳光可以看做平行光线,从而可求出答案.【解答】解:太阳从东边升起,西边落下,所以先后顺序为:③④①②故选:C.【点评】本题考查平行投影,解题的关键是熟练知道太阳光是平行光线,本题属于基础题型.4.在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为()A.逐渐变长B.逐渐变短C.影子长度不变D.影子长短变化无规律【分析】根据平行投影的定义结合题意可得.【解答】解:在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为逐渐变短,故选:B.【点评】本题主要考查平行投影,解题的关键是熟练掌握平行投影的定义.5.如图,太阳光线与地面成60°的角,照在地面的一只排球上,排球在地面的投影长是14cm,则排球的直径是()A.7cm B.14cm C.21cm D.21cm【分析】由于太阳光线为平行光线,根据切线的性质得到AB为排球的直径,CD =AB,CE=14cm,在Rt△CDE中,利用正弦的定义可计算出CD的长,从而得到排球的直径.【解答】解:如图,点A与点B为太阳光线与球的切点,则AB为排球的直径,CD=AB,CE=14cm,在Rt△CDE中,sin E=,所以CD=14•sin60°=14×=21,即排球的直径为21cm.故选:C.【点评】本题考查了解直角三角形和平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影;平行投影中物体与投影面平行时的投影是全等的.6.同一灯光下两个物体的影子可以是()A.同一方向B.不同方向C.相反方向D.以上都有可能【分析】由于物体所处的位置不确定,所以同一灯光下两个物体的影子三种情况都有可能.【解答】解:由于物体所处的位置不同所形成的影子方向和长短也不同,所以同一灯光下两个物体的影子可以是同一方向、不同方向、相反方向.故选D.【点评】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.【解答】解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:B.【点评】本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.8.下列几何体中,其主视图为三角形的是()A.B.C.D.【分析】找出四个选项中几何体的主视图,由此即可得出结论.【解答】解:A、圆柱的主视图为矩形,∴A不符合题意;B、正方体的主视图为正方形,∴B不符合题意;C、球体的主视图为圆形,∴C不符合题意;D、圆锥的主视图为三角形,∴D符合题意.故选:D.【点评】本题考查了简单几何体的三视图,牢记圆锥的主视图为三角形是解题的关键.9.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.【分析】根据主视图的定义,并从实线和虚线想象几何体看得见部分和看不见部分的轮廓线,据此可得.【解答】解:由主视图定义知,该几何体的主视图为:故选:A.【点评】本题主要考查简单几何体的三视图,解题的关键是熟练掌握三视图的定义及从实线和虚线想象几何体看得见部分和看不见部分的轮廓线.10.一幢4层楼房只有一个房间亮着灯,一棵小树和一根电线杆在窗口灯光下的影子如图所示,则亮着灯的房间是()A.1号房间B.2号房间C.3号房间D.4号房间【分析】根据给出的两个物高与影长即可确定点光源的位置.【解答】解:如图所示,故选:B.【点评】本题综合考查了中心投影的特点和规律:物高与影长确定点光源的传播路线.二.填空题(共6小题,满分18分,每小题3分)11.如图所示,此时树的影子是在太阳光(填太阳光或灯光)下的影子.【分析】连接两个实物顶点与像的对应顶点,得到的两条直线平行可得为太阳光下的投影.【解答】解:此时的影子是在太阳光下(太阳光或灯光)的影子,理由是:通过作图发现相应的直线是平行关系.故答案为:太阳光【点评】此题考查平行投影问题,解决本题的关键是理解平行投影的特点:实物顶点与像对应顶点的连线是平行关系.12.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是14m.【分析】设水塔的高为xm,根据同一时刻,平行投影中物体与影长成正比得到x:42=1.7:5.1,然后利用比例性质求x即可.【解答】解:设水塔的高为xm,根据题意得x:42=1.7:5.1,解得x=14,即水塔的高为14m.故答案为14.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻,平行投影中物体与影长成正比.13.写出一个在三视图中俯视图与主视图完全相同的几何体球或正方体.【分析】主视图、俯视图是分别从物体正面和上面看,所得到的图形.【解答】解:球的俯视图与主视图都为圆;正方体的俯视图与主视图都为正方形.故答案为:球或正方体(答案不唯一).【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.14.如图是由若干个相同的小正方形组合而成的几何体,则三个视图中面积最小的是左视图.【分析】如图可知该几何体的正视图由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,易得解.【解答】解:如图,该几何体正视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图.故答案为:左视图【点评】本题考查的是三视图的知识以及学生对该知识点的巩固,难度属简单.解题关键是找到三种视图的正方形的个数.15.如图,正三棱柱的底面周长为15,截去一个底面周长为6的正三棱柱,所得几何体的俯视图的周长是13,面积是.【分析】根据从上边看得到的图形是俯视图,梯形的周长公式,面积的和差,可得答案.【解答】解:从上边看是一个梯形:上底是2,下底是5,两腰是3,周长是2+3+3+5=13.原三角形的边长是5,截去的三角形的边长是2,梯形的面积=原三角形的面积﹣截去的三角形的面积=××52﹣××22=﹣=,故答案为:13,.【点评】本题考查了简单组合体的三视图,从上边看是一个等腰梯形是解题关键.16.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要6块正方体木块,至多需要16块正方体木块.【分析】利用从正面和从左面看到的形状图进而得出每层的最少与最多数量,进而得出答案.【解答】解:易得第一层最少有4个正方体,最多有12个正方体;第二层最少有2个正方体,最多有4个,故最少有6个小正方形,至多要16块小正方体.故答案为:6,16.【点评】此题考查由三视图探究几何体.可从主视图上分清物体的上下和左右的层数,从左视图上分清物体的左右和前后位置,综合上述条件,可知摆出图形至少以及至多要多少块木块.三.解答题(共8小题,满分72分)17.(8分)如图,AB、DE是直立在地面上的两根立柱,某一时刻立柱AB在阳光下的投影为BC,请你在图中画出此时立柱DE在阳光下的投影.【分析】根据已知连接AC,过点D作DM∥AC,即可得出EM就是DE的投影.【解答】解:(1)如图所示:EM即为所求.【点评】本题考查了平行投影的性质,掌握平行投影的画法是解题关键.18.(8分)如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号)【分析】由几何体的三视图,得到它是一个六棱柱,求出其侧面积与表面积即可.【解答】解:根据该密封纸盒的三视图知道它是一个六棱柱,∵其高为12cm,底面边长为5cm,∴其侧面积为6×5×12=360(cm2),密封纸盒的上、下底面的面积和为:12×5××5×=75(cm2),∴其表面积为(75+360)cm2.【点评】此题考查了由三视图判断几何体,弄清三视图的概念是解本题的关键.19.(8分)如图所示的几何体是由5 个相同的正方体搭成的,请分别画出这个几何体的三视图.【分析】由已知条件可知,主视图有3列,每列正方形的个数为2,1,1;左视图有2列,每列小正方形数目分别为1,2;俯视图有3列,每列小正方数形数目分别为2,1,1.据此可画出图形.【解答】解:如图所示:.【点评】此题主要考查了作三视图,关键是掌握主视图从正面看、左视图是从左边看,俯视图是从上面看.20.(8分)如图是一个由小正方体摆成的几何体,无论从正面,还是从左面都可以看到如图所示的图形,请你判断一下:最多可以用几个小正方体?最少可以用几个小正方体?【分析】根据主视图和左视图画出小正方体最少和最多时几何体的俯视图,从而确定最少和最多小正方体的个数.【解答】解:画出小正方体最少和最多时几何体的俯视图,所以这个几何体最少可以用5个小正方体,最多可以用13个小正方体.【点评】本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.熟悉常见几何体的三视图.21.(8分)一个几何体从三个方向看到的图形如图所示(单位:cm).(1)写出这个几何体的名称:长方体;(2)若其从上面看为正方形,根据图中数据计算这个几何体的体积.【分析】(1)根据长方体的三视图可得;(2)根据长方体的体积公式计算可得.【解答】解:(1)由三视图知该几何体是高为4、底面边长为3的长方体,故答案为:长方体;(2)这个几何体的体积是3×3×4=36(cm3).【点评】本题主要考查几何体的三视图,解题的关键是熟练掌握常见几何体的三视图.22.(10分)已知,如图,AB、DE是直立在地面上的两根立柱,AB=12m,某一时刻AB在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长6m,请你计算DE 的长.【分析】(1)利用平行投影的性质得出即可;(2)利用同一时刻影长与实际物体比值相等进而求出即可.【解答】解:(1)如图所示:EM即为所求;(2)∵AB=12m,某一时刻AB在阳光下的投影BC=4m,DE在阳光下的投影长6m,∴设DE的长为xm,则=,解得:x=18,答:DE的长18米.【点评】此题主要考查了平行投影的性质,利用相同时刻影长与实际物体的关系得出是解题关键.23.(10分)在长、宽都为4m,高为3m的房间的正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8cm,灯泡离地面2m,为了使光线恰好照在墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,≈1.414)【分析】根据题意画出几何图,则AN=0.08m,AM=2m,计算出DE=4m,再证明△ABC∽△ADB,然后利用相似比可计算出BC.【解答】解:如图,光线恰好照在墙角D、E处,AN=0.08m,AM=2m,由于房间的地面为边长为4m的正方形,则DE=4m,∵BC∥DE,∴△ABC∽△ADB,∴=,即=,∴BC≈0.23(m).答:灯罩的直径BC约为0.23m.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.合理使用相似的知识解决有关计算,计算时注意单位要统一.24.(12分)如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm),计算出这个立体图形的表面积.【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面人教版九年级数学下册《第二十九章投影与视图》单元测试题(解析版)一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③2.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化3.如图,正六棱柱的主视图是()A.B.C.D.4.三个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.某几何体的三视图如图,则该几何体是()A.长方体B.圆柱C.球D.正三棱柱6.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D7.如图所示的几何体从上面看得到的图形是()A.B.C.D.8.如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.9.从正面和左面看到长方体的图形如图所示(单位:cm),则从其上面看到图形的面积是()cm2A.4B.6C.8D.1210.如图,是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为()A.0.64πm2B.2.56πm2C.1.44πm2D.5.76πm2二.填空题(共8小题)11.如图,迎宾公园的喷水池边上有半圆形的石头(半径为1.12m)作为装饰,其中一块石头正前方5.88m处有一彩灯,某一时刻,该灯柱落在此半圆形石头上的影长为0.56πm.如果同一时刻,一直立0.6m的杆子的影长为1.8m,则灯柱的高m.12.春天来了天气一天比一天暖和,在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子.(长,短)13.正放的圆柱形水杯的正视图为,俯视图为.14.从正面看、从上面看、从左面看都是正方形的几何体是.15.为了测量水塔的高度,我们取一竹竿,放在阳光下,已知2米长的竹竿投影长为1.5米,在同一时刻测得水塔的投影长为30米,则水塔高为米.16.如图,在A时测得旗杆的影长是4米,B时测得的影长是9米,两次的日照光线恰好垂直,则旗杆的高度是米.17.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要个小立方体.18.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为m.三.解答题(共7小题)19.如图是一个立体图形的三视图,根据图中数据,求该几何体的表面积.20.如图是由小立方块所搭几何体从上面看到的形状,正方形中的数字表示该位置小立方块的个数,请画出它的主视图和左视图.21.如图,在Rt△ABC中,∠C=90°,投影线方向如图所示,点C在斜边AB上的正投影为点D,(1)试写出边AC、BC在AB上的投影;(2)试探究线段AC、AB和AD之间的关系;(3)线段BC、AB和BD之间也有类似的关系吗?请直接写出结论.22.如图是由一些小正方体搭成的几何体从上面看的图形(俯视图),数字表示该位置小正方体的个数,请画出这个几何体从正面看的图形(主视图)、从左面看的图形(左视图).23.根据要求完成下列题目:(1)图中有块小正方体;(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在图方格中所画的图一致,若这样的几何体最少要m个小正方体,最多要n个小正方体,则m+n的值为.。
人教版九年级下《第29章投影与视图》单元测试题含答案解析

春人教版九年级数学下册第29章投影与视图单元测试题一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.3.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m5.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定6.如图所示的四棱柱的主视图为()A.B.C.D.7.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.8.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.9.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D10.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体二.填空题(共8小题)11.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.13.从正面看、从上面看、从左面看都是正方形的几何体是.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有.15.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为cm2.16.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是.17.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放个小正方体.18.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是.三.解答题(共7小题)19.一个几何体的三视图如图所示,根据图示的数据计算该几何体的侧面积.20.如图是从上面看到一个由小正方体搭建的几何体的图形,其中方框内的数字为该处小立方块的个数.请你画出从正面和左面看到这个几何体的图形.21.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.22.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的;(2)这个几何体最多由个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.23.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.24.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的层数与累积高度的关系如下表:碟子层数累积高度(cm)1222+1.532+342+4.5……(1)当一摞碟子有x层时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,如图分别是从正面、左面和上面看到的形状图,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.25.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是、、;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.春人教版九年级数学下册第29章投影与视图单元测试题参考答案与试题解析一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③【分析】太阳光可以看做平行光线,从而可求出答案.【解答】解:太阳从东边升起,西边落下,所以先后顺序为:③④①②故选:C.【点评】本题考查平行投影,解题的关键是熟练知道太阳光是平行光线,本题属于基础题型.2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.【解答】解:依题意,光线是垂直照下的,故只有D符合.故选:D.【点评】本题考查正投影的定义及正投影形状的确定.3.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定【分析】根据中心投影的特点,小红和小花在同一路灯下的影长与他们到路灯的距离有关,虽然他们的身高一样,也不能判断谁的身高的高与矮.【解答】解:小红和小花在路灯下的影子一样长,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断谁的身高的高与矮.故选:D.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=;,∴y=,∴x﹣y=3.5,故变短了3.5米.故选:C.【点评】此题考查相似三角形对应边成比例,应注意题中三角形的变化.5.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定【分析】前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了,说明看到的范围减少,即盲区增大.【解答】解:根据题意我们很明显的可以看出“沉”下去的建筑物实际上是到了自己的盲区的范围内.故选:C.【点评】本题结合了实际问题考查了对视点,视角和盲区的认识和理解.6.如图所示的四棱柱的主视图为()A.B.C.D.【分析】依据从该几何体的正面看到的图形,即可得到主视图.【解答】解:由图可得,几何体的主视图是:故选:B.【点评】本题主要考查了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.【分析】根据图中的主视图解答即可.【解答】解:A、图中的主视图是2,1;B、图中的主视图是2,1;C、图中的主视图是2,1;D、图中的主视图是2,2;故选:D.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置.8.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可得到答案.【解答】解:如图,左视图如下:故选:D.【点评】本题考查了作图﹣﹣三视图、由三视图判断几何体,本题画几何体的三视图时应注意小正方形的数目及位置.9.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D【分析】主视图是从几何体的正面看所得到的视图,俯视图是从几何体的上面看所得到的图形.【解答】解:主视图是矩形且中间有两道竖杠,俯视图是两个同心圆,故选:D.【点评】此题主要考查了三视图,关键是掌握主视图和俯视图所看的位置.10.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体【分析】由主视图和俯视图可得此几何体为柱体,根据左视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和俯视图都是长方形,∴此几何体为柱体,∵左视图是一个圆,∴此几何体为平放的圆柱体.故选:B.【点评】本题考查了由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.二.填空题(共8小题)11.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为 2.16m2.【分析】根据平行投影,篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,根据等腰直角三角形的性质得矩形的宽等于篮板宽,为1.2m,然后根据矩形得面积公式求解.【解答】解:因为太阳光线是平行光线,所以篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,则矩形的宽等于篮板宽,为1.2m,所以篮板长留在地面上的阴影部分面积=1.8×1.2=2.16(m2).故答案为2.16m2.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.太阳光线是平行光线.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为4m.【分析】利用中心投影的性质可判断△CDE∽△CBA,再根据相似三角形的性质求出BC的长,然后计算BC﹣CD即可.【解答】解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC﹣CD=6﹣2=4(m).故答案为4.【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.13.从正面看、从上面看、从左面看都是正方形的几何体是正方体.【分析】正方体从三个方向看到的形状图都是正方形,即三视图都是正方形.【解答】解:一个几何体从三个方向看到的形状图都是正方形,即三视图均为正方形,这样的几何体是正方体.故答案为:正方体.【点评】本题考查由三视图确定几何体的形状,关键是根据对几何体的认识解答.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有③俯视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,主视图是1,2,1,不是中心对称图形,左视图是1,2,1,不是中心对称图形,故答案为:③俯视图【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.15.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为(60+75π)cm2.【分析】求得该几何体的侧面积以及底面积,相加即可得到表面积.【解答】解:侧面积为10×(6+)=60+50π,底面积之和为:2×=15π,∴该几何体的表面积为60+50π+15π=60+65π,故答案为:60+65π.【点评】本题主要考查了几何体的表面积,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.16.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是12.【分析】由2个视图是长方形,那么这个几何体为棱柱,另一个视图是三角形,那么可得该几何体是三棱柱,由三视图知,三棱柱的正面的高是3,根据三棱柱的体积公式得到三角形的底,根据三角形公式列式计算即可.【解答】解:由三视图知,几何体是一个三棱柱,三棱柱的正面是高为3的三角形,∵这个几何体的体积是24,∴三角形的底为=8,∴它的主视图的面积=×8×3=12,故答案为:12.【点评】此题考查了由三视图判断几何体和几何体的表面积求法,正确判断出几何体的形状是解题的关键.17.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放1个小正方体.【分析】根据主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,可得答案.【解答】解:主视图是第一层三个小正方形,第二层是左边一个小正方形,中间一个小正方形,第三层是左边一个小正方形,俯视图是第一层三个小正方形,第二层三个小正方形,左视图是第一层两个小正方形,第二层两个小正方形,第三层左边一个小正方形,不改变三视图,中间第二层加一个,故答案为:1.【点评】本题考查了简单几何体的三视图,主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图.18.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是4或5.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,上层最多有2个,最少1个,下层一定有3个,∴组成这个几何体的小正方体的个数可能是4个或5个,故答案为:4或5.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三.解答题(共7小题)19.一个几何体的三视图如图所示,根据图示的数据计算该几何体的侧面积.【分析】根据三视图判断出该几何体的形状,再求出侧面积即可得出答案.【解答】解:根据三视图可得该几何体是一个三棱柱,侧面积为4×3×6=72.【点评】此题考查了由三视图判断几何体,用到的知识点是长方形的面积,同时也体现了对空间想象能力方面的考查.20.如图是从上面看到一个由小正方体搭建的几何体的图形,其中方框内的数字为该处小立方块的个数.请你画出从正面和左面看到这个几何体的图形.【分析】分别利用小立方块的个数得出其形状,进而画出左视图与主视图.【解答】解:如图所示:.【点评】此题考查了作图﹣三视图,由三视图判断几何体,正确想象出立体图形的形状是解题关键.21.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.【解答】解:根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm,∴立体图形的体积是:4×4×2+6×8×2=128(mm3),∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2﹣4×2=200(mm2).【点评】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.22.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的甲和乙;(2)这个几何体最多由9个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.【分析】(1)由主视图和左视图的定义求解可得;(2)构成几何体的正方体个数最少时,其正方体的构成是在乙的基础上左数第1列前面再添加1个正方形即可得;(3)正方体个数最少时如图甲,据此作出俯视图即可得.【解答】解:(1)由主视图和左视图知,这个几何体可以是图2甲、乙、丙中的甲和乙,故答案为:甲和乙;(2)这个几何体最多可以由9个小正方体组成,故答案为:9;(3)如图所示:【点评】本题考查作图﹣三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.【分析】(1)观察几何体,作出三视图即可.(2)由已知条件可知,从正面看有2列,每列小正方数形数目分别为3,2;从左面看有2列,每列小正方形数目分别为2,3.据此可画出图形.【解答】解:(1)如图所示:(2)如图所示:【点评】此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.24.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的层数与累积高度的关系如下表:碟子层数累积高度(cm)1222+1.532+342+4.5……(1)当一摞碟子有x层时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,如图分别是从正面、左面和上面看到的形状图,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.【分析】(1)观察表格数据不难发现,每增加一个碟子高度增加1.5cm,然后写出即可;(2)根据三视图判断出碟子的个数为12个,然后代入(1)中算式计算即可得解.【解答】解:(1)由图可知,每增加一个碟子高度增加1.5cm,桌子上放有x个碟子时,高度为2+1.5(x﹣1)=1.5x+0.5;(2)由图可知,共有3摞,左前一摞有4个,左后一摞有5个,右边前面一摞有3个,共有:3+4+5=12个,叠成一摞后的高度=1.5×12+0.5=18.5cm.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状.25.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是③、②、①;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.【分析】(1)根据从上面、左面、正面看到的三视图,可得答案.(2)依据三视图的面积,即可得到这个几何体的表面积.【解答】解:(1)由题可得,从上面、左面、正面看到的平面图形分别是③,②,①;故答案为:③,②,①;(2)∵大正方体的边长为20cm,小正方体的边长为10cm,∴这个几何体的表面积为:2(400+400+400)=2×1200=2400(cm2).【点评】本题考查了简单组合体的三视图以及几何体的表面积,画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.。
人教版九年级下册数学第29章投影与视图单元检测试卷含答案

人教版九年级下册数学第29章投影与视图单元检测试卷含答案第29章投影与视图单元检测一、选择题1.如图所示的几何体的主视图是()A. B. C. D.2.人离窗子越远,向外眺望时此人的盲区是( )A. 变小B. 变大C. 不变D. 以上都有可能3.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( )A. B. C. D.4.如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子( )A. 逐渐变短B. 逐渐变长C. 先变短后变长D. 先变长后变短5.如图是某几何体的三视图,则该几何体是( )A. 正方体B. 圆锥体C. 圆柱体D. 球体6.电影院呈阶梯或下坡形状的主要原因是( )A. 为了美观B. 减小盲区C. 增大盲区D. 盲区不变7.如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是( )A. B.C. D.8.下列几何体中,主视图和俯视图都为矩形的是( )A. B. C. D.9.下列投影中,是平行投影的是( )A. B.C. D.10.下面属于中心投影的是( )A. 太阳光下的树影B. 皮影戏C. 月光下房屋的影子D. 海上日出二、填空题(本大题共5小题,共15.0分)11.如图所示.该几何体的俯视图是A.B.C.D.12.当人走在路上,后面的建筑物好像“沉”到前面的建筑物的后面,这是因为______ .13.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______ .14.如图,太阳光线与地面成60°的角,照在地面的一只排球上,排球在地面的投影长是143cm,则排球的直径是______ cm.15.如图,地面A处有一支燃烧的蜡烛(长度不计),一个人在A与墙BC之间运动,则他在墙上投影长度随着他离墙的距离变小而______ (填“变大”、“变小”或“不变”).三、解答题16.如图,小区管理者打算在广场的地面上安装一盏路灯(路灯高度忽略不计).小明此刻正在某建筑物的B处向下看,请问:此路灯安在什么位置,小明在B处看不到?请把这段范围用线段表示出来.17.由6个相同的小立方块搭成的几何体如图所示,请画出从三个方向看所得到的形状图.18.如图,树、红旗、人在同一直线上,已知人的影子为AB,树的影子为CD,确定光源的位置并画出旗杆的影子.19.同一时刻,两根木棒的影子如图,请画出图中另一根木棒的影子.20.由若干个小正方体构成的几何体的主视图和左视图都是如图所示,则该几何体最多有______ 个小正方体,最少有______ 个小正方体.【答案】1. D2. B3. B4. A5. C6. B7. A8. B9. B10. B11. B12. 到了自己的盲区的范围内13. 左视图14. 2115. 变小16. 解:如图所示:线段BE以下为盲区,此路灯安在BE下面,小明在B处看不到.17. 解:如图所示:.18. 解:如图所示是灯光的光线.原因是过一棵树的顶端及其影子的顶端作一条直线,再过人的顶端及其影子的顶端作一条直线,两直线相交,其交点就是光源的位置;然后再过旗杆的顶端连接光源的直线,交地面于一点,连接这点与旗杆底端的线段就是旗杆的影子.的顶端和它影子的顶端作直线,会发现两直线交于一点A,再过A、B画直线可得另一根木棒的影子.20. 10;4。
人教版九年级下《第29章投影与视图》单元检测试卷含答案

第29章投影与视图单元检测一、选择题1.如图,图中的几何体是将圆柱沿竖直方向切掉一半后,再在中心挖去一个圆柱得到的,则该几何体的左视图是()A. B. C. D.2.下列图形是正方体表面积展开图的是()A. B. C. D.3.由一些相同的立方体搭成某几何体,这个几何体的主视图和俯视图如图所示,请问搭这样一个几何体最多需要多少小立方体?()A. 4B. 5C. 6D. 74.如图所示几何体的左视图是()A.B.C.D.5.人往路灯下行走的影子变化情况是()A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长6.下列水平放置的几何体中,俯视图是矩形的是()A. 圆柱B. 长方体C. 三棱柱D. 圆锥7.下列四个几何体中,左视图为圆的是()A. B. C. D.8.下列立体图形中,俯视图是正方形的是()A. B. C. D.9.如图四个几何体,其中,它们各自的主视图与俯视图不相同的几何体的个数是()A. 1B. 2C. 3D. 410.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()A. B. C. D.二、填空题11.直角坐标平面内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x轴上的影长为________ ,点C的影子的坐标为________ .12.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图和左视图的面积之和是________13.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为________14.一个上下底密封的纸盒的三视图如图所示,请你根据图中的数据,计算这个密封纸盒的表面积为________m2.(结果保留π)15.皮影戏中的皮影是由投影得到的________ .16.三棱柱的三视图如图所示,△EFG中,EF=10cm,EG=16cm,∠EGF=30°,则AB的长为________cm .17.某长方体包装盒的展开图如图所示,如果长方体盒子的长比宽多4cm,则这个包装盒的体积是________ cm3.18.如图是一个正方体的展开图,如果将它折成一个正方体,相对面上的数相等,则x+y的值为________.三、解答题19.如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).20.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)21.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.22.观察:下图中的几何体是由若干个完全相同的小正方体搭成的.(1)画出几何体的主视图,左视图,俯视图;(2)能移走一个小正方体使它的三个视图都不变吗?23.如图,是一个由若干同样大小的正方体搭成的几何体俯视图,小正方形中的数字表示在该位置的立方体的个数.(1)请你画出它的从正面看和从左面看的形状图.(2)如果每个立方体的棱长为2cm,则该几何体的表面积是多少?24. 小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.参考答案一、选择题1.A2.D3.B4.B5.A6.B7. D8.B9.C 10.A二、填空题11.;(3.75,0)12.5 13.48π 14.600π 15.中心投影16.8 17.90 18. 11三、解答题19.解:答案如下:20.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:21.解:22.(1)(2)去掉粉红色的立方体,三视图不变23.解:(1)如图所示:(2)(2×2)×(6×2+6×2+5×2+4)=4×38=152(平方厘米).故该几何体的表面积是152平方厘米.24.解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.。
人教版九年级下册数学 第29章 投影与视图 单元检测卷(含答案)

第29章投影与视图单元检测卷姓名:__________ 班级:__________题号一二三总分评分一、选择题(每小题3分;共36分)1.分别从一个几何体的正面、左面、上面观察得到的平面图形如图所示,则这个几何体是()A. 圆柱B. 圆锥C. 球D. 棱柱2.如图中几何体的主视图是()A. B. C. D.3.如图,从小区的某栋楼的A,B,C,D四个位置向对面楼方向看,所看到的范围的大小顺序是()A. A>B>C>DB. D>C>B>AC. C>D>B>AD. B>A>D>C4.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是()A. 球体B. 长方体C. 圆锥体D. 圆柱体5. 如图,这个几何体的俯视图是()A. B. C. D.6.下列平面图形中不能围成正方体的是()A. B.C. D.7. 把下列图标折成一个正方体的盒子,折好后与“中”相对的字是()A. 祝B. 你C. 顺D. 利8.一个空心的圆柱如图所示,则它的俯视图是()A. B. C. D.9.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A. B. C. D.10.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A. B. C. D.11. 将五个相同的小正方体堆成如图所示的物体,它的俯视图是()A. B. C. D.12. 如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A. 5个B. 6个C. 7个D. 8个二、填空题(共9题;共27分)13.如图,某长方体的表面展开图的面积为430,其中BC=5,EF=10,则AB=________ .14.三棱柱的三视图如图所示,△EFG中,EF=10cm,EG=16cm,∠EGF=30°,则AB的长为________cm .15.如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:________ (多填或错填得0分,少填酌情给分).16.写出图中圆锥的主视图名称________17.如图,计算所给三视图表示的几何体的体积是________.18.四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图,则在字母“L”、“K”、“C”的投影中,与字母“N”属同一种投影的有________ .19.下图是小红在某天四个时刻看到一根木棒及其影子的情况,那么她看到的先后顺序是________ .20.如图所示,平地上一棵树高为5米,两次观察地面上的影子,第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长________ 米.21. 某几何体的三视图如图所示,则组成该几何体的小正方体的个数是_______三、解答题(共3题;共37分)22.要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x等于?y等于?23.用小立方块搭成的几何体,主视图和俯视图如图,问这样的几何体有多少可能?它最多需要多少小立方块,最少需要多少小立方块.24.有一个几何体的形状为直三棱柱,右图是它的主视图和左视图.(1)请补画出它的俯视图,并标出相关数据;(2)根据图中所标的尺寸(单位:厘米),计算这个几何体的全面积.参考答案一、选择题B A A DC A C A B C B A二、填空题13.11 14.8 15.①②③ 16.等腰三角形17.136π 18.K 19.④③①②20.()21.5三、解答题22.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“x”是相对面,“2”与“空白方格”是相对面,“3”与“y”是相对面,∵相对面上两个数之和为6,∴x=5,y=3.23.解:有两种可能;有主视图可得:这个几何体共有3层,由俯视图可得:第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,故:最多为3+4+1=8个小立方块,最少为个2+4+1=7小立方块.24.(1)解:如图:(2)解:由勾股定理得:斜边长为10厘米,S底= ×8×6=24(平方厘米),S侧=(8+6+10)×3=72(平方厘米),S全=72+24×2=120(平方厘米).答:这个几何体的全面积是120平方厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习:人教版九年级数学下册第29章投影与视图单元检测试卷一、单选题(共10题;共30分)1. 一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A. 1.5B. 2C. 2.5D. 3【答案】D【解析】试题分析:半径为6的半圆的弧长是6π,根据圆锥的底面周长等于侧面展开图的扇形弧长,得到圆锥的底面周长是π,根据弧长公式有2πr=6π,解得:r=3,即这个圆锥的底面半径是3.故选D.考点:圆锥的计算.2. 由五个相同的立方体搭成的几何体如图所示,则它的左视图是( )A. B.C. D.【答案】D【解析】【分析】找到从左面看所得到的图形即可,注意所有看到的棱都应表现在左视图中.【详解】解:从左面看第一层是三个正方形,第二层是左边一个正方形.故选D.【点睛】本题考查了简单组合体的三视图的知识,解题的关键是了解左视图是由左视方向看到的平面图形,属于基础题,难度不大.3. 如图,下列几何体是由4个相同的小正方体组合而成的,从左面看得到的平面图形是下列选项中的()A. B. C. D.【答案】D【解析】从左面看这个几何体有一列,二层,所以从左面看得到的平面图形是D,故选D.4. 已知某几何体的一个视图(如图),则此几何体是()A. 正三棱柱B. 三棱锥C. 圆锥D. 圆柱【答案】C【解析】俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆锥.故选C.5. 如图是由6个大小相同的小正方体组成的几何体,它的主视图是()A. B.C. D.【答案】C【解析】解:该主视图是:底层是3个正方形横放,右上角有一个正方形,故选C.6. 如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是【】A.4个B. 5个C. 6个D. 7个【答案】B 【解析】【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,由此结合图形即可得.【详解】由题意可得该几何体共有两行三列,底层应该有3+1=4个小正方体,第二层应该有1个小正方体,共有5个小正方体.故选B.7. 由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有A. 4B. 5C. 6D. 7【答案】C【解析】试题分析:由主视知这个几何体共有2层,由俯视图易得最底层有4个小正方体,由主视图可得二层最多有2个小正方体,第那么搭成这个几何体的小正方体最多为4+2=6个.故选C.8. 如图所示,是一个空心正方体,它的左视图是()A. B. C. D.【答案】C【解析】分析:直接利用左视图的观察角度进而得出答案.详解:如图所示:左视图为:.故选C.点睛:此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.9. 由n个大小相同的小正方形搭成的几何体的主视图和左视图如图所示,则n的最大值为()A. 11B. 12C. 13D. 14【答案】C【解析】分析:根据所给出的图形可知这个几何体共有2层,3列,先看第一层正方体可能的最多个数,再看第二层正方体的可能的最多个数,相加即可.详解:根据主视图和左视图可得:这个几何体有2层,3列,最底层最多有3×3=9个正方体,第二层有4个正方体,则搭成这个几何体的小正方体的个数最多是9+4=13个.故选C.点睛:本题考查了由三视图判断几何体,关键是根据主视图和左视图确定组合几何体的层数及列数.10. 如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A. B. C.D.【答案】B【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解答即可.【详解】选项A、C、D折叠后都符合题意;只有选项B折叠后两个画一条线段与另一个画一条线段的三角形不交于一个顶点,与正方体三个画一条线段的三角形交于一个顶点不符.故选B.【点睛】此题考查的知识点是几何体的展开图,关键是解决此类问题,要充分考虑带有各种符号的面的特点及位置.二、填空题(共10题;共30分)11. 如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是____.【答案】8【解析】试题分析:根据从上边看得到的图形是俯视图,可知从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为8.考点:1、简单组合体的三视图;2、截一个几何体12. 圆锥的底面半径为5,侧面积为60π,则其侧面展开图的圆心角等于________.【答案】150°【解析】【分析】根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数.【详解】设圆锥的侧面展开图的圆心角为n°,母线长为R,根据题意得12•2π•5•R=60π,解得R=12,所以4180nπ⨯=2•5π,解得n=150,即圆锥的侧面展开图的圆心角为150°.故答案为150°.【点睛】考查了求扇形圆心角的度数,解题关键是列出等式12•2π•5•R=60π.13. 如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有1个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有_______种拼接方法.【答案】4【解析】解:如图所示:故小丽总共能有4种拼接方法;故答案是4.14. 如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为________cm2.【答案】4π.【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【详解】由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为3cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2.故答案为4π.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.15. 在市委、市政府的领导下,全市人民齐心协力,努力将我市创建为“全国文明城市”,为此学生小红特制了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字所对的面上标的字应是________.【答案】城【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“全”与“明”是相对面,“国”与“市”是相对面,“文”与“城”是相对面.故答案为城.【点睛】考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.16. 如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB=2m ,CD=6m ,点P 到CD 的距离是2.7m ,则点P 到AB 间的距离是________.【答案】0.9m【解析】【分析】根据AB ∥CD ,易得,△PAB ∽△PCD ,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.【详解】∵AB ∥CD ,∴△PAB ∽△PCD ,∴ 2.7AB x CD, 假设P 到AB 距离为x ,则 2.7x = 26, x=0.9.故答案为0.9m .【点睛】考查了相似三角形的性质和判定.本题考查了相似三角形的判定和性质,常用的相似判定方法有:平行线,AA ,SAS ,SSS ;常用到的性质:对应角相等;对应边的比值相等;相似三角形对应高之比等于对应边之比;面积比等于相似比的平方.解此题的关键是把实际问题转化为数学问题(三角形相似问题). 17. 侧面可以展开成一长方形的几何体有________;圆锥的侧面展开后是一个________;各个面都是长方形的几何体是________.【答案】 (1). 圆柱和棱柱 (2). 扇形 (3). 长方体【解析】【分析】本题主要考查对常见几何体的认识,是需要识记的内容.【详解】侧面可以展开成一长方形的几何体有:圆柱,棱柱;圆锥的侧面展开后是一个:扇形;各个面都是长方形的几何体是:长方体.故答案为圆柱和棱柱;扇形;长方体【点睛】本题是一个基本的题目,考查对常见图形的认识,是需要识记的内容.18. 主视图、俯视图和左视图都是正方形的几何体是________【答案】正方体【解析】【分析】找到从正面、左面和上面看得到的图形是正方形的几何体即可.【详解】∵主视图和左视图都是正方形,∴此几何体柱体,∵俯视图是一个正方形,∴此几何体为正方体.故答案是:正方体.【点睛】考查了简单几何体的三视图,解题关键是运用了三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个试图确定其具体形状.19. 有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是___________.【答案】3【解析】【分析】观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.【详解】解:根据题意为一列数以2,3,5,4,⋯一直循环下去, 201445032∴÷=⋯,所以第2014次后,朝下一面的点数是3.【点睛】本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.20. 如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.【答案】54【解析】试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×4×4=64个小正方体,∴至少还需要64-10=54个小正方体.【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.三、解答题(共8题;共60分)21. 如图为7个正方体堆成的一个立体图形,分别画出从正面、左面、上面看这个几何体所看到的图形.【答案】见解析【解析】【分析】见详解.【详解】如图【点睛】本题考查了由图看其三个面的视图,熟悉掌握方法是解决本题的关键.22. 如图是一个粮仓(圆锥与圆柱组合体)的示意图,请画出它的三视图.【答案】画图见解析.【解析】【分析】认真观察实物,可得这个几何体的主视图和左视图都为长方形上面一个三角形,俯视图为一个有圆心的圆. 【详解】解:三视图如下:【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.23. 画出如图所示图形从正面、从左面和从上面看到的形状图.【答案】如图所示见解析.【解析】【分析】从正面看到的形状是有1层,有4个正方形;从左面看到的形状是有1层,有2个正方形;从上面看到的形状是前面一列有1个正方形,后面一列有4个正方形.【详解】如图所示:【点睛】此题主要考查了三视图的画法,正确掌握三视图之间的数量关系是解决问题的关键,锻炼了学生的空间想象力和抽象思维能力.24. 如图,这是一个正方体的展开图,折叠后它们的相对两面的数字之和相等,请你求出x﹣y的值.【答案】-2.【解析】【分析】利用正方体的表面展开图,相对的面之间一定相隔一个正方形,可得x+3x=2+6,y-1+5=2+6,解方程求出x 与y的值,进而求解即可.【详解】解:由题意,得x+3x=2+6,y﹣1+5=2+6,解得x=2,y=4,所以x﹣y=2﹣4=﹣2.【点睛】考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25. 如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果5点在下面,几点在上面?【答案】(1)2;(2)2.【解析】【分析】(1)利用正方体及其表面展开图的特点可知“3点”和“4点”相对,“5点”和“2点”相对,“6点”和“1点”相对,当1点在上面,3点在左面,可知5点在后面,继而可得出2点在前面;(2)根据(1)可得,如果5点在下面,那么2点在上面.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,(1)如果1点在上面,3点在左面,2点在前面,可知5点在后面;(2)如果5点在下面,那么2点在上面.【点睛】考查了正方体的表面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.26. 如图是某种几何体的三视图,(1)这个几何体是什么;(2)若从正面看时,长方形的宽为10m,高为20m,试求此几何体的表面积是多少m2?(结果用π表示).【答案】(1)圆柱;(2)表面积为250π(m2)【解析】试题分析:(1)根据从正面,左面,上面看圆柱得到的图形分别是长方形,长方形,圆,可以判断出该几何体.(2)要求包装盒的表面积即要求圆柱的表面积,即要求圆柱的侧面积加上两个底面的面积,由图形找出圆柱的底面半径r及高h,根据圆柱的侧面积公式及圆的面积公式,即可求出表面积试题解析:(1) 只有柱体的主视图和左视图才能出现长方形,根据俯视图是圆,可得到此几何体为圆柱.(2)表面积为:22 102π10π20250π().2m ⎛⎫⨯+⨯=⎪⎝⎭27. 如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图)【答案】答案见解析.【解析】试题解析:本题考查了简单组合体的三视图的画法,读图可得,从正面看有3列,每列小正方形数目分别为1,2,1;从左面看有3列,每列小正方形数目分别为2,1,2;从上面看有3列,每列小正方形数目分别为1,3,2,依此画出图形即可.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.28. 如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的侧面积.【答案】(1)圆锥;(2)12π.【解析】试题分析:(1)由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,从而得出答案;(2)确定圆锥的母线长和底面半径,从而确定其侧面积.解:(1)由主视图和左视图为三角形判断出锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;(2)根据三视图知:该圆锥的母线长为6,底面半径为2,故侧面积=πrl=π×2×6=12π.考点:由三视图判断几何体;圆锥的计算.。