复习与练习---正负数与有理数

合集下载

初一数学上册 有理数及其运算

初一数学上册 有理数及其运算

有理数及其运算(复习)一、正负数有理数的分类:_____________统称整数,试举例说明。

_____________统称分数,试举例说明。

____________统称有理数。

正确理解非负数和非正数。

练习:1、把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,6/7正整数集{ …};正有理数集{ …};负有理数集{ …} 负整数集{ …};自然数集{ …};正分数集{ …} 负分数集{ …}2、某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 ;如果这种油的原价是76元,那么现在的卖价是 。

二、数轴规定了 、 、 的直线,叫数轴练习:1、如图所示的图形为四位同学画的数轴,其中正确的是( )2、在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。

4,-|-2|, -4.5, 1, 03、下列语句中正确的是( )A数轴上的点只能表示整数B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来4、①比-3大的负整数是_______; ②已知m是整数且-4<m<3,则m为_______________。

③有理数中,最大的负整数是 ,最小的正整数是 。

最大的非正数是 。

④与原点的距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。

5、在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( ) A.-5, B.-4 C.-3 D.-26、画出数轴,把下列各组数分别在数轴上表示出来,并按从大到小的顺序排列,用“>”连接起来:⑴ 1,-2,3,-4 ⑵31,0,3,-0.2三、相反数1、像2和-2、-5和5、2.5和-2.5这样,只有 不同的两个数叫做互为相反数。

0的相反数是 。

一般地:若a 为任一有理数,则a 的相反数为-a2、相反数的相关性质:a 、相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等。

专题-正负数、数轴、相反数、绝对值强化练习测验题

专题-正负数、数轴、相反数、绝对值强化练习测验题

专题――正负数、数轴、相反数、绝对值强化练习1.|m+7|+2006地最小值为,此时m =.2.若)5(--=-x ,则=x ________,42=-x ,则=x ________3.若1<a <3,则=-+-a a 13__________4.若3=a ,5=b ,且ab <0,则=-b a ________5.已知|x |=3,y =2,且xy <0,则x +y =______6.若│x │=2,│y │=3,则│x+y │地值为( )7.已知|a|=3, |b |=5,且a<b,则a +b 等于( )8.与原点距离为2个单位地点有个,它们分别为.9.绝对值小于4且不小于2地整数是____10.给出两个结论:①a b b a -=-;②-21>-31.其中 .A.只有①正确B.只有②正确C.①②都正确D.①②都不正确11.下列说法中正确地是 . A.a -是正数 B.a -不是负数 C.-a -是负数 D.-a 不是正数12.已知a 、b 是不为0地有理数,且a a -=,b b =,a > b ,那么在使用数轴上地点来表示a 、b 时,应是.A B C D b5E2R 。

13.绝对值小于3地整数有在数轴上表示地数a 地点到原点地距离为2,则a+|-a|=.14..若|a|=2,|b|=5,则a+b=( )(A)±3; (B )±7; (C )3或7; (D )±3或±7.15.给出两个结论:①a b b a -=-;②-21>-31.其中 . 0b a 0a b 0b a 0a bA.只有①正确B.只有②正确C.①②都正确D.①②都不正确16.下列说法中正确地是 .A.a-是负数 D.-a不是正数-是正数 B.a-不是负数 C.-a17.绝对值小于10地所有整数之和为( )18.绝对值小于100地所有整数之和为( )19.如果两个数地绝对值相等,那么这两个数是( )20.在数轴上距2.5有3.5个单位长度地点所表示地数是( )21.在数轴上,表示与2-地点距离为3地数是_________.22.在数轴上,表示与-15地点距离为10地数是_____地点地距离为5个单位长度地点所表示地数为 23.数轴上与表示124______________.24.如果-x=-(-12),那么x= __________25.化简:| 3.14 -π|= _________-3与3之间地整数有_____26.有理数a,b在数轴上地位置如下图所示:b a 0则将a,b,-a,-b按照从小到大地排列顺序为_______27.若a+b=0,则有理数a、b一定【】A.都是0B.至少有一个是0C.两数异号D.互为相反数28.若∣x-1│=2,则x=29.一只蚂蚁在数轴上从原点O出发,先沿正方向爬行5个单位,再回头向左爬行8个单位,这时蚂蚁所在地点表示地数是_____.p1Ean。

有理数概念7—专题复习

有理数概念7—专题复习

第一式 正负数,有理数定义,有理数分类1、正数与负数(1)正数:像3,2,+0.5这样大于0的数叫做 。

(2)负数:像-3,-2,-155这样在正数前面加上负号“-”的数叫做 。

(3)0既不是 也不是 ,0是正数与负数的 。

0的意义已不仅是表示“没有”,如0℃是一个确定的温度,海拔0表示海平面的平均高度。

(4)在同一问题中,分别用正数和负数表示的量具有 的意义。

(5)对于正数与负数,不能简单理解为带“+”就是正数,带“-”的就是负数,如-a ,当a =0时,-a = ,当a 表示负数时-a 是 ,只有当a 是正数时-a 才是 。

2、有理数的定义、 、 统称为整数。

如:101,0,-10.正分数和负分数统称为 ,如:0.3,25-,-3.1。

整数和分数统称有理数。

有理数也可以分为正数、零、负数,正数又分为 、 。

3、有理数分类〖典型例题〗 例1、判断:(1)前面带有“-”的数是负数( )(2)在有理数中‘0的意义仅仅表示没有( )(3)3.14既不是整数也不是分数,因此它不是有理数( ) 例2、填空:-4.5, 3.14, -2, +43, .0.6-, 0.618,722,0,-0.212,184- 负数: 个;分数: 个;正分数: 个;负整数: 个;非正整数: 个;非负整数: 个;例3、(1)在知识竞赛中,如果用+10分表示加10分,那么扣20分怎样表示?(2)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?〖随堂练习〗1、判断(1)存在既不是正数,也不是负数的数( ) (2)a 是正数( )有理数正数负数有理数正分数负分数(3)-a 是正数( )(4) a 和-a 一定有一个表示负数( ) (5)a 和-a 表示一对相反数( ) 2、将下列各数分别填入相应的大括号里:-3.5, 3.14, -2, +43, .0.6 , 0.618,722,0,-0.202 正数: 个;整数: 个;负分数: 个;正整数: 个;非正整数: 个;非负整数: 个; 3、(1)如果节约20千瓦·时记作+20千瓦·时,那么浪费10千瓦·时电记作什么? (2)如果-20.50元表示亏本20.50元,那么+100.57元表示什么? (3)如果+20%表示增加20%,那么-6%表示什么?第二式 数轴一般地,在数学中人们用画图的方式把数“直观化”,通常用一条直线上的点表示数,这条直线叫做数轴,它满足以下要求:(1)在直线上取一个点表示0,这个点叫做原点,通常情况下原点的选取是任意的;(2)通常规定直线上从原点 (或向上)为正方向,从原点 (或向下)为负方向; (3)选取适当的长度为 ,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…;从原点向左,用类似的方法依次表示-1,-2,-3,… 〖典型例题〗例1、数轴上的点(4道题共用一条数轴,后面的在前面的基础上变化而来)第 4 题 图-52O BA(1)(2009年宜宾)在数轴上的点A 、B 位置如图所示,则线段AB 的长度为 。

正负数知识点,练习

正负数知识点,练习

1.1正负数、有理数、数轴知识要点1、正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数2、有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3、数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

精讲精练正负数一、正数与负数的产生1、在日常生活中,常会遇到下面的一些量,能用学过的数表示吗?例1汽车向东行驶3千米和向西行驶2千米.例2温度是零上10℃和零下5℃.例3收入500元和支出237元.在例1中,如果规定向东为正,那么向西为负.汽车向东行驶3千米记作3千米,向西行驶2千米记作-2千米.在例2中,通常规定零上为正,于是零下为负,零上10℃就用10℃表示,零下5℃则用-5℃来表示.在例3中,如果规定收入为正,收入500元计作500元,那么支出237元应记作-237元.为了表示具有相反意义的量,上面我们引进了-5、-2、-237,这样的数是一种新数,叫做负数.过去学过的那些数(零除外),如10、3、500等,叫做正数.正数前面有时也可以放上一个“+”(读作“正”)号,如5可以写成+5,+5和5是一样的.注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子: .3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

初一数学上册复习题集

初一数学上册复习题集

初一数学上册复习题集一、数与式1. 正数和负数:请列举5个正数和5个负数,并说明正负数的概念。

2. 有理数的加法:计算下列各题:- 3 + (-2)- (-5) + 6- 12 + (-7) + 93. 有理数的减法:计算下列各题:- 8 - (-3)- (-4) - 6- 15 - 9 - (-2)4. 有理数的乘法:计算下列各题:- (-3) × 4- (-2) × (-5)- 0 × 75. 有理数的除法:计算下列各题:- 12 ÷ (-3)- (-18) ÷ 6- 0 ÷ 86. 乘方:计算下列各题:- 2^3- (-2)^2- 3^07. 绝对值:求下列各数的绝对值:- |-5|- |3|- |-7|二、方程与不等式1. 一元一次方程:解下列方程:- 2x + 5 = 11- 3x - 4 = 14- 5x = 102. 一元一次不等式:解下列不等式:- 2x + 3 > 7- 3x - 5 ≤ 103. 一元一次方程组:解下列方程组:- \begin{cases} x + y = 5 \\ x - y = 1 \end{cases}- \begin{cases} 2x + 3y = 6 \\ 3x - 2y = 1 \end{cases}三、几何初步1. 线段、射线、直线:说明三者的区别和联系。

2. 角的分类:根据角度大小,角可以分为哪些类型?3. 角的度量:将下列角度换算成度:- 30分- 45分30秒4. 平行线:根据平行线的性质,说明如何判断两条直线是否平行。

5. 三角形的分类:根据边和角的特点,三角形可以分为哪些类型?四、函数与图象1. 函数的概念:解释什么是函数,并给出一个函数的例子。

2. 函数的表示方法:说明函数的三种表示方法。

3. 一次函数的图象:画出y = 2x + 3的图象,并说明其性质。

五、统计与概率1. 数据的收集与整理:给出一个数据收集的例子,并说明如何整理这些数据。

有理数练习 1(正负数)

有理数练习 1(正负数)

有理数练习1(正负数)一、基础训练1.如果气温上升3度记作+3度,下降5度记作-5度,那么下列各量分别表示什么?(1)+5度;(2)-6度;(3)0度.2.向东走-8米的意义是()A.向东走8米 B.向西走8米C.向西走-8米 D.以上都不对3.下列语句:(1)所有整数都是正数;(2)分数是有理数;(3)所有的正数都是整数;(4)在有理数中,除了负数就是正数,其中正确的语句个数有()A.1个 B.2个 C.3个 D.4个4.下列说法中,正确的是()A.正整数、负整数统称整数B.正分数、负分数统称有理数C.零既可以是正整数,也可以是负分数D.所有的分数都是有理数5.下列各数是负数的有哪些?-13,-0,-(-2),+2,3,-0.01,-0.21,5%,-(+2)6.下列各数中,哪些属于正数集、负数集、非负数集、整数集、分数集,•有理数集?-1,-3.14156,-13,-5%,-6.3,2006,-0.1,30000,200%,0,-0.010017.已知A、B、C三个数集,每个数集中所包含的数都写在各自的大括号内,•请把这些数填在如图2-1-1所示圆内相应的位置,A={-2,-3,-8,6,7};B={-3,-5,1,2,6};C={-1,-3,-8,2,5).8.某水库的平均水位为80米,在此基础上,若水位变化时,把水位上升记为正数;水库管理员记录了3月~8月水位变化的情况(单位:米):-5,-4,0,+3,+6,+8.试问这几个月的实际水位是多少米?二、递进演练1.(05年宜昌市中考·课改卷)如果收入15•元记作+•15•元,•那么支出20•元记作________元.2.(05年吉林省中考·课改卷)某食品包装袋上标有“净含量385±5”,•这包食品的合格净含量范围是______克~300克.3.下列说法正确的是()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数4.下列不是具有相反意义的量是()A.前进5米和后退5米B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克D.超过5克和不足2克5.下列说法正确的是()A.有理数是指整数、分数、零、正有理数、负有理数这五类B.一个有理数不是正数就是负数C.一个有理数不是整数就是分数D.以上说法都正确BAC6.把下列各数:-3,4,-0.5,-13,0.86,0.8,8.7,0,-56,-7,分别填在相应的大括号里.正有理数集合:{ …};非负有理数集合:{ …};整数集合:{ …};负分数集合:{ …}.7.小明设计了一个游戏规则:先向南走5米,再向南走—10米,最后向北走5米,则结果是()A. 向南走10米 B. 向北走5米C. 回到原地D. 向北走10米8.写出5个数,同时满足三个条件:(1)其中3个数属于非正数集合;(2)其中3个数属于非负数集合;(3)5个数都属于整数集合.9.孔子出生于公元前551年,如果用-551年表示,则李白出生于公元701年可表示___________.10.一种商品的标准价格是200元,但随着季节的变化,商品的价格可浮动±10%,想一想.(1)±10%的含义是什么?(2)请你计算出该商品的最高价格和最低价格;(3)如果以标准价为标准,超过标准价记“+”,低于标准价记“-”,•该商品价格的浮动范围又可以怎样表示?11.比-1小的整数如下列这样排列第一列第二列第三列第四列-2 -3 -4 -5-9 -8 -7 -6-10 -11 -12 -13-17 -16 -15 -14…………在上述的这些数中,观察它们的规律,回答数-100将在哪一列.12、观察数表.根据其中的规律,在数表中的方框内填入适当的数.13、下列说法错误的是()A. 有理数是指整数、分数、正有理数、零、负有理数这五类数B. 一个有理数不是整数就是分数C. 正有理数分为正整数和正分数D. 负整数、负分数统称为负有理数14、若字母a表示任意一个数,则—a表示的数是()A. 正数B. 负数C. 0D. 以上情况都有可能15、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价()A、高12.8%B、低12.8%C、高40%D、高28%。

初中数学--《有理数-正数和负数》(含答案)

初中数学--《有理数-正数和负数》(含答案)

初中数学--《有理数-正数和负数》(含答案)姓名:__________ 班级:__________考号:__________一、选择题(共40题)1、如果向北走2米记作+2米,那么﹣3米表示()A.向东走3米 B.向南走3米 C.向西走3米 D.向北走3米2、下列四个数中,最小的数是()A.2 B.-2 C.0 D.3、 1.比﹣1 大的数是()A.﹣3 B.﹣C.0 D.﹣14、如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3m B.﹣3m C.+m D.﹣m5、 (金华中考)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是星期一二三四最高气温10°C12°C11°C9°C最低气温3°C0°C-2°C-3°CA.星期一 B.星期二 C.星期三 D.星期四6、在下面的四个有理数中,最小的是().A、 1B、0C、1D、 27、 11月3日我国四个城市的平均气温情况如下表(记温度零上为正,单位:℃),则当天这四个城市的平均气温最低的城市是( )城市广州上海北京哈尔滨平均气16 0 -9 -温15.5A.广州B.上海C.北京D.哈尔滨8、在-2,-,0,2四个数中,最大的数是( )A. -2B. -C. 0D. 29、下列四个数中,小于0的是(A)-2.(B)0.(C)1.(D)3.10、以下哪个数在﹣2和1之间()A.﹣3 B.3 C.2 D. 011、《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃ B.零下3℃ C.零上7℃ D.零下7℃12、上海市99年人口出生率为5℅,死亡率为7.3%,那么99年上海市人口增长率为()A.-2.3℅B. 2.3℅C. 12.3℅D. -12.3℅13、一种面粉的质量标识为“50±0.25千克”,则下列面粉中合格的是()A. 50.30千克B. 49.51千克C. 49.80千克D. 50.70千克14、如果向东走2km,记作+2km,那么﹣3km表示( )A.向东走3km B.向南走3km C.向西走3km D.向北走3km15、如果+20%表示增加20%,那么﹣6%表示()A.增加14% B.增加6% C.减少6% D.减少26%16、如果水位下降3米记作﹣3米,那么水位上升4米,记作()A.1米 B.7米 C.4米 D.﹣7米17、如果温度上升10℃ 记作+10℃ ,那么温度下降5℃ 记作()A .+10℃B .﹣10℃C .+5℃D .﹣5℃18、下列各数当中,最小的数是()A.﹣2 B.﹣1 C.0 D.119、下列各数中,最小的数是()(A)-1 (B)-2 (C)0 (D)120、冬季蚌埠市某三天的最低气温分别是℃,℃,℃,把它们从高到低排列正确的是()A.℃,℃,℃B.℃,℃,℃C.℃,℃,℃D.℃,℃,℃21、下列各数中,最小的数是( )A. -3B.C. 2D. 022、如果向北走3km记作+3km,那么向南走5km记作( )A.﹣5km B.﹣2km C.+5km D.+8km23、在-5,-,-3.5,-0.01,-2,-212各数中,最大的数是()A.-12B.- C .-0.01 D.-524、如果收入80元记作+80元,那么支出20元记作()A. +20元 B.﹣20元 C. +100元 D.﹣100元25、杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克 B.19.9千克 C.20.1千克 D.20.3千克26、某种品牌的洗面奶,外包装标明净含量为 500 ± 10g ,表明了这种洗面奶的净含量 x 的范围是()A . 490 < x < 510B .490 ≤ x ≤ 510C . 490 <x ≤ 510D .490 ≤ x < 51027、下列四个数中,比0小的数是()A. B. C. D.28、文具店、书店、玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店在书店东边100米处,小明从书店沿街向东行40米,又向东行米,此时小明的位置在( )A.玩具店B.玩具店东-60米C.文具店D.文具店西40米29、在-2,-5,5,0这四个数中,最小的数是( )A.-2 B.-5 C.5 D.030、在﹣( +2),﹣(﹣8),﹣5,﹣|﹣3|,+(﹣4)中,负数的个数有()A . 1个B . 2个C . 3个D . 4个31、在下列选项中,具有相反意义的量是()A.收入20元与支出30元 B.上升了6米和后退了7米C.卖出10斤米和盈利10元 D.向东行30米和向北行30米32、下列数-91,1.5,,-,7,0中,负数的个数是( )A.1 B.2C.3 D.433、已知A地的海拔高度为—53米,而B地比A地高30米,则B地的海拔高度为()A 、—83米 B、—23米 C 、30米 D、23米34、如果向东走20米记+20米,那么向西走10米记为()米A.20B.-20 C.10 D.-1035、下列各数中,为负数的是()A.0 B.﹣2 C.1 D.36、如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作().A.+3m B.-3m C.+D.37、在–2,+3.5,0,,–0.7,11中.负分数有……………………()A、l个B、2个C、3个D、4个38、下表是四个城市今年二月份某一天的平均气温:城市吐鲁番乌鲁木齐喀什阿勒泰气温(℃)﹣8 ﹣16 ﹣5 ﹣25其中平均气温最低的城市是()A.阿勒泰 B.喀什 C.吐鲁番 D.乌鲁木齐39、的相反数等于()(A)(B)2 (C)(D)40、在数0.25,﹣,7,0,﹣3,100中,正数的个数是()A.1个 B.2个 C.3个 D.4个============参考答案============一、选择题1、 B【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:由题意知:向北走为“+”,则向南走为“﹣”.所以﹣3米表示向南走3米.故选B.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2、 B3、 C【考点】有理数大小比较.【专题】常规题型.【分析】根据零大于一切负数,负数之间相比较,绝对值大的反而小.【解答】解:﹣3、﹣、0、﹣1 四个数中比﹣1 大的数是 0.故选:C.【点评】本题考查了有理数的大小比较,是基础题,熟记大小比较方法是解题的关键.4、 B【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,可得答案.【解答】解:水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作﹣3m,故选:B.5、 C6、 D7、 D8、 D9、 A10、 D.11、 B【解析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃.故选B.考点:负数的意义12、 A13、 C14、C【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:向东走记为正,则向西走就记为负,直接得出结论即可.【解答】解:如果向东走2km表示+2km,那么﹣3km表示向西走3km.故选C.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.15、 C【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以如果+20%表示增加20%,那么﹣6%表示减少6%.【解答】解:根据正数和负数的定义可知,﹣6%表示减少6%.故选C.16、 C【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,下降记为负,可得上升的表示方法.【解答】解:如果水位下降3米记作﹣3米,那么水位上升4米,记作4米,故选:C.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.17、 D【解析】根据用正负数表示具有相反意义的量进行求解即可得 .【详解】如果温度上升10 ℃记作+10 ℃ ,那么下降 5 ℃记作﹣ 5 ℃ ,故选 D.【点睛】本题考查了用正负数表示具有相反意义的量,熟练掌握相关知识是解题的关键 .18、 A【考点】有理数大小比较.【分析】在数轴上表示出各数,根据数轴的特点即可得出结论.【解答】解:如图所示,,故选A.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.19、 B.-1,-2,0,1由小到大排列为-2<-1<0<1.20、 A21、 A22、 A.23、 C25、 C考点:-正数和负数.专题:-计算题.分析:-根据有理数的加法,可得答案.解答:-解:(﹣0.1﹣0.3+0.2+0.3)+5×4=20.1(千克),故选:C.点评:-本题考查了正数和负数,有理数的加法运算是解题关键.26、 B【详解】根据题意得: 500﹣10≤x≤500+10 ,即490≤x≤510.故选 B.27、 D28、 C29、B30、 D【分析】负数就是小于 0 的数 , 依据定义即可求解 .【详解】在﹣(+2),﹣(﹣8),﹣5,﹣|﹣3|,+(﹣4)中 , 负数有﹣(+2),﹣5,﹣|﹣3|,+(﹣4), 一共 4 个 .故选 D.【点睛】本题考查了正数和负数,判断一个数是正数还是负数,要化简成最后形式再判断 .31、 A33、 B34、 D35、 B36、 B37、 B38、 A考点:-有理数大小比较.分析:-根据正数大于0,0大于负数,可得答案.解答:-解:﹣25<﹣16<﹣8<﹣5,故选:A.点评:-本题考查了有理数比较大小,负数比较大小,绝对值大的数反而小.39、 B40、 C。

有理数全章复习(按知识点分类复习)

有理数全章复习(按知识点分类复习)

第一章 有理数全章复习考点一:用正负数表示相反意义的量1、 七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分2、如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作( ) A .-500元B .-237元C .237元D .500元3.有4包真空小包装火腿,每包以标准克数〔450克〕为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的( )A .+2B .-3C .+3D .+44.某商店出售三种不同品牌的大米,米袋上分别标有质量如下表:现从中任意拿出两袋不同品牌的大米,这两袋大米的质量最多相差 ( )A .B .C .D .考点二:有理数的分类1、_______、_______和_________成为整数,__________和__________统称为分数。

___________和_________统称为有理数。

练习稳固:1、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………〔 〕 A 、l 个 B 、2个 C 、3个 D 、4个2、不超过3)23(-的最大整数是………………………………………〔 〕 A 、–4 B –3 C 、3 D 、43.在数8.3、-4、0、-〔-5〕、+6、-|-10|、1中,正数有____ 个; 4、以下说法中正确的个数有 ( )①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的A 1B 2C 3D 45、在数+8.3,-4,-0.8,0,90,-|-24|中,__________是正数,____________不是整数。

6、比132-大而比123小的所有整数的和为 __________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数 正分数 负分数
正分数 负分数
如果按性质(正数、负数)来分类又该怎样来分呢?
正有理数
正整数 正分数
正数集合
有理数

负整数
负有理数
负数集合
负分数
把所有的正数组成的集合叫正数集合; 把所有的负数组成的集合叫负数集合.
3、下列关于零的说法,正确的有

B )
①0是最小的正整数 ②0是最小的有理数 ③0不是负数 ④0既是非正数也是非负数
分数集合: -
非负数集合:15, 2 ,0.1,123,2.333, π,0
15
3.盈利2000元,亏本1500元;
4.体重增加10千克,体重减少5千
克;
-4m
回顾练习
读下列各数,指出下列各数中的正数、负 数:
4 +7、-9、 、-4.5、998、0 3 4 解:正数有:+7、 3 、 988; 负数有:-9、-4.5
探究有理数的分类(一)
1.有理数可分为哪两类数? 2.整数可分为哪几类? 3.分数可分为哪几类? 整数 负整数 正整数 零 正整数 零 负整数 有理数 有理数 分数 整数
2 正数集合:15, 15 ,0.1,123,2.333, π 1 13 负数集合: 9 ,-5, 8 ,-5.32,-80
9
15
13 ,0.1, , 8
有理数集合: 整数集合:15,-5,,-80,123,0
1 2 13 ,,0.1,-5.32,2.333 9 , 15 8 13,-5.32,-80,0 非正数集合:- 1 ,-5, 9 8
正整数
按照数的性质分:
非负数
非负整数
正整数
正有理数
整数 0
负整数 正分数 分数
非正整数
正分数
0 负整数 负有理数 负分数
有理数
有理数
负分数 非正数
小数不一定是有理数; 有限小数和无限循环小数都是有理数;


无限不循环小数不是有理数,比如:π
2 归类:15,- 1 ,-5,
-5.32,-80,123,2.333,π,0
-----正负数与有理 数
解:
把大于0的数叫做正数;把小于0 的数叫做负数。
解:不一定
在正数前面加上“-”的数才 叫做负数。
(正数 > 0 > 负数)
问题4:0的度; (2)海平面的高度; (3)标准水位; (4)正数和负数的分界点;
1.收入1300元,支出800元; 2.水位上升80米,下降64米;
A、1个 B、2个
C、3个 D、4个
4、判 断
(1)0是整数(
√ (3)0一定是正整数( ) × (4)整数一定是自然数( ×)
(2)自然数一定是整数( )


探究
5、如果用一个字母表示一 个数,那a可能是什么样的 数?一定是正数吗? 答:不一定,a可能是正数, 可能是负数,也可能是0。
按整数和分数分:
相关文档
最新文档