平面解析几何测试题(文科)
文科数学高考二轮复习专题篇平面解析几何4由向量形式的三角形面积公式得到的坐标式三角形面积公式及其应

由向量形式的三角形面积公式获得的坐标式三角形面积公式及其应用高考题1(2010 年高考辽宁卷理科第8 题 )平面上 O, A, B 三点不共线,设 OA a,OB b ,则 OAB 的面积等于()22(a b ) 222(a b) 2 C. 122( a b) 2 D.122(a b )2A. a bB. a b a b a b22答案: C.这道高考题的结论就是向量形式的三角形面积公式:定理 1若三点 O, A, B 不共线,则 S OAB122(OA OB )2 . OA OB21122证明S OAB OA OB 1 c o 2s AOB OA OB(OA OB )2 .22由此结论,还可证得定理 2若三点 O, A, B 不共线,且点O是坐标原点,点 A, B 的坐标分别是(x1 , y1 ), ( x2 , y2 ) ,则S OAB 1x1 y2x2 y1 . 2证法 1由定理1,得S OAB12y122y22( x1 x2y1 y2 ) 21x1 y2 x2 y1(x1)( x2)22证法 2可得直线 AB 的方程是( y1y2 ) x (x1x2 ) y ( x1 y2x2 y1 ) 0因此坐标原点 O 到直线AB的距离是x1y2x2 y1,从而可得AOB 的面积是ABS OAB 1AB x1y2x2 y11x1 y2x2 y1 .AB22下边用定理 2 来简解 10 道高考题 .高考题2(2014 年高考四川卷理科第10 题 )已知 F 为抛物线 y2= x 的焦点,点 A,B 在该抛物线上且位于x 轴的双侧,→→OA· OB=2(此中 O 为坐标原点 ),则△ABO 与△ AFO 面积之和的最小值是 ()172A . 2B . 3 C.8 D.10解 B.得 F 1,0,可不如设 A(x1 , y1 ), B(x2 , y2 )( y10y2 ) . 4由OA OB x1x2y1 y222y1 y2 2 ,可得 y1 y222,得y1 y2,因此由定理SABO 1x1 y2x2 y11y1y2y2y11y1 y2y1y2y1 y2y1y222222因此SABOSAFOy 1 y 21 1 y 19 y 1 y 2 2 9y 1 y 2 32 4 8 8(可适当且仅当 y 14, y 29时取等号 )38因此选 B.高考题 3 (2011 年高考四川卷文科第12 题 )在会合1,2,3,4,5 中任取一个偶数 a 和一个奇数 b 构成以原点为起点的向量 (a, b) . 从全部获得的以原点为起点的向量中任取两个向量为邻边作平行四边形, 记全部作为平行四边形的个数为 n ,此中面积等于 2 的平行四边形的个数 m ,则m( )n2141A.B.C.D.155153解B.所 有满足题意 的 向 量 有 6个1 (2,1),2 (2,3),3 (2,5),4( 4,1), 5 ( 4,3), 6 (4,5) ,以此中的两个向量为邻边的平行四边形有 nC 62 15 个.设i(x 1 , y 1 ), j ( x 2 , y 2 ) ,得 x 1 , x 2(2,4); y 1 , y 2 (1,3,5) ,由定理 2 得,以i ,j为邻边的平行四边形的面积是S1x 1 y 2 x 2 y 1 2 ,可得这样的向量i ,j有3对:2(2,3), (4,5); (2,1), (4,3); (2,1), ( 4,1) .因此m3 1 . n15 5高考题 4 (2011 年高考四川卷理科第12 题 ) 在会合 {1,2,3,4,5} 中任取一个偶数 a 和一个奇数 b 构成以原点为起点的向量 (a, b) . 从全部获得的以原点为起点的向量中任取两个向量为邻边作平行四边形 .记全部作成的平行四边形的个数为 n ,此中面积不超出 4 的平行四边形的个数为 m ,则m()4 n1 22A.B.C.D.153 5 3解 基本领件是由向量(2,1), (2,3), (2,5), (4,1), (4,5), ( 4,3) 中任取两个向量为邻边作平行四边形,得 nC 26 15 .由定理 2 可得:构成面积为 2 的平行四边形的向量有3 对: (2,3), (4,5); (2,1), (4,3); (2,1),(4,1) .构成面积为 4 的平行四边形的向量有2 对: (2,3), (2,5); (2,1), (2,3) .构成面积为 6 的平行四边形的向量有 2 对: (2,3), (4,3); (2,1), (4,5) .构成面积为 8 的平行四边形的向量有 3 对: (2,1), (2,5); (4,1), (4,3);( 4,3),( 4,5) .构成面积为 10 的平行四边形的向量有 2 对: (2,3), (4,1); (2,5), ( 4,5) .构成面积为 14 的平行四边形的向量有 1 对: (2,5), (4,3) .构成面积为 16 的平行四边形的向量有 1 对: (4,1),( 4,5) .构成面积为 18 的平行四边形的向量有 1 对: (2,5), (4,1) .知足条件的事件有 m3 2 5个,因此m5 1 .n15 3高考题 5 (2009 年高考陕西卷文科、理科第21 题)已知双曲线C 的方程为y 2 x 2 1( a 0, b0) ,离心率 e52 5 a 2b 2 2,极点到渐近线的距离为.5(1)求双曲线 C 的方程;(2)如图 1 所示, P 是双曲线 C 上一点,A, B 两点在双曲线 C 的两条渐近线上,且分别位于第一、二象限 .若 APPB,1,2 ,求AOB 面积的取值范围 .3图 1解(1)( 过程略 ) y2x 21.4(2)可设 A(t ,2t), B( s,2s), s 0,t 0 ,由定理 2 及题设可得 S AOB 2st .由 APt2 s2t 2 s PB ,可得 P,,把它代入双曲线 C 的方程,化简得11(1 )24 st ,因此SAOB1 111223可得AOB 面积的取值范围是82,.3高考题 6 (2007 年高考陕西卷理科第 21 题即文科第 22 题)已知椭圆C : x2y 2 1(a b0) 的离心率是6,短轴的一个端点与右焦点的距离是3 .a 2b 23(1)求椭圆 C 的方程;(2)设直线 l 与椭圆 C 交于 A, B 两点,坐标原点O 到直线 l 的距离为3,求 AOB 面积2的最大值 .解(1)( 过程略 ) x 2y 21.3(2)设 A( x 1 , y 1 ), B(x 2 , y 2 ) ,由定理 2 及题设得2SAOBx 1 y 2 x 2 y 1由椭圆的参数方程知,可设 x 1 3 cos , y 1sin , x 23 cos , y 2 sin ,得2S AOB x 1 y 2 x 2 y 1 3 sin()从而可得,当且仅当点A, B 是椭圆 C 的两个极点且AOB时AOB 的面积取到最2大值,且最大值是3.2高考题 7(2010 年高考重庆卷理科第20 题 )已知以原点 O 为中心, F ( 5,0) 为右焦点的双曲线 C 的离心率 e5 .2(1)求双曲线 C 的标准方程及其渐近线方程;(2) 如图2 所示,已知过点M (x 1, y 1 ) 的直线l 1 : x 1 x 4y 1 y4 与过点 N ( x 2 , y 2 ) ( 此中x 2x 1 )的直线l 2 : x 2 x4 y 2 y4 的交点E 在双曲线C上,直线MN 与两条渐近线分别交于G 、 H两点,求OGH的面积.图 2解(1)( 过程略 )双曲线C的标准方程为x2y21,其渐近线方程为x 2 y0 .4(2)由“两点确立向来线”可得直线MN 的方程为: x E x 4 y E y 4 .分别解方程组x E x 4 y E y 4x E x 4 y E y 4,得x 2 y0,x 2y0G4,2, H4,2.x Ex E 2 y E x E2y E 2 y E x E2y E由于点 E 在双曲线C上,因此x E2 4 y E2 4 .由定理2,得S OGH 188882 2x E2 4 y E2x E2 4 y E2x E2 4 y E24注下边将指出图 2 的错误:由于点 E 对于 x 轴的对称点 E ( x E ,y E ) 也在双曲线 C 上,而双曲线C在点 E处的切线方程为xEx( y E ) y1即 x E x 4 y E y 4 也即直线 MN ,因此直线 MN 与双曲线 C 应该相4切,而不是相离 .高考题 8 (2011年高考山东卷理科第22题 )已知动直线x2y2交于l 与椭圆 C :132P(x1, y1 )、 Q (x2 , y2 ) 两不一样点,且OPQ 的面积 S6OPQ,此中 O 为坐标原点.22x2222(1)证明:x1和 y1y2均为定值;(2)设线段PQ的中点为M,求OM PQ 的最大值;(3)椭圆C上能否存在三点D、 E、 G ,使得 S ODE S ODG S OEG6?若存在,判2断 DEG 的形状;若不存在,请说明原因.解(1) 可设P(3cos , 2 sin )、 Q( 3cos , 2 sin ) ,由定理2,得SOPQ6sin()6 22SOPQ6sin()6, sin ()1,cos() 0 22k( k Z)2因此x12x223(cos2cos2) 3(sin 2cos2) 3, y12y223.(2)在 (1)的解答中:当k为奇数时,得P( 3 sin,2cos )、 Q ( 3cos , 2 sin),M3(sin cos),2(sin cos),因此 OM PQ125sin 2 2.222当k为偶数时,得P( 3 sin,2cos )、Q ( 3cos , 2 sin),M3(cos sin),2(cos sin),因此 OM PQ125sin 2 2.222因此 OM PQ 的最大值是5. 2(3)可设D(3cos ,2 sin )、 E(3cos ,2 sin)、G(3cos , 2 sin) ,由(1)的解答知k,l,m(k, l , m Z )2322把这三式相加,得0( k l m)(k l m Z ),这不行能!因此椭圆 C 上不存2在三点 D、 E、G ,使得 S ODE SODGSOEG6.2高考题 9(2013 年高考山东卷文科第22 题 )在平面直角坐标系xOy 中,已知椭圆C的中心在原点 O ,焦点在 x 轴上,短轴长为2,离心率为2 .2(1)求椭圆 C 的方程;(2) A, B 为椭圆 C 上知足AOB 的面积为6的随意两点, E 为线段 AB 的中点,射线4OE 交椭圆 C 与点 P ,设 OPtOE ,务实数 t 的值 .解 (1)( 过程略 )x 2y 2 1 .22 (2)当直线 OE 的斜率不存在时,可求得t 2或3 .3当直线 OE 的斜率存在时,可设A( 2 cos ,sin ), B( 2 cos ,sin ) ,由定理 2 得SOAB2 sin()6 )3, cos( 1 , cos1 3 2, sin()2或.42222可得E2 coscos, sin2 cos2, 所以直线22OE : yx tan ,求得 P2 cos, sin,因此2222y P12 或2t3y E cos32总之, t2或23.31高考题 10 (2008 年高考海南、宁夏卷理科第21 题 )设函数 f (x)ax(a ,b Z ) ,x b曲线 yf ( x) 在点 (2, f (2)) 处的切线方程为 y 3 .(1)求 f ( x) 的分析式 .(2)证明:函数 y f ( x) 的图象是一此中心对称图形,并求其对称中心;(3)证明:曲线 yf (x) 上任一点的切线与直线x 1 和直线 yx 所围三角形的面积为定值,并求出此定值.答案: (1) y x1.(2)略 .(3)2.x 1高考题 11(2008 年高考海南、宁夏卷文科第21 题 )设函数f (x)bf ( x) ax,曲线 yx在点 (2, f (2)) 处的切线方程为7x 4 y120.(1)求f ( x)的分析式;(2)证明:曲线y f (x) 上任一点处的切线与直线x 0和直线 y x 所围成的三角形面积为定值,并求此定值.答案: (1)y x 3.(2)6. x下边给出这两道高考题结论的推行.定理 3(1) 双曲线x2y 21( a0,b0)上任一点的切线与两条渐近线a 2b2b bS ab ;yx, y x 围成三角形的面积是a ab(2) 曲线y ax0)上任一点的切线与两条渐近线x 0, y ax 围成三角形的面(bx积是 S b ;(3) 曲线y ax c b(b0) 上任一点的切线与两条渐近线x d0, y ax cdx围成三角形的面积是S b .证明(1) 如图 3 所示,可求得过双曲线上任一点(,)(222222) 的切P x0y0 b x0 a y0 a b线方程是b2x0x a2 y0 y a2 b2,还可求得它与两条渐近线y bx, ybx 的交点分别为a aMa2 b,ab2a2b,ab22 可立得欲证建立 .bx0ay0, Nbx0bx0,再由定理bx0ay0ay0ay0图 3(2)由y axb b.因此过该曲线上任一点P x0 , ax0b(b 0) ,得 y ax 2的切x x0线方程是yb b( x x0 ) ax 0a2x0x0从而可求得它与两条渐近线x0, y ax 的交点分别为M0, 2b, N (2 x0 ,2ax0 ) ,再由x0定理 2 可立得欲证建立 .(3)因为y ax cba( x d )b所以曲线xc ad ,b d x dy ax c0) 是由曲线y ax b0) 沿向量 ( d , c ad ) 平移后获得的,(b(bx d x 因此由结论 (2) 立得结论 (3) 建立 .(4)。
2019高考数学文科总复习第19单元【平面解析几何综合】测试B卷及答案解析

2019高考数学文科总复习第19单元【平面解析几何综合】测试B 卷一、选择题(本大题共12小题,每小题5分,共60分.)1.若直线与圆没有交点,则过点的直线与椭圆的交点个数为( ) A .0 B .1 C .2 D .0或12.已知双曲线的右焦点为,若过点的直线与`双曲线的右支有且只有一个交点, 则此直线斜率的取值范围是( )A .B .C .D . 3.经过抛物线的焦点,倾斜角为的直线交抛物线于,两点,则线段的长为( )A .2 BCD .164.若点和点分别为椭圆的中心和左焦点,点为椭圆上的任意一点, 则的最大值为( )A .2B .3C .6D .85.设双曲线的渐近线与抛物线相切,则该双曲线的离心率等于( )AB .2CD .36.已知椭圆的左、右焦点分别为,,过的直线交椭圆于,两点,若的最大值为5,则的值是( )A .1BCD7.已知点在抛物线上,那么点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为( )A .B .C .D .8.过椭圆内一点,且被这点平分的弦所在直线的方程是( ) A . B . C . D .9.已知椭圆作直线,,分别交椭圆于,两点,且斜率分别为,,若点,关于原点对称,则的值为( )4=+ny mx 22:4O x y +=(),P m n 22194x y +=221124x y -=F F ⎛ ⎝⎭⎡⎢⎣⎦(⎡⎣24x y =120︒A B AB O F 13422=+y x P OP FP ⋅()222210,0x y a b a b -=>>22y x =+()2221024x y b b+=<<1F 2F 1F l A B 22BF AF +b P 24y x =P ()2,1Q -P P 1,14⎛⎫- ⎪⎝⎭1,14⎛⎫ ⎪⎝⎭()1,2()1,2-221164x y +=()3,1P 34130x y +-=43130x y +-=3450x y -+=3450x y ++=()222210x y a b a b+=>>M MA MB A B1k 2k A B 21k k ⋅A .B .C .D .10.已知,为抛物线上的不同两点,为抛物线的焦点,若, 则直线的斜率为( )A .B .C .D .11.双曲线的左、右焦点分别、,为双曲线右支上的点,的内切圆与 轴相切于点,则圆心到轴的距离为( )A .1B .2C .3D .412.抛物线上两点、关于直线对称,且,则 等于( ) A .2B .1C .D .3二、填空题(本大题有4小题,每小题5分,共20分. 请把答案填在题中横线上)13.已知直线过抛物线的焦点,且与的对称轴垂直,与交于,两点,,为的准线上一点,则的面积为 .14.已知双曲线的一条渐近线与直线平行,则双曲线的离心率为 .15.已知焦点在轴上椭圆,点在椭圆上,过点作两条直线与椭圆分别交于,两点,若椭圆的右焦点恰是的重心,则直线的方程为 .16.过点作抛物线的两条切线,(,为切点),若,则的值为 .三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)在平面直角坐标系中,直线与抛物线相交于不同的,两点.(1)如果直线过抛物线的焦点,求的值;(2)如果,证明:直线必过一定点,并求出该定点.131212-13-A B 2:4C y x =F C 40FA FB +=AB 23±34±43±32±221169x y -=1F 2F P 12PF F △x A I y 22y x =()11,A x y ()22,B x y y x m =+2121-=⋅x x m 32l C C l C A B 6AB =P C ABP △221kx y -=250x y -+=x 222125x y b+=124,5P ⎛⎫ ⎪⎝⎭P A B F PAB △AB 3,12P ⎛⎫- ⎪⎝⎭2ax y =PA PB A B 0PA PB ⋅=a xOy l 24y x =A B l OA OB ⋅4OA OB ⋅=-l18.(12分)已知圆经过椭圆的右焦点及上顶点.过椭圆外一点,作倾斜角为的直线交椭圆于,两点.(1)求椭圆的方程;(2)若右焦点在以线段为直径的圆的内部,求的取值范围.19.(12分)如图所示,已知圆,定点,为圆上一动点,点在上,点在上,且满足,,点的轨迹为曲线. (1)求曲线的方程;(2)过点且倾斜角是的直线交曲线于两点,,求.20.(12分)已知直线,圆,椭圆的离心率,直线被圆截得的弦长与椭圆的短轴长相等. (1)求椭圆的方程;(2)过圆上任意一点作椭圆的两条切线,若切线都存在斜率,求证两切线斜率之积为定值.21.(12分)如图,椭圆长轴端点为,,为椭圆中心,为椭圆的右焦点,且,. (1)求椭圆的标准方程;(2)记椭圆的上顶点为,直线交椭圆于,两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.22:20G x y x +-=22221x y a b+=()0a b >>F B (),0M m ()m a >56πl C D F CD E m ()22:18C x y ++=()1,0A M P AM N CM 2AM AP =0NP AM ⋅=N E E A 45︒l E H QHQ :l y x =22:5O x y +=()2222:10y x E a b a b+=>>e =l O E O P E A B O F 1AF FB ⋅=1OF =M l P Q l F PQM △l22.(12分)设椭圆的焦点分别为,,点,且.(1)求椭圆的方程;(2)过、分别作互相垂直的两直线与椭圆分别交于、、、四点(如图所示),试求四边形面积的最大值和最小值.第十九单元 平面解析几何综合B 卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】C 【解析】∵直线与圆,∴,∴,∴点在椭圆内,故选C . 2.【答案】B【解析】由题意知,焦点为,双曲线的两条渐近线方程为. 当过点的直线与渐近线平行时,满足与右支只有一个交点,画出图象,()2222:10x y C a b a b+=>>()11,0F -()1,0()2,0A a 122AF AF =C 1F 2F D E M N DMEN 4mx ny +=22:4O x y +=2>422<+n m 22194m n +<(),m n ()4,0F y =F数形结合可知应选B . 3.【答案】D【解析】设,,由题意知的方程为,由,得,,,∴,故选D .4.【答案】C【解析】由椭圆的方程得,,设,为椭圆上任意一点,则,当且仅当时,取得最大值6,故选C .5.【答案】D【解析】双曲线的一条渐近线方程为,由方程组,消去,得有唯一解,所以,所以,故选D . 6.【答案】C【解析】由椭圆的方程可知,由椭圆的定义可知,,所以,由椭圆的性质可知,过椭圆焦点的弦中通径最短,且, ∴,,故选C . 7.【答案】A 【解析】如图,()11,A x y ()22,B x y AB 1y =+214y x y⎧=+⎪⎨=⎪⎩240x +-=12x x ∴+=-124x x =-AB =16==()1,0F -()0,0O (),P x y ()22x -≤≤()2222221131322444x OP FP x x y x x x x x ⎛⎫⋅=++=++-=++=++ ⎪⎝⎭2x =OP FP ⋅22221x y a b -=by x a=22⎧=⎪⎨⎪=+⎩b y x a y x y 220b x x a -+=280b a ∆⎛⎫=-= ⎪⎝⎭b a =3c e a ==2=a 2248AF BF AB a ++==()2283AB AF BF =-+≥223b a=23b =b∵点在抛物线的内部,由抛物线的定义,等于点到准线的距离, 过作的垂线交抛物线于点,则点为取最小值时所求的点.当时, 由得,所以点的坐标为,故选A .8.【答案】A【解析】设直线与椭圆交于,两点,由于,两点均在椭圆上,故,,两式相减得, ∵,,∴,∴直线的方程为,即,故选A .9.【答案】D【解析】设点,,,∴ ,∴的值为,故选D . 10.【答案】C【解析】∵,∴,∴,设,则,设点, 在抛物线准线上的射影分别为,,过作的垂线,交线段的延长线于点,则,,()2,1Q -PF P1x =-Q 1x =-QH K K 1y =-41x =14x =P 1,14⎛⎫- ⎪⎝⎭()11,A x y ()22,B x y A B 22111164x y +=22221164x y +=()()()()121212120164x x x x y y y y +⋅-+⋅-+=126x x +=122y y +=()()121212121344AB x x y y k x x y y +-==-⨯=--+AB ()3134y x -=--34130x y +-=(),M x y ()11,A x y ()11,B x y --111211y y y y k k x x x x -+⋅=⋅-+222212222222221111113x x b b a a b c e x x a a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭==-=-=-=--21k k ⋅13-40FA FB +=4FA FB =-4FA FB =FB t =4FA t =A B C 1A 1B A 1BB 1BB M 113BM AA BB AF BF t =-=-=5AB AF BF t =+=∴,∴,由对称性可得直线的斜率为,故选C . 11.【答案】D故选D .12.【答案】C 【解析】∵,又,∴,由于在直线上,即,, ∵,,∴,即,∵,,∴,.故选C .二、填空题(本大题有4小题,每小题5分,共20分. 请把答案填在题中横线上)13.【答案】9【解析】设抛物线的方程为,则,∴,∴. 14.【解析】由双曲线知,它的渐近线方程为,∵一条渐近线与直线,则,∴双曲线方程为, 则,,. 15.【答案】【解析】将点代人椭圆的方程可得,所以椭圆的方程为,椭圆的焦点,,,,设,,直线的斜率为,4AM t =34tan =∠ABM AB 43±21211AB y y k x x -==--()2221212y y x x -=-2112x x +=-212122x x y y ++⎛⎫⎪⎝⎭,y x m =+212122y y x x m ++=+21212y y x x m +=++2112y x =2222y x =()22212122x x x x m +=++()2212121222x x x x x x m ⎡⎤+-=++⎣⎦2112x x +=-2121-=⋅x x 23m =32m =C 22y px =26AB p ==3=p 192ABP S AB p =⨯=△221kx y -=y =250x y -+=1214k =2214x y -=2a =1b =c =c e a ==2015680x y --=P 216b =2212516x y +=225a =216b =22225169c a b =-=-=(3,0)F ()11,A x y ()22,B x y AB k由, 代人椭圆的方程可得, ∴的中点坐标为,所求的直线方程为.16.【答案】【解析】设切线方程为,由,联立并化简得,由题意,,即,又两切线垂直,∴,∴. 三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1);(2)见解析.【解析】(1)由题意知,抛物线焦点为,设,代入抛物线,消去得.设,,则,,∴ .(2)设,代入抛物线,消去得,设,,则,,∴ ,∴.∴直线过定点.∴若,则直线必过一定点.18.【答案】(1);(2).【解析】(1)∵圆经过点,,∴,,12121212435312125503x x x x y y y y ++⎧=⎪+=⎧⎪⎪⇒⎨⎨+=-++⎪⎪⎩=⎪⎩22111212222214251602516312516x y x x y y k k x y ⎧+=⎪++⎪⇒+⨯=⇒=⎨⎪+=⎪⎩AB 56,25⎛⎫- ⎪⎝⎭2015680x y --=14312y k x ⎛⎫=-- ⎪⎝⎭2312y ax y k x ⎧=⎪⎨⎛⎫=-- ⎪⎪⎝⎭⎩01232=++-k kx ax 234102k a k ∆⎛⎫=-+= ⎪⎝⎭0462=--a ak k 1241k k a =-=-14a =3-()1,0:1l x ty =+24y x =x 2440y ty --=()11,A x y ()22,B x y 124y y t +=124y y =-()()()212121212121212111OA OB x x y y ty ty y y t y y t y y y y ⋅=+=+++=++++2244143t t =-++-=-:l x ty b =+24y x =x 2440y ty b --=()11,A x y ()22,B x y 124y y t +=124y y b =-()()()2212121212121212OA OB x x y y ty b ty b y y t y y tb y y b y y ⋅=+=+++=++++222244444bt bt b b b b =-++-=-=-2b =l ()2,04OA OB ⋅=-l ()2,022162x y +=)22:20G x y x +-=F B ()2,0F (B∴,,∴,椭圆的方程为. (2)由题意知直线的方程为,由消去,整理得. 由,解得,∵设,,则,,∴.∴. ∵点在圆内部,∴,即,解得.,故的取值范围是.19.【答案】(1);(2.【解析】(1),,∴为的垂直平分线,∴,又,,∴动点的轨迹是以点,为焦点的椭圆,且椭圆长轴长为焦距,,,.∴曲线的方程为.(2)直线的斜率,∴直线的方程为,由,消去得. 设,,则,, ∴.2c =b 2226a b c =+=22162x y +=l )y x m =-m >)22162x y y x m⎧+=⎪⎪⎨⎪=-⎪⎩y 222260x mx m -+-=()224860m m ∆=-->m -<m m <()11,C x y ()22,D x y 12x x m +=21262m x x -=))()2121212121333m m y y x m x m x x x x ⎡⎤⎡⎤=-⋅-=-++⎢⎥⎢⎥⎣⎦⎣⎦()()()()112212122,2,22FC FD x y x y x x y y ⋅=-⋅-=-⋅-+()()21212234643333m m m m x x x x -+=-+++=F E 0FC FD ⋅<()2303m m -<03m <<m <<3m <<m )2212x y +=2AM AP =0NP AM ⋅=NP AM NA NM =CN NM +=2CN AN ∴+=N ()1,0C -()1,0A 2a =22c =a ∴=1c =21b =E 2212x y +=l tan 451k =︒=l 1y x =-22112y x x y =-⎧⎪⎨+=⎪⎩y 2340x x -=()11,H x y ()22,Q x y 1243x x +=120x x =123HQ x =-==20.【答案】(1);(2)见解析. 【解析】(1)设随圆半焦距为,圆心到的距离被圆截得弦长为,所以.由题意得,又,∴,. ∴椭圆的方程为. (2)设点,过点的椭圆的切线的方程为,联立直线与椭圆 的方程得:消去并整理得:,∵与椭圆相切.∴, 整理得:,设满足题意的椭圆的两条切线的斜率分别为,,则,∵点在圆上,∴,∴. ∴两条切线斜率之积为常数.21.【答案】(1);(2)存在,.【解析】(1)如图建系,设椭圆方程为,则,又∵,即,∴.故椭圆方程为.(2)假设存在直线交椭圆于,两点,且恰为的垂心, 则设,,∵,,故,22132y x +=c O l d ==l O b =222c a a b c ⎧=⎪⎨⎪=+⎩b =23a =22b =E 22132y x +=()00,P x y P E 0l ()00y y k x x -=-0l E ()0022132y k x x y y x ⎧=-+⎪⎨+=⎪⎩y ()()()2220000324260k x k y kx x kx y ++-+--=0l E ()()()22200004432260k y kx k kx y ∆⎡⎤⎡⎤=--+--=⎣⎦⎣⎦()()22200002230x k kx y y -+--=E 1k 2k 20122032y k k x -⋅=--P O 22005x y +=2012205312x k k x --⋅=-=--1-2212x y +=43y x =-()222210x y a b a b+=>>1c =1AF FB ⋅=()()221a c a c a c +⋅-==-22a =2212x y +=l P Q F PQM △()11,P x y ()22,Q x y ()0,1M ()1,0F 1PQ k =于是设直线为,由,得,∵,又,得,即,由韦达定理得,解得或(舍去),经检验符合条件.∴直线的方程为.22.【答案】(1);(2)最大值为,最小值为.【解析】(1)由题意,,∵,∴为的中点.∴,,所以椭圆方程为.(2)当直线与轴垂直时,,此时,四边形的面积.同理当与轴垂直时,也有四边形的面积.当直线,均与轴不垂直时,设,代入消去得,设,,则,所以,所以,l y x m =+2222y x mx y =+⎧⎨+=⎩2234220x mx m ++-=()()1221011MP FQ x x y y ⋅==-+-()1,2i i y x m i =+=()()()1221110x x x m x m -+++-=()()21212210x x x x m m m ++-+-=()2222421033m mm m m -⋅--+-=43m =-1m =43m =-l 43y x =-22132x y +=496251222F F c ==122AF AF =2F 1AF 23a =22b =22132x y +=DEx 22b DEa ==2MN a ==DMEN 142S DE MN =⋅=MN x DMEN 142S DE MN =⋅=DE MN x ():1DE y k x =+y ()()2222236360k x k x k +++-=()11,D x y ()22,E x y 212221226233623k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩12x x -=12DE x =-=同理,所以四边形的面积,,令,则,∵,,∴为上的增函数,当,即时,,∴,综上可知,.故四边形面积的最大值为,最小值为.()2221113322k k MN k k ⎡⎤⎛⎫-+⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦==++()()22221111223232k k S DE MN k k ++=⋅=⋅⋅++()242242221242242116136613k k k k k k k k ⎛⎫⋅++ ⎪⋅++⎝⎭==++⎛⎫++ ⎪⎝⎭221t k k =+()24244613136t S t t +==-++2212t k k =+≥()'224()0136S t t =>+()44136S t t =-+[)2,t ∈+∞2t =1k =±9625S =96425S ≤<96425S ≤≤DMEN 49625。
专题08 平面解析几何(解答题)学生版 高考数学(文科)艺术生百日冲刺复习

专题08 平面解析几何(解答题)1.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由.2.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x yC a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.3.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.4.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.5.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已知|2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.6.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.7.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.8.【2018年高考全国Ⅰ文数】设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.9.【2018年高考全国Ⅱ卷文数】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.10.【2018年高考全国Ⅱ卷文数】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:2||||||FP FA FB =+u u u r u u u r u u u r.11.【2018年高考北京卷文数】已知椭圆2222:1(0)x y M a b a b +=>>的离心率为3,焦距为斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)44Q -共线,求k .12.【2018年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心||AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.13.【2018年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为7,求直线l 的方程.14.【2018年高考浙江卷】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.15.【2017年高考全国Ⅰ卷文数】设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.16.【2017年高考全国Ⅱ卷文数】设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =u u u ru u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .17.【2017年高考全国Ⅱ卷文数】在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.18.【2017年高考北京卷文数】已知椭圆C 的两个顶点分别为A (−2,0),B (2,0),焦点在x 轴上, (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.19.【2017年高考天津卷文数】已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(1)求椭圆的离心率;(2)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c . (i )求直线FP 的斜率; (ii )求椭圆的方程.20.【2017年高考山东卷文数】在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=(a >b >0)的离心率为2,椭圆C 截直线y =1所得线段的长度为 (1)求椭圆C 的方程;(2)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.21.【2017年高考浙江卷】如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点13(,)()22P x y x -<<.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围;(2)求||||PA PQ ⋅的最大值.22.【2017年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l .(1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.。
2020年高考试题:解析几何

(x 3)2 y2 9 圆心 (3,0) ,半径 3 。
过圆内一点的直线截得弦长最小值:与圆内该点与圆心连线垂直的直线截得弦长。
如下图所示:
根据两点之间的距离公式得到: PC (3 1)2 (0 2)2 22 22 8 ;
根据勾股定理得到: PA2 AC 2 PC 2 9 8 1 PA 1 ;
(1 m2 )x2 6m2 x (9m2 9) 0 。直线 PB 与椭圆 E 交于 B , D 两点。
根据韦达定理得到: xB
xD
6m2 1 m2
, xB
3
3
xD
6m2 1 m2
xD
6m2 1 m2
3
6m2 3(1 m2 ) 1 m2
6m2 3 3m2 1 m2
3m2 3
。
9 m2
AG GB 8 a a 1 (1) 8 a2 y2 1 。 a 3 A(3,0) , B(3,0) 。 9
(2) P 为直线 x 6 上的动点 假设:点 P 的坐标为 (6, m) 。
P(6, m)
,
A(3,0)
)
,
D(
3m2 3 1 m2
,
2m 1 m2
)
kCD
6m 2m 9 m2 1 m2 27 3m2 3m2 3
6m(1 m2 ) 2m(9 m2 ) (27 3m2 )(1 m2 ) (3m2 3)(9 m2 )
9 m2 1 m2
6m 6m3 18m 2m3
8m3 24m
(1)求 E 的方程;
(2)证明:直线 CD 过定点。
本题解析:(1) A , B 分别为椭圆 E : x2 y2 1的左右顶点 A(a,0) , B(a,0) ; a2
高中数学平面解析几何练习题(简单,限时训练,含答案)

7.1直线的方程时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.过点M (-3,2),N (-2,3)的直线的斜率是( )A .1B .2C .-1 D.322.经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y =( )A .-1B .-3C .0D .23.直线3x +2y +6=0的斜率为k ,在y 轴上的截距为b ,则有( )A .k =32,b =3 B .k =-32,b =3 C .k =32,b =-3 D .k =-32,b =-34.若过点(1,2)的直线l 与直线x +4y -8=0垂直,则直线l 的方程为( )A .x +4y +3=0B .x +4y -9=0C .4x -y +3=0D .4x -y -2=05.已知点A (-2,-5),B (6,6),点P 在y 轴上,且∠APB =90°,则点P 的坐标为() A .(0,-6) B .(0,7) C .(0,-6)或(0,7) D .(-6,0)或(7,0)6.已知过A (-1,a ),B (a,8)两点的直线与直线2x -y +1=0平行,则a 的值为( )A .-10B .2C .5D .17二、填空题(每小题5分,共15分)7.过点A (4,2)且在两坐标轴上截距相等的直线l 的方程为________.8.直线3y +3x +2=0的倾斜角是________.9.直线3x -4y +k =0在两坐标轴上的截距之和为2,则实数k =________.三、解答题(共15分)10.直线过点(-3,4),且在两坐标轴上的截距之和为12,求直线的方程.7.2两直线的位置关系时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.如果直线ax +2y +2=0与直线3x -y -2=0平行,那么系数a 等于( )A .-3B .-6C .-32 D.232.点(0,5)到直线y =2x -5的距离是( )A.52 B .2 5 C.32 D.523.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( )A .3x +2y -1=0B .2x -3y +5=0C .3x +2y +7=0D .2x -3y +8=04.与直线3x -4y +5=0,关于x 轴对称的直线方程为( )A .3x +4y +5=0B .3x +4y -5=0C .-3x +4y -5=0D .-3x +4y +5=05.直线y =2x +10,y =x +1,y =ax -2交于一点,则a 的值为( ) A.13 B.43 C.23 D.536.方程(1+4k )x -(2-3k )y +2-14k =0所确定的直线必经过点( )A .(2,2)B .(-2,2)C .(-6,2)D .(3,-6)二、填空题(每小题5分,共15分)7.已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0.若l 1∥l 2,则a =________.8.已知直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,则实数a =________.9.点A (4,5)关于直线l 的对称点为B (-2,7),则直线l 的方程为________.三、解答题(共15分)10.已知两直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0,求分别满足下列条件的a ,b 的值.(1)直线l 1过点(-3,-1),并且直线l 1与直线l 2垂直;(2)直线l 1与直线l 2平行,并且坐标原点到l 1,l 2的距离相等.7.3圆的方程时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.若点(2a ,a +1)在圆x 2+(y -1)2=5的内部,则a 的取值范围是( )A .-1<a <1B .0<a <1C .-1<a <15D .-15<a <1 2.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( )A .x 2+y 2=2B .x 2+y 2=2C .x 2+y 2=1D .x 2+y 2=43.已知方程x 2+y 2-2x +2k +3=0表示圆,则k 的取值范围是( )A .(-∞,-1)B .(3,+∞)C .(-∞,-1)∪(3,+∞) D.⎝⎛⎭⎫-32,+∞ 4.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=15.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=16.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95 B .1 C.45 D.135二、填空题(每小题5分,共15分)7.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是____________. 8.圆x 2+y 2=1关于直线x +y -1=0的对称圆的方程为____________________.9.经过圆x 2+2x +y 2=0的圆心C ,且与直线x +y =0垂直的直线的方程是____________.三、解答题(共15分)10.经过三点A (1,12),B (7,10),C (-9,2)的圆的标准方程.7.4直线与圆的位置关系时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.若直线2x -y +a =0与圆(x -1)2+y 2=1有公共点,则实数a 的取值范围( )A .-2-5<a <-2+5B .-2-5≤a ≤-2+ 5C .-5≤a ≤5D .-5<a < 52.直线x +y +m =0与圆x 2+y 2=m 相切,则m 的值为( )A .0或2B .2 C. 2 D .无解3.直线x +y =1与圆x 2+y 2-2ay =0(a >0)没有公共点,则a 的取值范围是( )A .(0,2-1)B .(2-1,2+1)C .(-2-1,2+1)D .(0,2+1)4.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴相切,则该圆的标准方程是( )A .(x -3)2+⎝⎛⎭⎫y -732=1B .(x -2)2+(y -1)2=1C .(x -1)2+(y -3)2=1 D.⎝⎛⎭⎫x -322+(y -1)2=1 5.若过点A (0,-1)的直线l 与曲线x 2+(y -3)2=12有公共点,则直线l 的斜率的取值范围为( )A.⎝⎛⎭⎫-33,33B.⎣⎡⎭⎫-33,3 C .(-∞,-3)∪(3,+∞) D.⎝⎛⎦⎤-∞,-33∪⎣⎡⎭⎫33,+∞ 6.两圆C 1:x 2+y 2-2x -3=0,C 2:x 2+y 2-4x +2y +3=0的位置关系是( )A .相离B .相切C .相交D .内含二、填空题(每小题5分,共15分)7.已知直线5x -12y +a =0与圆x 2-2x +y 2=0相切,则a 的值为____________.8.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为________.9.已知圆(x -7)2+(y +4)2=16与圆(x +5)2+(y -6)2=16关于直线l 对称,则直线l 的方程是____________.三、解答题(共15分)10.已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且AB =2 2时,求直线l 的方程.一、选择题(每小题5分,共30分)1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A.12B.22C. 2D.322.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ) A.x 281+y 272=1 B.x 281+y 29=1 C.x 281+y 245=1 D.x 281+y 236=1 3.已知△ABC 的顶点B ,C 在椭圆x 29+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .124.椭圆x 2+4y 2=1的离心率为( ) A.32 B.34 C.22 D.235.过椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( ) A.22 B.33 C.12 D.136.若椭圆x 225+y 2m =1的离心率e =35,则m 的值为( ) A .16 B .16或62516 C.62516 D .3或253二、填空题(每小题5分,共15分)7.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点,若|F 2A |+|F 2B |=12,则|AB |=______.8.若椭圆x 225+y 216=1上一点P 到焦点F 1的距离为6,则点P 到另一个焦点F 2的距离是________. 9.以F 1(0,-1),F 2(0,1)为焦点的椭圆C 过点P ⎝⎛⎭⎫22,1,则椭圆C 的方程为________.三、解答题(共15分)10.过椭圆x 2+2y 2=4的左焦点F 作倾斜角为π3的弦AB ,求弦AB 的长.一、选择题(每小题5分,共30分)1.双曲线2x 2-y 2=8的实轴长是( )A .2B .2 2C .4D .4 22.若方程y 24-x 2m +1=1表示双曲线,则实数m 的取值范围是( ) A .-1<m <3 B .m >-1 C .m >3 D .m <-13.若双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a 等于( ) A .2 B. 3 C.32D .1 4.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是( ) A.x 24-y 25=1 B.x 24-y 25=1 C.x 22-y 25=1 D.x 22-y 25=1 5.设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=3,则|PF 2|=( )A .1或5B .6C .7D .9 6.设双曲线x 2a 2-y 29=1(a >0)的渐近线方程为3x ±2y =0,则a 的值为( ) A .4 B .3 C .2 D .1二、填空题(每小题5分,共15分)7.双曲线x 210-y 22=1的焦距为________. 8.若双曲线y 216-x 2m=1的离心率e =2,则m =________. 9.已知双曲线x 29-y 2a=1的右焦点的坐标为(13,0),则该双曲线的渐近线方程为________. 三、解答题(共15分)10.已知双曲线的渐近线方程为2x ±3y =0,且双曲线经过点P (6,2),求双曲线方程.一、选择题(每小题5分,共30分)1.抛物线y 2=-8x 的焦点坐标是( )A .(2,0)B .(-2,0)C .(4,0)D .(-4,0)2.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线3.在平面直角坐标系xOy 中,若抛物线x 2=4y 上的点P 到该抛物线焦点的距离为5,则点P 的纵坐标为( )A .3B .4C .5D .64.若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( ) A .-2 B .2 C .-4 D .45.经过点P (4,-2)的抛物线标准方程为( )A .y 2=x 或x 2=-8yB .y 2=x 或y 2=8xC .y 2=-8xD .x 2=-8y6.已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( )A.12B .1C .2D .4 二、填空题(每小题5分,共15分)7.在平面直角坐标系xOy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点P (4,4),则该抛物线的方程是__________.8.若双曲线x 2m -y 23=1的右焦点与抛物线y 2=12x 的焦点重合,则m =________. 9.抛物线x =14y 2的准线方程为________. 三、解答题(共15分)10.抛物线的顶点是双曲线16x 2-9y 2=144的中心,而焦点是该双曲线的左顶点,求此抛物线的方程.7.8轨迹与方程时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为( )A.x 216+y 212=1B.x 212+y 216C.x 248+y 264D.x 264+y 2482.已知双曲线中心在原点且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则双曲线的方程为( )A.x 24-y 2=1 B .x 2-y 24 C.x 22-y 23=1 D.x 23-y 22=1 3.一条线段AB 的长为2,两个端点A 和B 分别在x 轴和y 轴上滑动,则线段AB 的中点的轨迹是( )A .双曲线B .双曲线的一分支C .圆D .椭圆4.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D .2x -y +5=05.已知两定点A (1,1),B (-1,-1),动点P 满足PA →·PB →=x 22,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .拋物线6.过点(2,-2)且与双曲线x 24-y 2=1有公共渐近线的双曲线方程是( ) A.y 212-x 23=1 B.y 23-x 212=1 C.x 212-y 23=1 D.x 23-y 212=1 二、填空题(每小题5分,共15分)7.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),F (2,0)为其右焦点,过F 垂直于x 轴的直线与椭圆相交所得的弦长为2,则椭圆C 的方程为________.8.过抛物线x 2=4y 的焦点F 作直线l 交抛物线于A ,B 两点,则弦AB 的中点M 的轨迹方程是______________.9.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的焦点坐标为________________;渐近线方程为____________.三、解答题(共15分)10.已知一动圆P (圆心为P )经过定点Q (2,0),并且与定圆C :(x +2)2+y 2=16(圆心为C )相切.求动圆圆心P 的轨迹方程.7.9直线与圆锥曲线的位置关系时间:20分钟 分数:60分一、选择题(每小题5分,共30分)1.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有( )A .1条B .2条C .3条D .4条2.AB 为抛物线y 2=4x 的焦点弦,若|AB |=4,则AB 中点的横坐标为( )A .1B .2C .3D .43.已知双曲线C :x 2-y 24=1,过点P (1,1)作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有( )A .1条B .2条C .3条D .4条4.直线y =kx +1与椭圆x 29+y 24=1的位置关系为( ) A .相交 B .相切 C .相离 D .不确定5.抛物线y 2=2px 与直线2x +y +a =0交于A ,B 两点,其中点A 的坐标为(1,2),设抛物线的焦点为F ,则|FA |+|FB |的值等于( )A .7B .35C .6D .56.抛物线y =-x 2上的点到直线4x +3y -8=0的距离的最小值是( )A.43B.75C.85D .3 二、填空题(每小题5分,共15分)7.若直线l 过点(0,1),则它与椭圆x 24+y 22=1的位置关系是________. 8.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM |=|MB |,则该椭圆的离心率为________.9.已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是________.二、解答题(共15分)10.求直线y =x -12截椭圆x 2+4y 2=4所得的线段的长.参考答案:7.11.A 解析:由斜率公式得k =3-2-2+3=1. 2.B 解析:由2y +1--34-2=2y +42=y +2,得y +2=tan 3π4=-1.∴y =-3. 3.D 4.D5.C 解析:由题意可设点P 的坐标为(0,y ).因为∠APB =90°,所以AP ⊥BP ,且直线AP 与直线BP 的斜率都存在.又k AP =y +52,k BP =y -6-6,k AP ·k BP =-1,即y +52·⎝⎛⎭⎫-y -66=-1,解得y =-6或y =7.所以点P 的坐标为(0,-6)或(0,7).6.B7.y =12x 或x +y -6=0 解析:(1)当直线过原点时,它在x 轴、y 轴上截距都是0,满足题意,此时直线斜率为12,所以直线方程为y =12x . (2)当直线不过原点时,由题意可设直线方程为x a +y a=1,又过A (4,2),∴a =6. ∴方程为x +y -6=0,综上,直线方程为y =12x 或x +y -6=0. 8.150° 9.-24 解析:令x =0,得y =k 4;令y =0,得x =-k 3.则有k 4-k 3=2,所以k =-24. 10.解:由题设知截距不为0,设直线方程为x a +y 12-a =1,则-3a +412-a=1. 解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0.7.21.B 2.B3.A 解析:由直线l 与直线2x -3y +4=0垂直,可知直线l 的斜率是-32,由点斜式可得直线l 的方程为y -2=-32(x +1),即3x +2y -1=0. 4.A 解析:与直线3x -4y +5=0关于x 轴对称的直线方程是3x -4(-y )+5=0,即3x +4y +5=0.5.C 6.A 7.28.35 解析:由两直线垂直的条件得2a +3(a -1)=0,解得a =35. 9.3x -y +3=0 解析:由题意知,设直线l 的斜率为k ,则k ·k AB =-1,且直线l 过AB 中点,又k AB =7-5-2-4=-13,则k =3,AB 中点为(1,6),所以直线l 的方程为y -6=3(x -1),即3x -y +3=0. 10.解:(1)∵l 1⊥l 2,∴a (a -1)+(-b )·1=0.即a 2-a -b =0. ①又点(-3,-1)在l 1上,∴-3a +b +4=0. ② 由①②解得a =2,b =2.(2)∵l 1∥l 2且l 2的斜率为1-a .∴l 1的斜率也为1-a , 即a b =1-a ,b =a 1-a .故l 1和l 2的方程可分别表示为 l 1:(a -1)x +y +4(a -1)a =0,l 2:(a -1)x +y +a 1-a =0.∵原点到l 1和l 2的距离相等,∴4⎪⎪⎪⎪a -1a =⎪⎪⎪⎪a 1-a .解得a =2或a =23.∴⎩⎪⎨⎪⎧a =2,b =-2,或⎩⎪⎨⎪⎧a =23,b =2.7.31.A2.A 解析:AB 的中点坐标为:(0,0),|AB |=[1-(-1)]2+(-1-1)2=2 2,∴圆的方程为:x 2+y 2=2.3.A 解析:方程可化为:(x -1)2+y 2=-2k -2,只有-2k -2>0,即k <-1时才能表示圆. 4.A 解析:设圆心坐标为(0,b ),则由题意知(0-1)2+(b -2)2=1,解得b =2,故圆的方程为x 2+(y -2)2=1.5.A 解析:设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x2,y =-2+y2.解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4,即(x -2)2+(y +1)2=1.6.C 解析:圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45.7.128.(x -1)2+(y -1)2=1 9.x -y +1=0 解析:易知点C 的坐标为(-1,0),而所求直线与x +y =0垂直,所以所求直线的斜率为1,故所求直线的方程为y =x +1,即x -y +1=0.10.解法一:设圆的一般方程为:x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧1+144+D +12E +F =0,49+100+7D +10E +F =0,81+4-9D +2E +F =0,解得D =-2,E =-4,F =-95.∴所求圆的方程为x 2+y 2-2x -4y -95=0, 即圆的标准方程为:(x -1)2+(y -2)2=100.解法二:由A (1,12),B (7,10),得A ,B 的中点坐标为(4,11),k AB =-13,则AB 的中垂线方程为:3x -y-1=0.同理得AC 的中垂线方程为x +y -3=0.联立⎩⎪⎨⎪⎧ 3x -y -1=0,x +y -3=0,得⎩⎪⎨⎪⎧x =1,y =2.即圆心坐标为(1,2),半径r =(1-1)2+(2-12)2=10. ∴所求圆的标准方程为:(x -1)2+(y -2)2=100. 7.41.B 解析:若直线与圆有公共点,即直线与圆相交或相切,故有|a +2|5≤1,解得 -2-5≤a ≤-2+ 5.2.B 解析:由于直线与圆相切,故m =|m |12+12,解得m =0(舍去)或m =2. 3.A 4.B 5.D6.C 解析:方法一:(几何法)把两圆的方程分别配方,化为标准方程是(x -1)2+y 2=4,(x -2)2+(y +1)2=2,所以两圆圆心为C 1(1,0),C 2(2,-1),半径为r 1=2,r 2=2,则连心线的长|C 1C 2|=(1-2)2+(0+1)2=2,r 1+r 2=2+2,r 1-r 2=2-2,故r 1-r 2<|C 1C 2|<r 1+r 2,两圆相交.方法二:(代数法)联立方程⎩⎪⎨⎪⎧ x 2+y 2-2x -3=0,x 2+y 2-4x +2y +3=0,解得⎩⎪⎨⎪⎧x 1=1,y 1=-2,⎩⎪⎨⎪⎧x 2=3,y 2=0,即方程组有2组解,也就是说两圆的交点个数为2,故可判断两圆相交.7.8或-188.1或177 解析:将圆的方程化成标准方程为(x -1)2+(y -1)2=1,其圆心为(1,1),半径r =1.由弦长为2得弦心距为22.设直线方程为y +2=k (x +1),即kx -y +k -2=0,∴|2k -3|k 2+1=22.化简得7k 2-24k +17=0.∴k =1或k =177.9.6x -5y -1=010.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34. (2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎨⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |= 2.解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.7.51.B 解析:由题意,得2a =2 2b ⇒a =2b ,又a 2=b 2+c 2⇒b =c ⇒a =2c ⇒e =22. 2.A 解析:依题意知,2a =18,∴a =9,2c =13×2a .∴c =3.∴b 2=a 2-c 2=81-9=72.∴椭圆方程为x 281+y 272=1. 3.D4.A 解析:先将x 2+4y 2=1化为标准方程x 21+y 214=1,则a =1,b =12,c =a 2-b 2=32.离心率e =ca=32. 5.B 6.B 7.88.4 解析:由椭圆的定义可知,|PF 1|+|PF 2|=2a ,所以点P 到其另一个焦点F 2的距离为|PF 2|=2a-|PF 1|=10-6=4.9.x 2+y 22=1 解析:由题意,得c =1,2a =|PF 1|+|PF 2|=12+4+12+0=2 2.故a =2,b =1.则椭圆的标准方程为x 2+y 22=1.10.解:椭圆的方程可化为x 24+y 22=1,∴F (-2,0).又∵直线AB 的斜率为3,∴直线AB 的方程为y =3x + 6.由⎩⎨⎧y =3x +6,x 2+2y 2=4,得7x 2+12 2x +8=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-12 27,x 1·x 2=87,∴|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=167.7.61.C2.B 解析:依题意应有m +1>0,即m >-1.3.D 解析:∵b =3,∴c =a 2+3.∴ca =a 2+3a=2.∴a =1.4.B 解析:由题意知,c =3,e =c a =32.∴a =2.b 2=c 2-a 2=9-4=5.故所求双曲线方程为x 24-y 25=1.5.C6.C 解析:双曲线x 2a 2-y 29=1的渐近线方程为3x ±ay =0与已知方程比较系数得a =2.7.4 38.48 解析:由已知得e =ca =1+⎝⎛⎭⎫b a 2=1+m16=2.∴m =48. 9.2x ±3y =0 解析:∵焦点坐标是(13,0),∴9+a =13,即a =4.∴双曲线方程为x 29-y 24=1,∴渐近线方程为x 3±y2=0,即2x ±3y =0.10.解:由双曲线的渐近线方程y =±23x ,可设双曲线方程为x 29-y 24=λ(λ≠0).∵双曲线过点P (6,2),∴69-44=λ,λ=-13,故所求双曲线方程为34y 2-13x 2=1.7.71.B 2.D 3.B4.D 解析:因为椭圆x 26+y 22=1的右焦点为(2,0),所以抛物线y 2=2px 的焦点为(2,0),则p =4.5.A6.C 解析:抛物线y 2=2px (p >0)的准线为x =-p2,圆x 2+y 2-6x -7=0,即(x -3)2+y 2=16,则圆心为(3,0),半径为4;又因抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,所以3+p2=4,解得p=2.7.y 2=4x 8.69.x =-1 解析:由x =14y 2变为标准方程为:y 2=4x .故其准线方程为:x =-1.10.解:双曲线方程化为x 29-y 216=1,∴双曲线中心为O ,左顶点为(-3,0),由题意抛物线方程为y 2=-2px (p >0),且-p2=-3.∴p =6,方程为y 2=-12x .7.81.A 2.B 3.C4.D 解析:由题意知,M 为PQ 中点,设Q (x ,y ),则P 为(-2-x,4-y ),代入2x - y +3=0,得2x -y +5=0.5.B 解析:设点P (x ,y ),则PA →=(1-x,1-y ),PB →=(-1-x ,-1-y ),所以PA →·PB →= (1-x )(-1-x )+(1-y )(-1-y )=x 2+y 2-2.由已知x 2+y 2-2=x 22,即x 24+y 22=1,所以点P 的轨迹为椭圆.6.B7.x 24+y22=1 解析:由题意,得⎩⎪⎨⎪⎧c =2,b 2a=1,a 2=b 2+c 2.解得⎩⎨⎧a =2,b = 2.∴椭圆C 的方程为x 24+y 22=1.8.x 2=2y -2 9.(-4,0),(4,0) y =±3x 10.x 24+y 22=17.91.B 2.A 3.D 4.A5.A 解析:点A (1,2)在抛物线y 2=2px 和直线2x +y +a =0上,则p =2,a =-4,F (1,0),则B (4,-4),故|FA |+|FB |=7.6.A 7.相交 8.63解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,∴B 点的坐标为(0,a ).故M 点的坐标为⎝⎛⎭⎫-a 2,a 2,代入椭圆方程,得a 2=3b 2.∴c 2=2b 2.∴e =63. 9.4x -y -7=0 解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=2(x 2+x 1)y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.10.解:方法一:设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点. 由⎩⎪⎨⎪⎧y =x -12,x 2+4y 2=4.消去y ,得5x 2-4x -3=0. ① 方程①的判别式Δ=(-4)2+4×5×3=76>0, 由韦达定理,x 1+x 2=45,x 1x 2=-35,∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=7625. (y 1-y 2)2=⎣⎡⎦⎤⎝⎛⎭⎫x 1-12-⎝⎛⎭⎫x 2-122=()x 1-x 22=7625, ∴弦长|AB |=(x 1-x 2)2+(y 1-y 2)2=2 385.方法二:由方法一中得到(x 1-x 2)2=7625,∴|x 1-x 2|=765. 由弦长公式|AB |=1+k 2|x 1-x 2|=2·765=2385.。
高考数学平面解析几何专项训练(100题-含答案)

高考数学平面解析几何专项训练(100题-含答案)1.在平面直角坐标系xOy 中,已知点12(1,0),(1,0)F F -,点M 满足12MF MF +=记点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)点T 在直线2x =上,过T 的两条直线分别交C 于,A B 两点和,P Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)2212x y +=(2)0【解析】【分析】(1)根据122MF MF +=,利用椭圆的定义求解;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立,利用参数的几何意义求解.(1)解:因为122MF MF +=,所以点M 的轨迹是以12(1,0),(1,0)F F -为焦点的椭圆,则21,1a c b ===,所以椭圆的方程是2212x y +=;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立()()2222cos 2sin 4cos 4sin 420t m t m θθθθ+++++=,由参数的几何意义知:12,TA t TB t ==,则22122224242cos 2sin 2cos m m t t θθθ++⋅=-=-+-,设直线PQ 的参数方程为:()2cos ,sin x y m λαλλα=+⎧⎨=+⎩为参数,则12,TP TQ λλ==,则22122224242cos 2sin 2cos m m λλααα++⋅=-=-+-,由题意得:222242422cos 2cos m m θα++-=---,即22cos cos θα=,因为αθ≠,所以cos cos θα=-,因为0,0θπαπ<<<<,所以θαπ+=,所以直线AB 的斜率tan θ与直线PQ 的斜率tan α之和为0.2.设n S 是数列{}n a 的前n 项和,13a =,点(),N n S n n n *⎛⎫∈ ⎪⎝⎭在斜率为1的直线上.(1)求数列{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)21n a n =+(2)152522n n n T ++=-【解析】【分析】(1)根据斜率公式可得出()222n S n n n =+≥,可知13S =满足()222n S n n n =+≥,可得出22n S n n =+,再利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式;(2)求得1212n n n c ++=,利用错位相减法可求得n T .(1)解:由13a =,点,n S n n ⎛⎫ ⎪⎝⎭在斜率为1的直线上,知1111n S S n n -=-,即()222n S n n n =+≥.当1n =时,113S a ==也符合上式,故22n S n n =+.当2n ≥时,()()221212121n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦;13a =也满足上式,故21n a n =+.(2)解:112122n n n n a n c +++==.则2341357212222n n n T ++=++++ ,所以,3412135212122222n n n n n T ++-+=++++ ,上式-下式得1232211113111213214212422224212n n n n n n n T -++⎛⎫- ⎪++⎛⎫⎝⎭=++++-=+- ⎝⎭- 252542n n ++=-,因此,152522n n n T ++=-.3.椭圆2222:1(0)x y C a b a b +=>>的离心率为3,且过点(3,1).(1)求椭圆C 的方程;(2)A ,B ,P 三点在椭圆C 上,O 为原点,设直线,OA OB 的斜率分别是12,k k ,且1213k k ⋅=-,若OP OA OB λμ=+,证明:221λμ+=.【答案】(1)221124x y +=(2)证明见解析【解析】【分析】(1)由条件可得c a22911a b +=,222c b a +=,解出即可;(2)设()()()112200,,,,,A x y B x y P x y ,由条件可得012012x x x y y y λμλμ=+⎧⎨=+⎩,12123x x y y =-,然后将01212x x x y y y λμλμ=+⎧⎨=+⎩代入椭圆方程可得2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后可得答案.(1)因为ca=22911a b +=,222c b a +=所以可解得2a b ⎧=⎪⎨=⎪⎩所以椭圆C 的方程221124x y +=.(2)设()()()112200,,,,,A x y B x y P x yOP OA OB λμ=+ ,012012x x x y y y λμλμ=+⎧∴⎨=+⎩()()222212120011124124x x y y x y λμλμ+++=∴+= 即2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222112211124124x y x y +=+= ,,即22121221124x x y y λμλμ⎛⎫+++= ⎪⎝⎭又1212121133y y k k x x ⋅=-∴=- ,即12123x x y y =-,221λμ∴+=4.已知椭圆()2222:10x y C a b a b+=>>,A 、B 分别为椭圆C 的右顶点、上顶点,F 为椭圆C的右焦点,椭圆C 的离心率为12,ABF 的面积为32.(1)求椭圆C 的标准方程;(2)点P 为椭圆C 上的动点(不是顶点),点P 与点M ,N 分别关于原点、y 轴对称,连接MN 与x 轴交于点E ,并延长PE 交椭圆C 于点Q ,则直线MP 的斜率与直线MQ 的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)22143x y +=(2)是定值,定值为32-【解析】【分析】(1)根据椭圆的离心率可得到a,b,c 的关系,再结合ABF 的面积可得到()a c b -=,由此解得a,b ,可得答案.(2)设直线方程,并联立椭圆方程,得到根与系数的关系式,结合直线MP 的斜率与直线MQ 的斜率之积,代入化简可得答案.(1)由题意得12c a =,则2a c =,b =.ABF 的面积为()1322a cb -=,则()a c b -将2a c =,b =代入上式,得1c =,则2a =,b =,故椭圆C 的标准方程为22143x y +=.(2)由题意可知直线PQ 的斜率一定存在,设直线PQ 的方程为y kx m =+,设()11,P x y ,()22,Q x y ,则()11,M x y --,()11,N x y -,()1,0E x -,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,得()2223484120k x kmx m +++-=,∴122834kmx x k +=-+,∴()12122286223434km m y y k x x m k m k k ⎛⎫+=++=-+= ⎪++⎝⎭,∴21212263348434MQmy y k k km x x kk ++===-+-+,112PEPQ y k k k x ===,∵11112222MP PE y yk k k x x ====,∴33242MP MQ k k k k ⋅=-⨯=-∴MP MQ k k ⋅为定值32-.【点睛】本题考查了椭圆方程的求法以及直线和椭圆的位置关系,综合考查了学生分析问题,解决问题以及计算方面的能力和综合素养,解答的关键是理清解决问题的思路,并能正确地进行计算.5.已知圆M 过点()1,0,且与直线1x =-相切.(1)求圆心M 的轨迹C 的方程;(2)过点()2,0P 作直线l 交轨迹C 于A 、B 两点,点A 关于x 轴的对称点为A '.问A B '是否经过定点,若经过定点,求出定点坐标;若不经过,请说明理由.【答案】(1)24y x =(2)()2,0-【解析】【分析】(1)根据抛物线的定义计算可得;(2)设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y ,则()11,A x y '-,联立直线与抛物线方程,消元、列出韦达定理,再表示出直线A B '的方程,将12y y +、12y y 代入整理即可得解;(1)解:由题意知动点M 的轨迹C 是以(0,0)O 为顶点,()1,0为焦点,1x =-为准线的抛物线,所以动圆圆心M 的轨迹方程为:24y x =;(2)解:设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y 不妨令21y y >,则()11,A x y '-,联立直线l 与抛物线方程得224x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则124y y t +=、128y y =-,则直线A B '的方程为()()211121y y y y x x x x +--=--,即()()21212121x x y x y y y x y x -+=+-,则()()()()2121212122ty ty y ty y y y x y ty -++=+-+,()()()2121211222t y y y y y x ty y y y -=+--+,即()()21211222y y y x ty y y y =+--+,所以()42824y tx t t ⋅=-⨯--⨯,即()2y t x =+,令200x y +=⎧⎨=⎩解得20x y =-⎧⎨=⎩,所以直线A B '恒过定点()2,0-;6.已知1F ,2F 是椭圆C :()222104x yb b+=>的左、右焦点,过1F 的直线与C 交于A ,B两点,且22::3:4:5AF AB BF =.(1)求C 的离心率;(2)设M ,N 分别为C 的左、右顶点,点P 在C 上(P 不与M ,N 重合),证明:MPN MAN ∠≤∠.【答案】(2)见解析【解析】【分析】(1)由题意设223,4,5AF m AB m BF m ===,由勾股定理的逆定理可得290BAF ∠=︒,再根据椭圆的定义可求出m 的值,从而可求出12,AF AF 的值,则可得点A 是椭圆短轴的一个端点,进而可求出离心率,(2)由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则可得0000tan ,tan 22y y x x αβ==+-,然后求出tan tan αβ+,tan tan αβ,再利用正切的两角和公式可得02tan()y αβ+=,由正切函数可求出αβ+的最小值,从而可求出()MPN παβ∠=-+的最大值,进而可证得结论(1)由()222104x y b b+=>,得24a =,得2a =,由题意设223,4,5AF m AB m BF m ===,则22222AF AB BF +=,所以290BAF ∠=︒,因为223451248AF AB BF m m m m a ++=++===,所以23m =,所以22AF =,所以122422AF a AF =-=-=,所以12AF F △为等腰直角三角形,所以点A 是椭圆短轴的一个端点,所以b c =,因为222224b c b a +===,得b c =所以椭圆的离心率为2c e a ==(2)由(1)可得椭圆方程为22142x y +=,则(2,0),(2,0)M N -,因为点A是椭圆短轴的一个端点,所以不妨设A ,由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则0000tan ,tan 22y y x x αβ==+-,2200142x y +=,所以2200002200001tan tan 22422y y y y x x x y αβ⋅=⋅===+--,00002200000442tan tan 2242y y y y x x x y y αβ+=+===+--,所以0tan tan 4tan()1tan tan y αβαβαβ++==-,所以当0y =tan()αβ+取得最小值由(1)可知290BAF ∠=︒,所以()0,2παβ⎛⎫+∈ ⎪⎝⎭,所以当tan()αβ+取得最小值时,αβ+取得最小值,即点P 与点A 重合时,αβ+取得最小值,此时()MPN παβ∠=-+取得最大,所以MPN MAN∠≤∠7.已知椭圆()2222:10x y C a b a b+=>>的长轴长为,且过点)P(1)求C 的方程:(2)设直线()0y kx m m =+>交y 轴于点M ,交C 于不同两点A ,B ,点N 与M 关于原点对称,BO AN ⊥,Q 为垂足.问:是否存在定点M ,使得·NQ NA 为定值?【答案】(1)221102x y +=(2)存在【解析】【分析】(1)利用待定系数法求方程;(2)联立方程组,结合韦达定理可得直线恒过定点,进而求解.(1)依题意知2a =a =所以C 的方程可化为222110x y b+=,将点)P代入C 得251110b +=,解得22b =,所以椭圆方程为221102x y +=;(2)设点()11,A x y ,()22,B x y ,联立221102x y y kx m ⎧+=⎪⎨⎪=+⎩得,()22215105100k x kmx m +++-=,()()()222104155100km k m ∆=-+->,解得22210m k <+,1221015km x x k -+=+,212251015m x x k -=+,注意到Q ,N ,A 三点共线,NQ NA NQ NA ⋅=⋅,又()NQ NA NB BQ NA NB NA ⋅=+⋅=⋅()()()()1212121222x x y m y m x x kx m kx m =+++=+++()()()()222222212122215102012441515k m k mkx xmk x x mm kk+-=++++=-+++()222221510510415k m m m k--+-=++当()2215105510m m --=-,解得1m =±,因为0m >,所以1m =,此时1NQ NA ⋅=-,满足0∆>,故存在定点()0,1M ,使得1NQ NA ⋅=-等于定值1.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.8.已知椭圆C :22221(0)x y a b a b +=>>,4a M b ⎛⎫ ⎪⎝⎭为焦点是22y x =的抛物线上一点,H 为直线y a =-上任一点,A ,B 分别为椭圆C 的上,下顶点,且A ,B ,H 三点的连线可以构成三角形.(1)求椭圆C 的方程;(2)直线HA ,HB 与椭圆C 的另一交点分别交于点D ,E ,求证:直线DE 过定点.【答案】(1)2214x y +=(2)证明见解析【解析】【分析】(1)由椭圆的离心率求出,a c 的关系式,再由,4a M b ⎛⎫⎪⎝⎭为抛物线22=y x 上的点,结合222a b c =+,即可求出椭圆C 的方程.(2)设点()(),20H m m -≠,求得HA ,HB 的方程,与椭圆联立求得,D E 坐标,写出直线DE 的方程,即可求出DE 恒过的定点.(1)由题意知,222224c aa b a b c⎧=⎪⎪⎪=⨯⎨⎪=+⎪⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为2214x y +=.(2)设点()(),20H m m -≠,易知()0,1A ,()0,1B -,∴直线HA 的方程为31y x m =-+,直线HB 的方程为11y x m=--.联立223114y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得22362410x x m m ⎛⎫+-= ⎪⎝⎭,∴22436D m x m =+,223636D m y m -=+,同理可得284E m x m -=+,2244E m y m -=+,∴直线DE 的斜率为21216m k m-=,∴直线DE 的方程为222241284164m m m y x m m m --⎛⎫-=+ ⎪++⎝⎭,即2121162m y x m -=-,∴直线DE 过定点10,2⎛⎫- ⎪⎝⎭.9.已知点(1,2)M -在抛物线2:2(0)E y px p =>上.(1)求抛物线E 的方程;(2)直线12,l l 都过点12(2,0),,l l 的斜率之积为1-,且12,l l 分别与抛物线E 相交于点A ,C 和点B ,D ,设M 是AC 的中点,N 是BD 的中点,求证:直线MN 恒过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)将点坐标代入求解抛物线方程;(2)设出直线方程,表达出,M N 的坐标,求出直线MN 的斜率,利用直线斜率之积为-1,求出直线MN 恒过的定点,从而证明出结论.(1)∵点(1,2)M -在抛物线2:2E y px =上,∴2(2)2p -=,∴解得:2p =,∴抛物线E 的方程为:24y x =.(2)由12,l l 分别与E 相交于点A ,C 和点B ,D ,且由条件知:两直线的斜率存在且不为零.∴设1122:2,:2l x m y l x m y =+=+由214,2y x x m y ⎧=⎨=+⎩得:21480y m y --=设()()1122,,,A x y C x y ,则1214y y m +=,∴12M y m =,又2122M x m =+,即()21122,2M m m +同理可得:()22222,2N m m +∴()()212212212212222MN m m k m m m m -==++-+,∴()211121:222MN y m x m m m -=--+即MN :()1212121y x m m m m =--⎡⎤⎣⎦+,∵12,l l 的斜率之积为1-,∴12111m m ⋅=-,即121m m =-,∴121:(4)MN y x m m =-+,即直线MN 过定点(4,0).10.已知抛物线()20x ay a =>,过点0,2a M ⎛⎫ ⎪⎝⎭作两条互相垂直的直线12,l l ,设12,l l 分别与抛物线相交于,A B 及,C D 两点,当A 点的横坐标为2时,抛物线在点A 处的切线斜率为1.(1)求抛物线的方程;(2)设线段,AB CD 的中点分别为,E F ,O 为坐标原点,求证直线EF 过定点.【答案】(1)24x y =;(2)证明见解析.【解析】【分析】(1)结合导数知识,利用切线斜率构造方程可得a ,由此可得抛物线方程;(2)将直线AB 方程代入抛物线方程中,结合韦达定理可确定中点坐标,同理可得CD中点坐标,利用直线方程两点式可得直线EF 方程,化简可知其过定点()0,4.(1)由2x ay =得:21y ax =,则2y x a '=,241x y a=∴==',解得:4a =,∴抛物线方程为:24x y =;(2)由题意知:直线12,l l 的斜率都存在且都不为零,由(1)知:()0,2M ,设直线:2AB y kx =+,代入24x y =得:2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,()21212444y y k x x k ∴+=++=+,AB ∴中点()22,22E k k +;12l l ⊥ ,1:2CD y x k ∴=-+,同理可得:CD 中点222,2F k k ⎛⎫-+ ⎪⎝⎭;EF ∴的方程为:()()222222222222k k y k x k k k ⎛⎫+-+ ⎪⎝⎭-+=-+,化简整理得:14y k x k ⎛⎫=-+ ⎪⎝⎭,则当0x =时,4y =,∴直线EF 恒过定点()0,4.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.11.在直角坐标系xOy 中,曲线:C 221x y +=经过伸缩变换x xy '='=⎧⎪⎨⎪⎩后的曲线为1C ,以x 轴正半轴为级轴,建立极坐标系.曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)若1C 上的一点P 到2C 的距离的最大,求距离的最大值及P 点的坐标.【答案】(1)1C :2213y x +=,2C :40x y +-=;(2)max d =,1322P ⎛⎫-- ⎪⎝⎭,.【解析】【分析】()1直接利用转换关系,把参数方程,直角坐标方程和极坐标方程之间进行转换;()2利用三角函数关系式的变换和点到直线的距离公式的应用求出结果.(1)解:由伸缩变换x xy '='=⎧⎪⎨⎪⎩得,代入曲线:C 221x y +=得:1C 的普通方程为2213y x +=,由极坐标方程sin 4πρθ⎛⎫+= ⎪⎝⎭sin y ρθ=,cos x ρθ=可得:2C 的直角坐标方程为40x y +-=.(2)解:直线2C 的普通方程为40x y +-=,设1C上的为点()cos P θθ,到2C 的距离为d =当且仅当()223k k Z πθπ=-+∈时,取得max d =,又因为1cos 23y 2x θθ⎧==-⎪⎪⎨⎪==-⎪⎩,即点P 的坐标为1322⎛⎫-- ⎪⎝⎭.12.已知椭圆C :2222+x y a b=1(a >b >0)经过点A (0,1),且右焦点为F (1,0).(1)求C 的标准方程;(2)过点(0,12)的直线l 与椭圆C 交于两个不同的点P .Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .证明:以MN 为直径的圆过y 轴上的定点.【答案】(1)2212x y +=(2)证明见解析【解析】【分析】(1)由已知得,c b ,再求得a ,即得椭圆方程;(2)由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,由直线,AP AQ 方程求出,M N 坐标,求出以MN 为直径的圆的方程,然后代入1212,x x x x +求得圆方程的常数项,从而可得y 的定点坐标.(1)由题意可得1,1c b ==从而22a =.所以椭圆的标准方程为2212x y +=.(2)证明:由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,将直线l 代入椭圆方程得()2242430k x kx ++-=,所以12122243,,4242k x x x x k k --+==++,直线AP 的方程为1111y y x x -=+,直线AQ 的方程为2211y y x x -=+.可得1212,0,,011x x M N y y ⎛⎫⎛⎫--⎪ ⎪--⎝⎭⎝⎭,以MN 为直径的圆方程为,21212011x x x x y y y ⎛⎫⎛⎫+++= ⎪⎪--⎝⎭⎝⎭,即()()221212121201111x x x x x y x y y y y ⎛⎫++++= ⎪----⎝⎭.①因为()()()1212122121212124111142122x x x x x x y y k x x k x x kx kx ==---++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭22212612842k k k -==--+++.所以在①中令0x =,得26y =,即以MN 为直径的圆过y轴上的定点(0,,13.已知抛物线C :()220y px p =>,过点()2,0R 作x 轴的垂线交抛物线C 于G ,H 两点,且OG OH ⊥(O 为坐标原点).(1)求p ;(2)过()2,1Q 任意作一条不与x 轴垂直的直线交抛物线C 于A ,B 两点,直线AR 交抛物线C 于不同于点A 的另一点M ,直线BR 交抛物线C 于不同于点B 的另一点N .求证:直线MN 过定点.【答案】(1)1p =(2)证明见解析【解析】【分析】(1)由题意知2RG OR ==,不妨设()2,2G ,代入抛物线方程中可求出p 的值,(2)设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫⎪⎝⎭,则可表示出直线AB ,AM ,BN 的方程,再由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-,再表示出直线MN 的方程,结合前面的式子化简可得结论(1)由题意知,2RG OR ==.不妨设()2,2G ,代入抛物线C 的方程,得44p =解得1p =.(2)由(1)知,抛物线C 的方程为22y x =.设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫ ⎪⎝⎭,则直线AB 的斜率为12221212222AB y y k y y y y -==+-.所以直线AB 的方程为2111222y y x y y y ⎛⎫=-+ ⎪+⎝⎭,即()121220x y y y y y -++=.同理直线AM ,BN ,MN 的方程分别为()131320x y y y y y -++=,()242420x y y y y y -++=,()343420x y y y y y -++=,由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-.又直线MN 的方程为()343420x y y y y y -++=,即1212441620x y y y y y ⎛⎫+++= ⎪⎝⎭.所以直线MN 的方程为()1212280y y x y y y +++=.把()121240y y y y -++=代入()1212280y y x y y y +++=,得()12122480y y x y y y +++=,()122)880(y y x y y +++=,所以由20x y +=,880y +=可得2x =,1y =-.所以直线MN 过定点()2,1-.14.已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于P ,A 两点,且PF λFA = .(1)若λ=4,求直线l 的方程;(2)设点E (a ,0),直线PE 与抛物线C 的另一个交点为B ,且PE EB μ=.若λ=4μ,求a的值.【答案】(1)4340x y --=或4340x y +-=(2)4【解析】【分析】(1)由4PF FA =得014y y =-,设直线l :1x my =+,与抛物线C :24y x =联立,结合韦达定理,即得解;(2)由PF λFA = 得01y y λ=-,结合014y y =-,可得204y λ=,再由PE EB μ= 得02y y μ=-,设直线PB :x ny a =+,与抛物线C :24y x =联立由韦达定理可得024y y a =-,故204y aμ=,又4λμ=,代入运算即得解(1)易知焦点F (1,0),设P (0x ,0y ),A (1x ,1y )由4PF FA =得014y y =-设直线l :1x my =+,与抛物线C :24y x =联立得2440y my --=,其中216160m ∆=+>,所以014y y =-由①②可得0141y y =⎧⎨=-⎩或0141y y =-⎧⎨=⎩又014y y m +=,所以34m =或34m =-所以直线l 的方程为314x y =+或314x y =-+.化简得4340x y --=或4340x y +-=(2)由PF λFA =得01y y λ=-又014y y =-可得204y λ=设点B (2x ,2y ),由PE EB μ= 得02y y μ=-设直线PB :x ny a =+,与抛物线C :24y x =联立得2440y ny a --=.所以216()0n a ∆=+>,024y y a=-故204y aμ=又4λμ=,所以2200444y y a=⋅,考虑到点P 异于原点,所以00y ≠,解得4a =此时2216()16(4)0n a n ∆=+=+>所以a 的值为415.平面直角坐标系xOy 中,双曲线22:136x y C -=的右焦点为F ,T 为直线:1l x =上一点,过F 作TF 的垂线分别交C 的左、右支于P 、Q 两点,交l 于点A .(1)证明:直线OT 平分线段PQ ;(2)若3PA QF =,求2TF 的值.【答案】(1)证明见解析(2)12+【解析】【分析】(1)设直线PQ 的方程为3x ty =+,设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与双曲线的方程联立,列出韦达定理,求出线段PQ 的中点N 的坐标,计算得出ON OT k k =,证明出O 、T 、N 三点共线,即可证得结论成立;(2)由3PA QF =得3PA QF = ,可得出1238x x -+=,变形可得出()()12212184384x x x x x x ⎧++=⎪⎨+-=⎪⎩,两式相乘结合韦达定理可求得2t 的值,再利用两点间的距离公式可求得2TF 的值.(1)解:依题意,3F x ==,即()3,0F ,设()1,2T t ,则直线PQ 的方程为3x ty =+,由22326x ty x y =+⎧⎨-=⎩得()222112120t y ty -++=,设()11,P x y 、()22,Q x y ,则()222210Δ14448210t t t ⎧-≠⎪⎨=-->⎪⎩,故212t ≠,由韦达定理可得1221221t y y t +=--,1221221y y t =-,所以()121226621x x t y y t +=++=--,又直线PQ 分别交C 的左、右支于P 、Q 两点,所以()()()22121212122963339021t x x ty ty t y y t y y t +=++=+++=-<-,故212t >所以PQ 中点为2236,2121t N t t ⎛⎫-- ⎪--⎝⎭,所以2ON OT k t k ==,故O 、T 、N 三点共线,即直线OT 平分线段PQ .(2)解:依题意,由3PA QF =得3PA QF =,则()12133x x -=-,即1238x x -+=,所以()12284x x x ++=,①,()121384x x x +-=,②①×②得()()21212123166416x x x x x x +++-=,所以()22222366963166416212121t t t t+⨯-⨯-=-⨯---,解得28374t +=,或28374t -=(舍去),此时,224412t TF =+=+【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.16.已知抛物线2:4E y x =,F 为其焦点,O 为原点,A ,B 是E 上位于x 轴两侧的不同两点,且5OA OB ⋅=.(1)求证:直线AB 恒过一定点;(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等;(3)在(2)的条件下,当F 为ABC 的内心时,求ABC 重心的横坐标.【答案】(1)证明见解析(2)见解析(3)173【解析】【分析】(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x =+⎧⎨=⎩,消x 得:2440y my n --=,124y y m +=,124y y n =-,结合向量的数量积,转化求解直线AB 的方程,推出结果.(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等即CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,根据斜率和为零,从而可得结果;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,由题意可得32AC CF AN NF ==,坐标化,结合点在抛物线上可得点的坐标,从而得到结果.(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x=+⎧⎨=⎩,消x 得:2440y my n --=,则124y y m +=,124y y n =-,由5OA OB ⋅= 得:21212()516y y y y +=,所以:1220y y =-或124y y =(舍去),即4205n n -=-⇒=,所以直线AB 的方程为5x my =+,所以直线AB 过定点(5,0)P .(2)由(1)知,直线AB 过定点(5,0)P 可设直线AB 的方程为5x my =+,此时124y y m +=,1220y y =-,设x 轴上定点C 坐标为(,0)t ,要使F 到直线AC 和BC 的距离相等,则CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,故0AC BC k k +=,即21210y yx t x t+=--,∴()()21120y x t y x t -+-=,∴()()1212250my y t y y +-+=,∴()40450m m t -+-=对任意m 恒成立,∴510t -=,5t =-,故在x 轴上有一定点C (5,0)-,使F 到直线AC 和BC 的距离相等;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,∵F 为ABC 的内心,∴32AC CF AN NF ==,32=,即2211126250x y x +-+=,又2114y x =,∴21122250x x -+=,同理22222250x x -+=,∴12,x x 是方程222250x x -+=的两个根,∴1222x x +=,∴三角形重心的横坐标为1251733x x +-=.17.已知椭圆C 的两个顶点分别为()2,0A -,()2,0B ,焦点在x (1)求椭圆C 的方程;(2)若直线()()10y k x k =-≠与x 轴交于点P ,与椭圆C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于Q ,求MN PQ的取值范围.【答案】(1)2214x y +=;(2)(4,【解析】【分析】(1)由顶点和离心率直接求,,a b c 即可;(2)先联立直线和椭圆方程,借助弦长公式表示出弦长MN ,再求出垂直平分线和Q 坐标,表示出PQ ,最后分离常数求取值范围即可.(1)由题意知2222,a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩可得1,2a b ==,故椭圆C 的方程为2214x y +=.(2)由()22114y k x x y ⎧=-⎪⎨+=⎪⎩,可得()2222418440k x k x k +-+-=,设()()1122,,,M x y N x y ,则22121222844,4141k k x x x x k k -+=⋅=++,()121222241k y y k x x k -+=+-=+,线段MN 的中点为2224,4141k k k k ⎛⎫- ⎪++⎝⎭,线段MN 的垂直平分线方程为22214()4141k k y x k k k --=--++,令0y =,得22341kx k =+,所以223,041k Q k ⎛⎫ ⎪+⎝⎭,又(1,0)P ,则22223114141k k PQ k k +=-=++,又12MN x x =-=所以2241141MN k k PQk +==++220,1331k k ≠∴<-<+ ,故MN PQ的取值范围为(4,.【点睛】(1)关键在于建立,,a b c 的关系式求解;(2)关键在于联立直线和椭圆方程,依次求出垂直平分线和弦长MN 、PQ ,转化成关于k 的代数式求范围即可.18.定义平面曲线的法线如下:经过平面曲线C 上一点M ,且与曲线C 在点M 处的切线垂直的直线称为曲线C 在点M 处的法线.设点()()000,0M x y y >为抛物线2:2(0)C y px p =>上一点.(1)求抛物线C 在点M 处的切线的方程(结果不含0x );(2)求抛物线C 在点M 处的法线被抛物线C 截得的弦长||AB 的最小值,并求此时点M 的坐标.【答案】(1)002y py x y =+(2);()p 【解析】【分析】(1)先化简求导确定切线斜率,再按照在点处的切线方程进行求解;(2)先联立法线和抛物线方程,借助弦长公式表示弦长,最后换元构造函数,求导确定最小值.(1)因为点()()000,0M x y y >在抛物线上方,所以由2:2(0)C y px p =>得y =py y'=,所以在点M 处的切线斜率0y y pk y y ='==,所求切线方程为000()py y x x y -=-,又202y x p=,故切线方程为2000()2y p y y x y p -=-,即002y p y x y =+.(2)点M 处的法线方程为2000()2y y y y x p p-=--,即220022y p p x y y p +=-+.联立抛物线2:2(0)C y px p =>,可得()2232000220y y p y y p y +-+=,可知0∆>,设()()1122,,,A x y B x y ,()2221212002,2p y y y y y p y +=-⋅=-+,所以322212202()y p AB y y y +⋅-=.令200t y =>,则3222()(0)t p AB t t +=>,令3222()()(0)t p f t t t +=>,1312222222223()()()(2)2()2t p t t p t p t p f t t t +⋅-++⋅-'=⨯=,所以()f t 在()20,2p 单调递减,在()22,p +∞单调递增,所以()2min ()2f t f p ==,即min AB =,此时点M的坐标为()p .【点睛】(1)关键在于化简出0y >时的抛物线方程,借助求导确定切线斜率;(2)写出法线方程,联立抛物线求弦长是通用解法,关键在于换元构造函数之后,借助导数求出最小值.19.已知点()11,0F -,()21,0F ,M 为圆22:4O x y +=上的动点,延长1F M 至N ,使得1MN MF =,1F N 的垂直平分线与2F N 交于点P ,记P 的轨迹为Γ.(1)求Γ的方程;(2)过2F 的直线l 与Γ交于,A B 两点,纵坐标不为0的点E 在直线4x =上,线段OE 分别与线段AB ,Γ交于,C D 两点,且2OD OC OE =⋅,证明:AC BC =.【答案】(1)22143x y +=;(2)证明见解析.【解析】【分析】(1)由线段垂直平分线和三角形中位线性质可证得12124PF PF F F +=>,可知P 点轨迹为椭圆,由此可得轨迹方程;(2)由已知可知24D C x x =;当l 斜率不存在时显然不成立;当l 斜率存在时,设l 方程,将其与椭圆方程联立,结合韦达定理可得AB 中点横坐标;设():0OE y k x k ''=≠,与直线l 和椭圆方程联立可求得34k k'=-,由此可整理得到C x ,与AB 中点横坐标相同,由此可得结论.(1)连接1,MO PF,PM 是1NF 的垂直平分线,1PF PN ∴=,1222PF PF PN PF NF ∴+=+=;,M O 分别为112,NF F F 中点,224NF MO ∴==,12124PF PF F F ∴+=>,P ∴点轨迹是以12,F F 为焦点,长轴长为4的椭圆,即2a =,1c =,23b ∴=,P ∴点轨迹Γ的方程为:22143x y +=;(2)2OD OC OE =⋅ ,即OD OE OC OD =,D EC Dx x x x ∴=,由题意知:0C x >,4E x =,24D C x x ∴=,①当直线l 斜率不存在时,即:1l x =,此时1C x =,2D x <,此时24D C x x =不成立;②当直线l 斜率存在时,设():1l y k x =-,()11,A x y ,()22,B x y ,由()221431x y y k x ⎧+=⎪⎨⎪=-⎩得:()22223484120k x k x k +-+-=,2122212283441234k x x k k x x k ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,AB ∴中点的横坐标为21224234x x k k +=+;设直线OE 的方程为:()0y k x k ''=≠,由()1y k x y k x ='=⎧⎨-⎩得:kx k k ='-,即C k x k k ='-;由22143y k xx y =⎧='⎪⎨+⎪⎩得:221234x k ='+,即221234D x k ='+;由24D C x x =得:212434k k k k =''+-,整理可得:34k k '=-,2122434324C x x kk x k k k+∴===++,C ∴为线段AB 的中点,AC BC ∴=.【点睛】关键点点睛:本题考查定义法求解轨迹方程、直线与椭圆综合应用问题;本题证明C 为AB 中点的关键是能够通过已知等式得到,C D 两点横坐标之间满足的等量关系,进而表示出AB 中点横坐标和C 点横坐标,证明二者相等即可.20.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F ,2F,离心率2e =,P为椭圆上一动点,12PF F △面积的最大值为2.(1)求椭圆E 的方程;(2)若C ,D 分别是椭圆E 长轴的左、右端点,动点M 满足MD CD ⊥,连结CM 交椭圆于点N ,O 为坐标原点.证明:OM ON ⋅为定值;(3)平面内到两定点距离之比是常数()1λλ≠的点的轨迹是圆.椭圆E 的短轴上端点为A ,点Q 在圆228x y +=上,求22QA QP PF +-的最小值.【答案】(1)22142x y +=;(2)见解析;4.【解析】【分析】(1)结合离心率和12PF F △面积的最大值列出关于,,a b c 的方程,解方程即可;(2)设直线CM 方程,写出点M 坐标,联立椭圆方程,求点N 坐标,通过向量数量积计算即可;(3)设点R 坐标,借助点Q 在圆228x y +=上,将2QA 转化成RA ,再借助椭圆定义将2PF 转化成14PF -,最后通过1,,R P F 三点共线求出最小值.(1)当P 为短轴端点时,12PF F △的面积最大,2bc =,222222,c a bc a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,a b c ===,故椭圆E 的方程为22142x y +=.(2)由(1)知,()2,0,(2,0)C D -,设直线():2CM y k x =+,11(,)N x y ,,(2,4)MD CD M k ⊥∴ ,联立221,42(2)x y y k x ⎧+=⎪⎨⎪=+⎩整理得()22222218840k x k x k +++-=,由21284221k x k --=+得2122421k x k -=+,1124(2)21ky k x k =+=+,222244(,)2121k k N k k -∴++,2222442442121k kOM ON k k k -⋅=⨯⨯++ ,故OM ON ⋅为定值4.(3)由题意(A ,设()(0,),,R m Q x y ,使2QA QR =,()()22222,4QR x y m QAx y +-==+,整理得222282833m m x y y --++=,又点Q 在圆228x y +=上,20,883m =∴⎨-⎪=⎪⎩解得m =,(0,R 由椭圆定义得124PF PF =-,2112(4)4QA QP PF QR QP PF QR QP PF +-=+--∴=++-,当1,,R P F三点共线时,(10,,(R F 22QA QP PF +-∴4.【点睛】(1)关键在于建立,,a b c 的方程;(2)关键在于设出直线方程,联立得出点N 坐标;(3)关键在于利用题目中给出的圆的定义将2QA 转化成RA ,再结合椭圆定义,将问题简化成共线问题.21.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知O 为坐标原点,P 为椭圆C 上的一个动点,过点E0)作OP 的平行线交椭圆C 于M ,N 两点,问:是否存在实数t (t >0),使得||,||,||EM t OP EN 构成等比数列?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,12t =【解析】【分析】(1)由题意可得2a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程中可求出2b ,从而可求得椭圆的方程,(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =,将直线方程代入椭圆方程中可求出22,x y ,则可得2OP ,设直线MN的方程为()()1122(,,,y k x M x y N x y =,将直线方程代入椭圆方程消去y ,利用根与系数的关系,再利用两点间的距离公式表示出||,||EM EN ,再计算||||EM EN 与2OP 比较可求出t 的值,②当OP 的斜率不存在时,可得||OP =MN的方程为x ||||EM EN 的值,进而可求出t (1)由题意可得24a =,所以2a =.因为点(1,32)在椭圆C 上,所以221914a b +=,解得23b =.所以椭圆C 的标准方程为22143x y +=.(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =.联立方程,得22143y kxx y =⎧⎪⎨+=⎪⎩解得221234x k =+,2221234k y k =+.解得()2222221211212||343434k k OP k k k+=+=+++,设直线MN的方程为()()1122(,,,y k x M x y N x y =-.联立方程,得(22143y k x x y ⎧=-⎪⎨⎪+=⎩化简,得()22223412120k x x k +=+-=.因为点E0)在椭圆内部,所0∆>,221213221212,3434k x x x x k k-+=⋅=++,所以1||EM x =-.同理可得2||EN x =所以()(())22121212||||113EM EN kx xk x x x x ⋅=+=+⋅++()()22222223112122413343434k k kk k k k +-=+⋅-+=+++,假设存在实数(0)t t >),使得||,||,||EM t OP EN 构成等比数列,则22||||||EM EN t OP ⋅=.所以()()22222311213434k k tk k ++=⋅++.解得214t=.四为1t >,所以12t =,②当OP 的斜率不存在时,||OP =MN 的方程为x =x =22143x y +=,得234y =.所以||||2EM EN ==,当||,||,||EM t OP EN 构成等比数列时,22||||||EM EN t OP ⋅=,即2334t =.因为0t >,所以12t =.综上所述,存在实数12t =,使得||,||,||EM t OP EN 构成等比数列.22.在平面直角坐标系xOy 中,曲线C 的参数方程为x y αααα⎧=-⎪⎨=+⎪⎩(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为()cos sin 3m m ρθθ++=l 与曲线C 交于A ,B 两点.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若AB =CD .【答案】(1)2212x y +=,30mx y m ++=;(2)4.【解析】【分析】(1)消参法求曲线C 的普通方程,公式法求直线l 的直角坐标方程.(2)由(1)所得普通方程,结合圆中弦长、半径、弦心距的几何关系求圆心到直线l 的距离,再利用点线距离公式列方程求参数m ,即可得直线的倾斜角大小,由AB 、CD 的关系求CD 即可.(1)由题意,消去参数α,得曲线C 的普通方程为2212x y +=.将cos x ρθ=,sin y ρθ=代入()cos sin 3m m ρθθ++得直线l的直角坐标方程为30mx y m ++=.(2)设圆心到直线l:30mx y m ++=的距离为d,则AB =3d =.3=,解得3m =-.所以直线l的方程为60x +=,则直线l 的倾斜角为30θ=︒.所以4cos30AB CD ==︒.23.在平面直角坐标系xOy中,已知直线340x y ++=与圆1C :222x y r +=相切,另外,椭圆2C :()222210x y a b a b +=>>的离心率为32,过左焦点1F 作x 轴的垂线交椭圆于C ,D 两点.且1CD =.(1)求圆1C 的方程与椭圆2C 的方程;(2)经过圆1C 上一点P 作椭圆2C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆1C 相交于M ,N 两点(异于点P ),求△OAB 的面积的取值范围.【答案】(1)225x y +=,2214x y +=;(2)4,15⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)由直线与圆的相切关系及点线距离公式求参数r ,即可得圆1C 的方程,根据椭圆离心率、22b CD a=及椭圆参数关系求出a 、b 、c ,即可得椭圆2C 的方程.(2)设()11,A x y 、()22,B x y 、()00,P x y ,讨论直线PA ,PB 斜率存在性,则直线PA 为()111y k x x y =-+、直线PB 为()222y k x x y =-+,联立椭圆方程并结合所得一元二次方程0∆=求1k 、2k ,进而得直线PA 为1114x x y y +=、直线PB 为2214x xy y +=,结合P 在直线PA ,PB 上有AB 为0014x xy y +=,联立椭圆方程,应用韦达定理、弦长公式、点线距离公式,结合三角形面积公式得0OAB S = .(1)由题设,圆1C :222x y r +=的圆心为()0,0,因为直线340x y ++=与圆1C相切,则r ==所以圆1C 的方程为225x y +=,因为椭圆2Cc e a ==c =,由221b CD a==,则22a b =,又222a b c =+,所以22324a a a =+,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=.综上,圆1C 为225x y +=,椭圆2C 为2214x y +=.(2)设点()11,A x y ,()22,B x y ,()00,P x y .当直线PA ,PB 斜率存在时,设直线PA ,PB 的斜率分别为1k ,2k ,则直线PA 为()111y k x x y =-+,直线PB 为()222y k x x y =-+.由()11122440y k x x y x y ⎧=-+⎨+-=⎩,消去y 得:()()()22211111111148440k x k y k x x y k x ++-+--=.所以()()()2222111111116441444k y k x k y k x ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()2221111114210x k x y k y -++-=,则11111122111444x y x y x k x y y --=-==-,所以直线PA 为()11114x y x x y y -=-+,化简得:22111144x x y y y x +=+,即1114x x y y +=.经验证,当直线PA 斜率不存在时,直线PA 为2x =或2x =-也满足1114x xy y +=.同理,可得直线PB 为2214x xy y +=.因为()00,P x y 在直线PA ,PB 上,所以101014x x y y +=,202014x xy y +=.综上,直线AB 为0014x xy y +=.由00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,消去y 得:()22200035816160y x x x y +-+-=.所以01220835x x x y +=+,21220161635y x x y -=+.所以12AB x =-=)20203135y y +==+.又O 到直线AB的距离d ==所以)20200311235OABy S y +=⋅+ t =,[]1,4t ∈,则24444OAB t S t t t∆==++,又[]44,5t t+∈,所以△OAB 的面积的取值范围为4,15⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:第二问,设点及直线PA ,PB 的方程,联立椭圆结合相切关系求参数关系,进而确定PA ,PB 的方程,由P 在直线PA ,PB 上求直线AB 的方程,再联立椭圆并应用韦达定理、弦长公式、点线距离公式求三角形面积的范围.24.已知点A ,B 是抛物线x 2=2py (p 为常数且p >0)上不同于坐标原点O 的两个点,且0OA OB ⋅= .(1)求证:直线AB 过定点;(2)过点A 、B 分别作抛物线的切线,两切线相交于点M ,记 OMA 、 OAB 、 OMB 的面积分别为S 1、S 2、S 3;是否存在定值λ使得22s =λS 1S 3?若存在,求出λ值;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,4λ=【解析】【分析】(1)设11(,)A x y ,22(,)B x y ,设直线AB 方程为y kx t =+,代入抛物线方程中,消去y ,。
2019年山东省各地市一模数学试题分类汇编(文科)——平面解析几何

2019年山东省各地市一模试题分类汇编平面解析几何一、选择题1.(枣庄一模3)双曲线的渐近线方程为()A. B.C. D.【答案】A【分析】由题意易知,双曲线的a和b,再利用双曲线的渐近线方程得出结果. 【解析】由题意双曲线可得双曲线的渐近线方程为故选A2.(泰安一模4)从抛物线在第一象限内的一点P引抛物线准线的垂线,垂足为M,从且,设抛物线的焦点为F,则直线PF的斜率为A. B. C. D.【答案】C【分析】先设出P点坐标,进而求得抛物线的准线方程,进而求得P点横坐标,代入抛物线方程求得P的纵坐标,进而利用斜率公式求得答案.【解析】解:设,依题意可知抛物线准线,,,,.直线PF的斜率为,故选:C.3.(菏泽一模5)圆与直线的位置关系是()A. 相交B. 相切C. 相离D. 以上三种情况都有可能【答案】C【分析】通过比较圆心到直线的距离和半径即可得到位置关系.【解析】圆的圆心坐标是,半径是,因为圆心到直线的距离,满足,所以圆与直线的位置关系是相离,故选:C4.(济南一模4)已知双曲线的一个焦点的坐标为,则该双曲线的渐近线方程为()A. B. C. D.【答案】A【分析】利用焦点的坐标,将双曲线的方程求出来,再求出其渐近线方程.【解析】双曲线的一个焦点为由得,解得双曲线方程为:,双曲线的渐近线方程为.故选A项.5.(潍坊一模4)已知双曲线:的一条渐近线方程为,则的离心率为()A. B. C. D.【答案】C【分析】利用双曲线的渐近线推出b,a关系,然后求解离心率即可.【解析】由已知双曲线C(a>0,b>0)的一条渐近线方程为y=2x,可得∴,,故选:C.6.(德州一模3)已知双曲线C :的焦距为10,点 在C 的渐近线上,则C 的方程是A.B.C.D.【答案】C【解析】解:双曲线C :的渐近线方程为双曲线C :的焦距为10,点 在C 的渐近线上, ,, 的方程为故选:C .7.(临沂一模4)已知双曲线的一个焦点F(2,0),一条渐近线的斜率为,则该双曲线方程为A.B.C.D.【答案】A【分析】由题意可得c =2,求得双曲线的渐近线方程可得a ,b 的关系式,解方程可得a ,b ,进而得到双曲线方程.【解析】由题意可得c =2,即a 2+b 2=4, 双曲线的渐近线方程为y =±x , 由题意可得, 解得a =1,b,则双曲线的方程为x 21,故选:A .8.(聊城一模4)已知双曲线()22210x C y a a-=>:的焦距为C 的渐近线方程为A. y x =B. y =C. y x =±D. 12y x =±【答案】D9.(枣庄一模6)若点为圆的弦的中点,则弦所在直线的方程为()A. B.C. D.【答案】C【分析】由题意,求出圆的标准方程,再求出圆心与点p确定直线的斜率为,再利用垂径定理求得弦AB直线斜率,再用点斜式求出方程.【解析】圆的标准方程为又因为点为圆的弦AB的中点,圆心与点P确定直线的斜率为故弦AB所在直线的斜率为2所以直线AB的直线方程:y-1=2(x-1)即2x-y-1=010.(淄博一模8)已知直线与双曲线交于两点,以为直径的圆恰好经过双曲线的右焦点,若的面积为,则双曲线的离心率为A. B. C. 2 D.【答案】D【分析】通过双曲线和圆的对称性,将的面积转化为的面积;利用焦点三角形面积公式可以建立与的关系,从而推导出离心率.【解析】由题意可得图像如下图所示:为双曲线的左焦点为圆的直径根据双曲线、圆的对称性可知:四边形为矩形又,可得:本题正确选项:11.(青岛一模8)已知双曲线:,为坐标原点,过的右顶点且垂直于轴的直线交的渐近线于,,过的右焦点且垂直于轴的直线交的渐近线于,,若与的面积比为,则双曲线的渐近线方程为()A. B. C. D.【答案】B【分析】由三角形的面积比等于相似比的平方,可得=,即可求出渐近线方程.【解析】由三角形的面积比等于相似比的平方,则=,∴,∴=,∴C的渐近线方程为y=±x,故选:B.12.(德州一模11)已知抛物线C:的焦点为F,直线与C交于A、在x 轴上方两点,若,则实数m的值为A. B. C. 2 D. 3【答案】D【解析】解:如图,联立,解得,在x轴上方,,则,,由,得.故选:D.13.(菏泽一模11)已知抛物线的准线与双曲线交于两点,点为抛物线的焦点,若为直角三角形,则双曲线的离心率是()A. B. C. D.【答案】D【分析】据抛物线方程求得准线方程,代入双曲线方程求得y,根据双曲线的对称性可知△FAB为等腰直角三角形,进而可求得A或B的纵坐标为2,进而求得a,利用a,b和c的关系求得c,则双曲线的离心率可得.【解析】抛物线的准线方程为,联立双曲线,解得,由题意得,所以,所以,故选:D14.(淄博一模11)已知直线:与圆:,直线与圆相交于不同两点.若,则的取值范围是( )A.B.C.D.【答案】B【分析】通过平方运算,将原不等式化简,求解出的取值范围;再利用直线与圆相交以及弦长的关系,求得的取值范围.【解析】圆方程可化为:,圆半径即设圆心到直线的距离为则又直线与圆相交,可得即综上所述:本题正确选项:15.(日照一模11)如图,已知点12,F F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,点A,B 为双曲线上关于原点对称的两点,且满足111,12AF BF ABF π⊥∠=,则双曲线的离心率为A BCD 【答案】A【解析】连结22,BF AF ,则四边形21AF BF 为矩形,所以12||||AF BF =,在1Rt ABF ∆中,1||2cos122BF c c π=⋅=, 2||2sin 122BF c π=⋅=,由12||||2BF BF a -=,, 故选A.16.(济宁一模12)已知双曲线的左、右焦点分别为 , ,圆与双曲线在第一象限内的交点为M ,若 则该双曲线的离心率为A. 2B. 3C.D.【答案】D【解析】解:由双曲线的定义可得 , 若 ,则 , 设 , ,由双曲线的定义可得,可得,又,即,由 ,可得:,由 , 化为 , 则. 故选:D .17.(烟台一模11)已知圆锥曲线()()2222121010,0C mx ny n m C px qy p q +=>>-=>>:与:的公共焦点为12,F F .点M 为12,C C 的一个公共点,且满足1290F MF ∠=,若圆锥曲线1C 的离心率为34,则2C 的离心率为A .92B .322C .32D .54【答案】B18.(临沂一模12)点A、B分别为椭圆的左、右顶点,F为右焦点,C 为短轴上不同于原点O的一点,D为OC的中点,直线AD与BC交于点M,且MF⊥AB,则该椭圆的离心率为A. B. C. D.【答案】B【分析】利用MF OC,MF OD,得到比例关系①,,②,①②得到a、c数量关系,可求得离心率.【解析】由题意如图:MF⊥AB,且OC⊥AB,∴MF OC,同理MF OD,∴①,,②①②得到:===,∴2(a﹣c)=c+a,∴a=3c,∴e.故选:B.二、填空题19.(枣庄一模13)抛物线上的点到其焦点的距离是_______.【答案】2【分析】将点的坐标代入抛物线方程,求得的值,然后利用抛物线的定义求得点到焦点的距离.【解析】将点代入抛物线的方程得,解得,故点的坐标为.由于,根据抛物线的定义有点到焦点的距离为.20.(菏泽一模15)已知椭圆的离心率为,则______.【答案】或【分析】将椭圆的方程化为标准方程,然后根据焦点在x 轴和y 轴两种情况,利用离心率公式计算即可. 【解析】将椭圆化为标准方程是,若,即,则椭圆的离心率为,解得:;若,即,则椭圆的离心率为,解得:.故答案为:或21.(日照一模15)已知直线223404210x y a x y x y -+=+--+=与圆相切,则实数a 的值为__________. 【答案】-12或8【解析】圆224210x x y y -+-+=的标准方程为()()22214x y -+-=,所以圆心坐标为(2,1),半径为2.由直线340x y a -+=与圆()()22214x y -+-=,所以210a +=,解得12a =-或8a =.22.(聊城一模15)已知直线22:12210l y kx C x y x y =++--+=与圆:相交于A,B两点,若AB =k =__________.【答案】±123.(烟台一模15)已知圆22450x y x ++-=的弦AB 的中点为()1,1-,直线AB 交x 轴于点P ,则PA PB 的值为 【答案】-524.(济宁一模15)若圆C : 上恰好有3个点到直线 的距离等于1,则 ______. 【答案】【解析】解:依题意得:圆心 到直线 的距离为1,,解得 .故答案为: .25.(聊城一模16)抛物线2:4C y x =的焦点为F ,动点P 在抛物线C 上,点()1,0A -,当PFPA取得最小值肘,直线AP 的方程为_________. 【答案】x-y+1=0或x+y+1=0 26.(青岛一模15)已知椭圆:的离心率为,,分别为椭圆的左,右顶点,为椭圆的右焦点,过的直线与椭圆交于不同的两点,,当直线垂直于轴时,四边形的面积为6,则椭圆的方程为__________. 【答案】【分析】根据题意和椭圆的几何性质得到四边形的面积为:结合离心率的值,构造方程得到结果.【解析】根据题意得到当直线和x 轴垂直时四边形可分割成两个三角形,底边为2a,高为半通径长此时四边形的面积为:再由离心率为,得到此时方程为:.27.(潍坊一模15)已知抛物线的焦点为,准线为,过的直线与抛物线及其准线依次相交于、、三点(其中在、之间且在第一象限),若,,则__________.【答案】2【分析】由已知|MN|=2|MF|可得MN所在直线当斜率,写出MN所在直线方程,与抛物线方程联立,求得G的横坐标,再由抛物线焦点弦长公式求解p.【解析】如图,过M作MH⊥l=H,由|MN|=2|MF|,得|MN|=2|MH|,∴MN所在直线斜率为,MN所在直线方程为y(x),联立,得12x2﹣20px+3p2=0.解得:,则|GF|,即p=2.故答案为:2.28.(淄博一模16)抛物线的焦点为,点为抛物线上的动点,点为其准线上的动点,当为等边三角形时,则的外接圆的方程为________.【答案】【分析】利用抛物线方程得到焦点坐标和准线方程,同时利用抛物线定义可知垂直于准线,通过假设点坐标,表示出点坐标,再利用等边三角形边长相等的关系,求得点和点;根据等边三角形外心与重心重合的特点,利用重心坐标公式表示出圆心坐标,再利用两点间距离公式求得半径,从而得到圆的方程.【解析】由抛物线方程可知:准线方程为,,设由抛物线定义可知:垂直于准线,可得:又,可得:解得:,当时,,为等边三角形外接圆圆心与重心重合外接圆圆心坐标为:,即外接圆半径为:同理可得:当时,圆心坐标为,半径为外接圆方程为:本题正确结果:29.(泰安一模16)已知双曲线的左焦点为F,A,B分别是C的左、右顶点,P为C上一点,且轴,过点A的直线l与线段PF交于点M,与y轴交于点E,直线BM与y轴交于点N,若(O为坐标原点),则双曲线C的离心率为______.【答案】3【分析】根据条件分别求出直线AE和BN的方程,求出N,E的坐标,利用的关系建立方程进行求解即可.【解析】解:因为轴,所以设,则,,AE的斜率,则AE的方程为,令,则,即,BN的斜率为,则BN的方程为,令,则,即,因为,所以,即,即,则离心率.故答案为:3.30.(济南一模16)设,分别是椭圆的左右焦点,为椭圆的下顶点,为过点,,的圆与椭圆的一个交点,且,则的值为__________.【答案】【分析】根据对称性可以找到圆心的坐标,利用,构造方程,得到的值. 【解析】设过三点的圆的圆心为是通径的一半,是圆中的一条弦,根据圆的对称性可知的坐标,,整理得整理得解得,舍去负根三、解答题31.(泰安一模20)已知椭圆的离心率,且经过点.求椭圆C的方程;过点且不与x轴重合的直线l与椭圆C交于不同的两点,,过右焦点F的直线AF,BF分别交椭圆C于点M、N,设,的取值范围.【分析】由题意可得,解得,,即可求出椭圆方程,设直线l的斜率为k,,,,则,,分两种情况,求出直线AG的方程,联立直线与椭圆的方程,由根与系数的关系的分析可得范围,即可得答案.【解析】解:由题意可得,解得,,则椭圆方程为,设直线l的斜率为k,,,,则,,由题意可知,直线l的斜率存在且不为0,由,可得,则,当AM与x轴不垂直时,直线AM的方程为,即,代入曲线C的方程又,整理可得,,,当AM与x轴垂直时,A点横坐标为,,显然也成立,,同理可得,设直线l的方程为,,联立,消去y整理得,由,解得,又,,即的取值范围是.32.(菏泽一模20)已知点为坐标原点,椭圆的左右焦点分别为,,且过点.(1)求椭圆的标准方程;(2)过点的直线交椭圆于两点,若,求直线的方程.【分析】(1)由已知条件找到a,b,c的等量关系进行计算即可得椭圆的标准方程;(2)设出直线的方程并与椭圆方程联立,由韦达定理化简,即可得到直线方程.【解析】(1)因为,所以,解得:①因为椭圆过点,所以,即②又③由①②③,解得:,,,所以椭圆的标准方程为(2)由(1)知,,故点的坐标为,显然直线的斜率存在,设为,则直线的方程为,设点联立,消去得:,所以,所以(★)且,,因为,,若,则,所以所以,所以所以所以所以所以,所以,解得:因为都满足(★)式,所以直线的方程为或即直线的方程为或33.(济南一模19)已知抛物线与椭圆有一个相同的焦点,过点且与轴不垂直的直线与抛物线交于,两点,关于轴的对称点为. (1)求抛物线的方程;(2)试问直线是否过定点?若是,求出该定点的坐标;若不是,请说明理由.【分析】(1)求出椭圆的焦点,容易求得抛物线的方程.(2)解法一:设直线的方程为与抛物线联立,得到横坐标关系,设直线的方程为与抛物线联立,得到横坐标关系,从而得到的关系,找出定点. 解法二:直线的方程为,与抛物线联立,得到纵坐标关系,设直线的方程为,与抛物线联立,得到纵坐标关系,从而可以解出,得到定点.【解析】(1)由题意可知抛物线的焦点为椭圆的右焦点,坐标为,所以,所以抛物线的方程为;(2)【解法一】因为点与点关于轴对称所以设,,,设直线的方程为,代入得:,所以,设直线的方程为,代入得:,所以,因为,,所以,即,所以直线的方程为,必过定点.【解法二】设,,,因为点与点关于轴对称,所以,设直线的方程为,代入得:,所以,设直线的方程为,代入得:,所以,因为,所以,即,所以直线的方程为,必过定点.34.(临沂一模20)已知抛物线E:上一点M到焦点F的距离为5.(1)求抛物线E的方程;(2)直线与圆C:相切且与抛物线E相交于A,B两点,若△AOB的面积为4(O 为坐标原点),求直线的方程.【分析】(1)由抛物线的定义求出p的值,即可得出抛物线的方程;(2)设直线l的方程为x=my+n,设点A(x1,y1)、B(x2,y2),根据直线l与圆C相切得出m与n所满足的第一个关系式,将直线l的方程联立,列出韦达定理,计算出|AB|以及原点O到直线l的距离d,然后利用三角形的面积公式计算出△AOB的面积,得出m与n所满足的第二个关系式,然后将两个关系式联立,求出m和n的值,即可得出直线l的方程.【解析】(1)由抛物线的定义知,所以,p=2,因此,抛物线E的方程为y2=4x;(2)由题意知,直线l与y轴不垂直,设直线l的方程为x=my+n.∵直线l与圆C相切,又圆C的圆心为(2,0),所以,,∴4m2=n2﹣4n,设点A(x1,y1)、B(x2,y2),由,消去x得,y2﹣4my﹣4n=0,由韦达定理得y1+y2=4m,y1y2=﹣4n.则,又原点O到直线l的距离为,∴,∴,∴(m2+n)n2=4,又4m2=n2﹣4n,解得n=±2.当n=2时,m2=﹣1不成立;当n=﹣2时,m2=3,∴.经检验,所求直线方程为,即.35.(青岛一模20)已知抛物线:的焦点为,点在上,的中点坐标为.(1)求抛物线的方程;(2)若直线与抛物线相切于点(异于原点),与抛物线的准线相交于点,证明:.【分析】(1)设,,因为的中点坐标为,所以解得参数值p即可得到方程;(2)对抛物线求导,代入点P得到直线l的方程,令y=-2,得到点Q的坐标,再根据向量点积的坐标表示得到结果.【解析】(1)由题知,设,因为的中点坐标为,所以,解得:,.所以抛物线的方程为:.(2)由,得,设点,则直线的方程为,即为,令,得,所以,,所以,所以.36.(潍坊一模20)如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,,连接延长至点,使得,点的轨迹记为曲线.(1)求曲线的方程;(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.【分析】(1)设,,则,,且,通过,转化求解即可.(2)设M(x1,y1),N(x2,y2),由题意知直线的斜率存在且不为零,设直线的方程为,代入椭圆方程整理得关于x的一元二次方程,假设存在点Q,满足题意,则其充要条件为,则点Q的坐标为(x1+x2,y1+y2).由此利用韦达定理结合点Q在曲线上,得到关于k的方程求解即可.【解析】(1)设,,则,,由题意知,所以为中点,由中点坐标公式得,即,又点在圆:上,故满足,得.(2)由题意知直线的斜率存在且不为零,设直线的方程为,因为,故,即①,联立,消去得:,设,,,,,因为为平行四边形,故,点在椭圆上,故,整理得,②,将①代入②,得,该方程无解,故这样的直线不存在.37.(淄博一模19)已知点的坐标分别为,三角形的两条边所在直线的斜率之积是.(I)求点的轨迹方程;(II)设直线方程为,直线方程为,直线交于,点关于轴对称,直线与轴相交于点,求面积关于的表达式.【分析】(Ⅰ)设点的坐标为,由点,求得,利用斜率之积是,化简可得结果;(Ⅱ)直线的方程为,求得点,则,将与联立,得,求得的坐标,可得直线的方程,求得点坐标,由两点间距离公式与三角形面积公式可得结果.【解析】(Ⅰ)设点M的坐标为(x,y),因为点A的坐标是(-2,0),所以,直线AM的斜率同理,直线BM的斜率由已知又化简,得点M的轨迹方程(Ⅱ)直线AM的方程为x=my-2(m≠0),与直线l的方程x=2联立,可得点,故. 将x=my-2与联立,消去x,整理得,解得y=0,或.由题设,可得点.由,可得直线MQ的方程为,令y=0,解得,故.所以.所以△APD的面积:【点睛】本题主要考查轨迹方程的求法以及直线与椭圆的位置关系,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.38.(枣庄一模20)已知椭圆:()的左、右焦点分别为,过点的直线交于,两点,的周长为,的离心率(Ⅰ)求的方程;(Ⅱ)设点,,过点作轴的垂线,试判断直线与直线的交点是否恒在一条定直线上?若是,求该定直线的方程;否则,说明理由.【分析】(I)由的周长为求得椭圆的a,再离心率,然后求得椭圆的方程;(II)设直线l:x=my+4,,联立方程,运用韦达定理,再写出直线BD的方程为:与的交点,最后求解计算出与m无关,得出答案.【解析】解:(I)由椭圆的定义,的周长为,即4a=20,解得a=5,又椭圆的离心率,解得c=4所以所以椭圆方程;(II)显然过点的直线l不垂直y轴,设l:x=my+4,联立,得韦达定理:直线的方程为直线BD的方程为:解得又点在直线l 上,所以再代入解得又代入解得(与m 无关)故直线与直线BD 的交点恒落在直线上.39.(日照一模20)已知直线l 的方程为21202m x my F F --=,点,分别为椭圆2221x C y m+=:的左、右焦点,其中m>1. (1)当直线l 过右焦点F 2时,求直线l 的方程;(2)设直线l 与椭圆C 交于A ,B 两点,若原点O 在以线段AB 为直径的圆内,求实数m 的取值范围.【解析】解:(1)直线经过2F,22m =,得22m =.又1m >,m ∴=10x --=. (4)分(2)设12,),,)Ax y B x y 12((, 由222221m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩消去x ,得222104m y my ++-=,212121,.282m m y y y y ∴+=-=-由2228(1)80,4m m m ∆=--=-+>得28m <, 解得m -< 原点O 在以线段AB 为直径的圆内, 12120x x y y ∴+<.………………….8分2222121212121()()<228m m x x y y my my y y m m ∴+=+++=(+1)(-4)0,240m ∴-<,解得22m -<<. 9分又1m >, 12m ∴<<,所以实数m 的取值范围是(1,2) . ………………12分 40.(德州一模20)已知椭圆T :的左、右焦点分别为 、 ,离心率为,过 且与x 轴不重合的直线l 交椭圆T 于A ,B 两点,△ 的周长为8.求椭圆T 的标准方程;已知直线 : ,直线 : 设 与椭圆T 交于M 、N 两点, 与圆C : 交于P 、Q 两点,求 △△ 的值. 【解析】解: 由题意可得 ,即 ,由,可得 ,所以 , 椭圆C 的方程为:,由可得 ,△, 即 , 设 , , 又,,点O到直线的距离,,△圆C:,圆C的圆心到直线的距离,,,△△.△41.(济宁一模20)已知椭圆:的离心率为,且椭圆C过点.求椭圆C的标准方程;过椭圆C的右焦点的直线l与椭圆C交于A、B两点,且与圆:过点,求的取值范围.【解析】解:由题意可得,解得,,,椭圆C的标准方程,椭圆C的右焦点为,若直线l的斜率不存在,则此时l的方程为,则,,,,,,则,若直线l的斜率存在,设l的方程为,设,,由可得,,,, 圆心O 到直线l 的距离 ,, 综上所述 的取值范围42.(聊城一模19)已知椭圆()2222:10x y C a b a b+=>>的经过点()0,1P ,.(1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 相交于A ,B 两点,且90APB ∠=. 证明:直线l 经过定点. 【解析】43.(烟台一模19)已知F 为抛物线()2:20C y px p =>的焦点,过F 的动直线交抛物线C 于A ,B 两点.当直线与x轴垂直时,4AB =. (1)求抛物线C 的方程;(2)设直线AB 的斜率为1且与抛物线的准线l 相交于点M ,抛物线C 上存在点P 使得直线PA,PM,PB 的斜率成等差数列,求点P 的坐标. 【解析】解:(1)因为(,0)2p F ,在抛物线方程22y px =中,令2px =,可得y p =±. …2分于是当直线与x 轴垂直时,24AB p ==,解得2p =. ………3分 所以抛物线的方程为24y x =. ………………………………4分 (2)因为抛物线24y x =的准线方程为1x =-,所以(1,2)M --. ………5分 设直线AB 的方程为1y x =-,联立241y x y x ⎧=⎨=-⎩消去x ,得2440y y --=.设11(,)A x y ,22(,)B x y ,则124y y +=,124y y =-. ………7分 若点00(,)P x y 满足条件,则PB PA PM k k k +=2, 即0010200102221y y y y y x x x x x +--⋅=++--, ……………………………………8分 因为点,,P A B 均在抛物线上,所以222012012,,444y y y x x x ===.代入化简可得00122200120122(2)24()y y y y y y y y y y y +++=++++, ………10分将124y y +=,124y y =-代入,解得02y =±. ………11分 将02y =±代入抛物线方程,可得01x =.于是点(1,2)P ±为满足题意的点. ………………………………………12分。
平面解析几何经典题(含答案)

平面解析几何一、直线的倾斜角与斜率1、直线的倾斜角与斜率(1)倾斜角的范围000180(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1//l2k1k2。
特别地,当直线l1,l2的斜率都不存在时,l1与l2的关系为平行。
(2)两条直线垂直如果两条直线l1,l2斜率存在,设为k1,k2,则l1l2k1k21注:两条直线l1,l2垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果l1,l2中有一条直线的斜率不存在,另一条直线的斜率为0时,l1与l2互相垂直。
二、直线的方程1、直线方程的几种形式名称方程的形式已知条件局限性点斜式不包括垂直于x轴的直线为直线上一定点,k为斜率斜截式k为斜率,b是直线在y轴上的截距不包括垂直于x轴的直线两点式不包括垂直于x轴和y轴的是直线上两定点直线截距式a是直线在x轴上的非零截距,b是直不包括垂直于x轴和y轴或线在y轴上的非零截距过原点的直线一般式A,B,C为系数无限制,可表示任何位置的直线三、直线的交点坐标与距离公式三、直线的交点坐标与距离公式3.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
4.几种距离(1)两点间的距离平面上的两点间的距离公式(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算(二)直线的斜率及应用利用斜率证明三点共线的方法:已知A(x,y),B(x,y),C(x,y),若x1x2x3或k AB k AC,则有A、B、C三点共112233线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面解析几何测试题(文科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)1a =“”是“直线x+y =0和直线0x ay -=互相垂直”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件(2)设A 、B 是x 轴上的两点,点P 的横坐标为2,且||||PB PA =,若直线PA 的方程为01=+-y x ,则直线PB 的方程是 ( )A .05=-+y xB .012=--y xC .042=--y xD .072=-+y x(3)直线1y x =-上的点到圆C :224240x y x y ++-+=的最近距离为( )A. 1B.C. 1D. 1(4)0y m -+=与圆22220x y x +--=相切,则实数m 等于( )A .B .C .-D .-(5)若圆22680x y x y +--=的过点(3 5),的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .B .C .D .(6)设椭圆1C 的焦点在x 轴上且长轴长为26,且离心率为513;曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( )A .2222143x y -=B .22221135x y -=C .2222134x y -=D .222211312x y -=(7)双曲线221mx y +=的虚轴长是实轴长的2倍,则m =( )A .14-B .4-C .4D .14(8).抛物线y x =2的准线方程是 ( )A.014=+xB.014=+yC.012=+xD.012=+y(9)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4(10)若点P 在抛物线24y x =上,则该点到点(21)Q -,的距离与到抛物线焦点距离之和取得最小值时的坐标为( )A.114⎛⎫- ⎪⎝⎭,B.114⎛⎫ ⎪⎝⎭,C.(12),D.(12)-, (11).我国于07年10月24日成功发射嫦娥一号卫星,并经四次变轨飞向月球.嫦娥一号绕地球运行的轨迹是以地球的地心为焦点的椭圆(地球半径忽略不计).若第一次变轨前卫星的近地点到地心的距离为m ,远地点到地心的距离为n ,第二次变轨后两距离分别为2m 、2n (近地点是指卫星到地面的最近距离,远地点是最远距离),则第一次变轨前的椭圆的离心率比第二次变轨后的椭圆的离心率 ( )A.变大B.变小C.不变D.以上都有可能(12)已知椭圆221102x y m m +=--,长轴在y 轴上. 若焦距为4,则m 等于 ( ) A.4. B.5. C.7. D.8. 二、填空题:本大题共4小题, 每小题4分,共16分.(13)已知实数0a >,直线l 过点22P -(,),且垂直于向量(3,3)m =-,若直线l 与圆02222=-+-+a a ax y x 相交,则实数a 的取值范围是________________ .(14)已知12, F F 为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于 A B 、两点 若2212F A F B +=,则AB = .(15)在平面直角坐标系xoy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点P(2,4),则该抛物线的方程是 .(16)已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 .三、解答题:本大题共6小题. 共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知圆C :012822=+-+y y x ,直线l :02=++a y ax . (I) 当a 为何值时,直线l 与圆C 相切;(Ⅱ) 当直线l 与圆C 相交于A 、B 两点,且22=AB 时,求直线l 的方程.(18)(本小题满分12分)已知平面区域00240x y x y ⎧⎪⎨⎪+-⎩≥≥≤恰好被面积最小的圆222:()()C x a y b r -+-=及其内部所覆盖.(Ⅰ)试求圆C 的方程;(Ⅱ)若斜率为1的直线l 与圆C 交于不同两点,A B ,且满足CA CB ⊥,求直线l 的方程.(19)(本小题满分12分)在平面直角坐标系xoy 中,直线l 与抛物线2y =2x 相交于A 、B 两点. 求证:“若直线l 过点T (3,0),则→--OA →--⋅OB =3”是真命题.(20)(本小题满分12分)已知直线)0(1012222>>=+=-+b a by a x y x 与椭圆相交于A 、B 两点,M 是线段AB 上的一点,BM AM -=,且M 点在直线1: 2l y x =上. (Ⅰ)求椭圆的离心率;(Ⅱ)若椭圆的焦点关于直线l 的对称点在单位圆122=+y x 上,求椭圆的方程. (21)(本小题满分12分)在平面直角坐标系xOy 中,经过点(0且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P 和Q .(I )求k 的取值范围;(II )设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A B ,,问:是否存在实数k ,使得向量OP OQ +与AB 共线?给出判断并说明理由.(22)(本小题满分14分)如图,已知(10)F ,,直线:1l x =-,P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且⋅=⋅(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M . (1)已知1MA AF λ=,2MB BF λ=,求12λλ+的值;(2)求MA MB 的最小值.参考答案一、选择题:CADCB AABBD C D 二、填空题(13)82<<a ; (14)8; (15)28y x =; (16)3.三、解答题(17)解:将圆C 的方程012822=+-+y y x 配方得标准方程为4)4(22=-+y x , 则此圆的圆心为(0 , 4),半径为2. (Ⅰ) 若直线l 与圆C 相切,则有21|24|2=++a a . 解得43-=a .(Ⅱ) 解:过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎪⎪⎪⎩⎪⎪⎪⎨⎧====+++=.221,2,1|24|22222AB DA AC DA CD a a CD 解得1,7--=a . ∴直线l 的方程是0147=+-y x 和02=+-y x .(18)解:(Ⅰ)由题意知此平面区域表示的是以(0,0),(4,0),(0,2)O P Q 构成的三角形及其内部,且△OPQ 是直角三角形, 所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),所以圆C 的方程是22(2)(1)5x y -+-=. ………………6分 (Ⅱ)设直线l 的方程是:y x b =+.因为CA CB ⊥,所以圆心C 到直线l,=. 解得:1b =-所以直线l的方程是1y x =-(19)解:设过点T(3,0)的直线l 交抛物线22y x =于点A 11(,)x y 、B 22(,)x y . (Ⅰ)当直线l 的钭率不存在时,直线l 的方程为3x =,此时, 直线l 与抛物线相交于点A(3,6)().B(3,-6),∴⋅=3. (Ⅱ)当直线l 的钭率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,由22(3)y xy k x =⎧⎨=-⎩得 2122606ky y k y y --=⇒=-.又 ∵ 22112211,22x y x y ==, ∴2121212121()34⋅=+=+=OA OB x x y y y y y y ,综上所述,命题“若直l 过点T(3,0),则⋅=3” 是真命题. (20)解:(Ⅰ)由-=知M 是AB 的中点, 设A 、B 两点的坐标分别为),(),,(2211y x B y x A由02)(:.1,0122222222222=-+-+⎪⎩⎪⎨⎧=+=-+b a a x a x b a b y ax y x 得.22221212222122)(,2b a b x x y y b a a x x +=++-=++=+,∴M 点的坐标为),(222222b a b b a a ++. 又M 点在直线l 上, 02222222=+-+∴b a b b a a . 2222222)(22c a c a b a =∴-==∴, .22==∴a c e (Ⅱ)由(Ⅰ)知c b =,不妨设椭圆的一个焦点坐标为(,0)F b ,设(,0)F b 关于直线l x y 21=上的对称点为),(00y x , 则有⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧=⨯-+-=⋅--.5453:.0222,1210000000b y b x y b x b x y 解得. 由已知222200341,()()155x y b b +=∴+=.12=∴b ,∴所求的椭圆的方程为1222=+y x . (21)解:(Ⅰ)由已知条件,直线l的方程为y kx =代入椭圆方程得22(12x kx +=. 整理得221102k x ⎛⎫+++=⎪⎝⎭① 直线l 与椭圆有两个不同的交点P 和Q 等价于2221844202k k k ⎛⎫∆=-+=-> ⎪⎝⎭,解得2k <或2k >.即k的取值范围为2⎛⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭,,∞∞(Ⅱ)设1122()()P x y Q x y ,,,,则1212()OP OQ x x y y +=++,, 由方程①,12x x +=. ②又1212()y y k x x +=++ ③而(01)()A B AB =,,.所以OP OQ +与AB共线等价于1212)x x y y +=+,将②③代入上式,解得2k =.由(Ⅰ)知k <或k >,故没有符合题意的常数k (22)解:由..QP QF FP FQ =得:(10).(2)(1).(2)x y x y y +-=--,,,,,化简得2:4C y x =.……4分(Ⅱ)(1)设直线AB 的方程为:1(0)x my m =+≠.设11()A x y ,,22()B x y ,,又21M m ⎛⎫--⎪⎝⎭, 联立方程组241y x x my ⎧=⎨=+⎩,,,消去x 得:2440y my --=,2(4)120m ∆=-+>,121244y y m y y +=⎧⎨=-⎩,.由1MA AF λ=,2MB BF λ=得: 1112y y m λ+=-,2222y y m λ+=-,整理得:1121my λ=--,2221my λ=--, 12122112m y y λλ⎛⎫∴+=--+ ⎪⎝⎭121222.y y m y y +=--242.4m m =---0=.……10分 (2)解:(212.1M M MA MB y y y y =--221212(1)()M M m y y y y y y =+-++2224(1)44m m m m =+-+⨯+224(1)4m m ⎛⎫=++ ⎪⎝⎭2214(2)4216m m ⎛=+++= ⎝≥. 当且仅当221m m=,即1m =±时等号成立,所以MA MB ⋅最小值为16. ……14分。