职高数学平面解析几何练习

合集下载

平面解析几何职高专题

平面解析几何职高专题

选择题在平面直角坐标系中,点P(3, -2)关于x轴对称的点Q的坐标是()。

A. (-3, 2)B. (3, 2)C. (-3, -2)D. (2, -3)直线y = 2x + 3与x轴的交点坐标为()。

A. (-3/2, 0)B. (0, 3)C. (-3, 0)D. (3/2, 0)若直线l的斜率为-1,且过点(1, 2),则直线l的方程是()。

A. y = -x + 3B. y = -x - 1C. y = x + 1D. y = x - 3圆x² + y² = 9与直线y = 2x的交点个数为()。

A. 0B. 1C. 2D. 无法确定两点A(1, 2)和B(4, 5)之间的距离是()。

A. √10B. 3√2C. 5D. √26填空题若点A(-2, y)在直线y = 3x + 1上,则y = _______。

直线y = mx + b与直线y = 2x平行,且过点(1, 3),则m = _______,b = _______。

圆(x - 2)² + (y + 3)² = 4的圆心坐标是_______。

在平面直角坐标系中,点P到x轴的距离为4,到y轴的距离为3,且点P在第三象限,则点P的坐标是_______。

已知两直线l₁: y = 2x + 1 和l₁: y = kx - 3 互相垂直,则k = _______。

简答题求直线y = 2x - 4与坐标轴围成的三角形的面积。

已知两点A(1, 2)和B(3, 4),求线段AB的中点坐标。

已知圆的方程为x² + y² - 6x - 8y + 21 = 0,求该圆的圆心和半径。

证明:两条平行线分别被第三条直线所截,所得的对应线段成比例。

已知直线l过点P(1, 2)且与直线y = -x + 3垂直,求直线l的方程。

2020版高职高考数学总复习课件:第八章 平面解析几何(A)章练习

2020版高职高考数学总复习课件:第八章 平面解析几何(A)章练习

A.-3
B.0
C.3
D.-2
9.如果双曲线的实半轴长是2,焦距是6,那么该双曲线的离心率
为 (C)
A. 3 B. 6 C. 3 D.2
2
2
2
10.椭圆 x2 y2 1的焦距为2,则m的值等于
(B )
m4
A.6
B.3或5
C.6或5
D.8
11.若双曲线
x a
2 2
y2 5
1与椭圆 x2 y2 25 16
C.相离
(C ) D.不能判断
7.中心在原点以坐标轴为对称轴,离心率为
1 3
,长轴为6的椭圆方程
是 (B)
x2 A.
y2
1
98
x2 B.
y2
1或
x2
y2
1
98
89
C. x2 y2 1 36 32
D. x2 y2 1或 x2 y2 1 36 32 32 36
8.直线y=x+b经过圆x2+y2+4x-2y-4=0的圆心,则b= ( C )

:由23xx
2y 3y
1 5
0 0
得交点为(1,1)
又直线6x 2 y 5 0,
斜率为3,
所求直线的斜率为 1 3
由点斜式得所求直线方程为y 1 1 (x 1)即x 3y 2 0 3
22.已知椭圆的离心率e= 4 ,一条准线的方程是y= 25 ,求此椭圆的
标准方程.
5
(2)设直线l交抛物线于A(x1, y1), B(x2 , y2 )
2x
y2 y2 4x
0
得x2
3x
1
0
x1 x2 3, x1x2 1 Q (x1 x2 )2 (x1 x2 )2 4x1x2 5, ( y1 y2 )2 [2(x1 x2 )]2 20

中职教育数学《平面解析几何-复习课》练习题

中职教育数学《平面解析几何-复习课》练习题

第八章 平面解析几何(知识点)1. 直线:(1) 倾斜角α:一条直线l 向上的方向与x 轴的正方向所成的最小正角叫这条直线的倾斜角。

其范围是),0[π(2) 斜率:①倾斜角为090的直线没有斜率;②αtan =k(倾斜角的正切)③经过两点),(),,(222111y x P y x P 的直线的斜率1212x x y y K --= )(21x x ≠(3) 直线的方程①两点式:121121x x x x y y y y --=-- ② 截距式 1=+b y a x③ 斜截式:b kx y += ④点斜式:)(00x x k y y -=- ⑤一般式:0=++C By Ax注:1.若直线l 方程为3x+4y+5=0,则与l 平行的直线可设为3x+4y+C=0;与l 垂直的直线可设为4X-3Y+C=0 2.求直线的方程最后要化成一般式。

(4) 两条直线的位置关系①点),(00y x P 到直线0=++C By Ax 的距离:2200||B A C By Ax d +++=②0:1=++C By Ax l 与0:2=++C By Ax l 平行2221||BA C C d ++=2. 圆的方程(1) 标准方程:222)()(r b y a x =-+-(0>r)其中圆心),(b a ,半径r 。

(2) 一般方程:022=++++F Ey Dx y x (0422>-+F E D )圆心(2,2E D --) 半径:2422F EDr -+=(4)直线和圆的位置关系:主要用几何法,利用圆心到直线的距离d 和半径r 比较。

相交⇔<r d ; 相切⇔=r d ; 相离⇔>r d3. 二次曲线:定义一:平面内到一个定点和一条定直线的距离的比等于定长e 的点的集合,①当0<e<1时,是椭圆.②当e>1时,是双曲线.③当e=1时,是抛物线. 4. 椭圆注:等轴双曲线:(1)b a =(2)离心率2=e (3)渐近线x y ±=6. 抛物线(如右图示) 注:(1)p 的几何意义表示焦点到准线的距离。

中职数学解析几何部分重要题型练习

中职数学解析几何部分重要题型练习

数学试题解析几何解答题2x 1.已知椭圆4v2r1,过椭圆的左焦点且平行于向量v 1 ,1的直线交椭圆于A ,B两点, 3求弦AB的长.2.设直线y x2x 22与双曲线y21交于A , B两点,求弦AB的长.23.已知抛物线y 2px p 0的焦点为F,过焦点F的弦AB的长为4p,求直线AB的斜率.24.已知抛物线y 2px p 0与直线y x 1相交于A ,B两点,若AB的中点在圆x2 y25上,求抛物线的方程.2uuu uuu 5.已知过抛物线y 2x的焦点且倾斜角为45的直线交抛物线于A ,B两点,求OAgOB .2 27.已知双曲线—工1上一点P到它的一个焦点F i的距离为15,求点P到另16 9圆,求实数k的取值范围.距离.2 26.求椭圆和1上的点到直线l:x y 7 0的最长距离和最短距离.2X若方程一k 91表示双曲线,求实数k的取值范围;若该方程表示焦点在y轴上的椭个焦点F2的59.在抛物线 y 12x 上求一点P ,使该点P 到焦点的距离等于 9.2 2x V10.若点P 是椭圆 1上的一点,F 1和F 2是焦点,且 F 1PF 2 60,求 FfF 2的面25 16积.11.已知双曲线的中心在原点,焦点F,和F 2在坐标轴上,离心率为,2,且双曲线过点2, 2 ,( 1)求双曲线的方程;(2)若点 M 在第一象限而且是渐近线上的点,又MF 1 MF 2,求点M 的坐标;(3)求 MhF 2的面积.2 212.已知双曲线与椭圆—也 9 251有公共焦点F 1和F 2,它们的离心率之和为14上,(1)求双曲线的标准方程;(2)设点P 是椭圆与双曲线的一个交点,求cos F 1PF 2的值.数学试题解析几何解答题(答案) 23.已知抛物线y 2px p 0的焦点为F ,过焦点F的弦AB的长为4 p,求直线AB的斜2x 1.已知椭圆4 2 y3 1,过椭圆的左焦点且平行于向量 1 ,1的直线交椭圆于A ,B两点,率.解:设A, B两点的坐标为x1 , y1, x2, y2因为AB 4p,由抛物线的定义可得,所以x1x23p4,b23,c21,所以c 1由y22px p 0可得,抛物线的焦点F的坐标为所以左焦点坐标为1,01 X1所以直线AB的方程为设A,B两点的坐标为X1,y1由题意列方程组,得3x24y y X 1所以X18X2 7,1gX287 22X1X2X1X24x1x222288 *y2X1X249所以AB讨X1X22y1得,yX2126449因此所求弦22 y2求弦AB的长.2解:由方程—42 y32a0 0,即y设直线AB的斜率为k,则其方程为y2.设直线y,y20,整理得32 2887 492887x2 8x 8 0 由题意列方程组,得所以x-i x2因此所求直线4.已知抛物线242pxpk,整理得kx -2pk2kAB的斜率为1或1.2p223p,整理得k2y 2px p 0与直线yx2 y25上,求抛物线的方程.k2x2pk22p2| 2p k423k,解得k1相交于A , B两点,若AB的中点在圆24AB的长为一.7解:设A, B两点的坐标为x1 , y1, x2, y2则其中点的坐标为x22x 2与双曲线xr y 1交于A,B两点,求弦AB的长.X1 X22由题意,列方程组,解:由题意列方程组, 即x2 8x 10 8x 10X2所以2pX,整理得x 1 x2 2 2p x 1 0所以X1X28, X1gX210X X22X2X24x1x26440 24*y22X12X224所以AB V X12X2y2y2』24 2 朋2 2得x 2y 2 0,整理得x2y x 20,设A,B两点的坐标为x1 , y1,因此所求弦AB的长为4 3 .y1所以X2 2px1 1 x21 x-1y2AB的中点坐标为p 1因为该中点在圆x2解得p 1或p 2x2 2 2p2y 5上,所以 2小p 2pp2 5(不合题意,舍去),所以所求抛物线的方程为y2 2 px2 uuu uuu5.已知过抛物线 y 2x 的焦点且倾斜角为 45的直线交抛物线于 A ,B 两点,求OAgOB . 解:由 y 2x 得 2p 2 , -12 2 1所以抛物线的焦点坐标为 1,02又直线的倾斜角为45,所以斜率为1,因此直线AB1的方程为y x —2设A,B 两点的坐标为x 1,1 - X 2 ,22y 2xA由题意列方程组,得〔,整理得x 2 3x1 0 y x -42所以 x 1 x 2 3, x ,gx 21 41 111 1yey ? x ! - x 22“22 X 1 X 242uur urn所以 OAgOB 为,y g x 2,y 2 NX 2 y 1y 2 3 1 22 26. 求椭圆一1上的点到直线l : x y 7 0的最长距离和最短距离.916解:1作直线l :x y 7 0的平行线并与椭圆相切, 则所作平行线方程可设为 x y D 0由题意列方程组,得16x 2 9y 2 144 0 整理得 25x 2 18Dx 9D 2144 0x y D 0因为所作直线x y D 0与椭圆相切,所以 =324D 24 25 9D 2 144解得D 2 25 ,D527.已知双曲线—-16 < 291上一点P 到它的一个焦点 F 1的距离为15,求点P 到另一个焦点F 2的距离.2 2解:由双曲线方程—y 21,得 a 16 ,a 4,2a816 9根据双曲线的定义可知,PF 1 | PF 2 8所以PF 28PF18 15PF 2 23或 PF 27因此所求点P 到另一个焦点F 2的距离为23或7.2 28.若方程 xy1表示双曲线,求实数k 的取值范围;k 94 k若该方程表示焦点在 y 轴上的椭圆,求实数k 的取值范围.解: (1) 若方程表示双曲线,则须满足条件k-9 4 k解得4 k 9.k 9 0(2) 若方程表示焦点在 y 轴上的椭圆, 则须满足条件4 k 0k 94 kk 9解得k 4,即k 9.k R9.在抛物线 y 12x 上求一点P ,使该点P 到焦点的距离等于 9.解:设点 P 坐标为 x , y ,由 y 2 12x ,得 2 p 12 , p 6,-P 32因为P 到焦点的距离为9,则由抛物线的定义可知 P 到准线的距离也为 9 所以9 — x 3 x, x 6,把x 6代入方程y 12x ,解得y 6、22所以所求点P 的坐标为 6,6'- 2或6 - 2 .所以所作直线方程x y 5 0或x y 5因此所求最长距离为 6 2,最短距离为 2 .72 210.若点P 是椭圆 — — 1上的一点,F i 和F 2是焦点,且F 1PF 2 60,求 FfF 2的面25 16积. 2 2 解:由椭圆方程-y 1 得:a 2 25 ,b 2 16 c 2 25 16 9,2c 625 16 由椭圆的定义可知|PF 1 PF 2 2a 10 JF 1F 2I 2c 6 UU LU MF 1uuuu MF 2,可得MR uuuu2 x , x ,MF 2所以 2 x 2 xF 1F2所以S2c 4UULLT UUJU ULUUrMF 2 即 MF 1gMF 2 0x 2 0,解得x 2 2 ,x 2,所以点M 的坐标为,2,22 F 1F 2 2PF 1 2PF2 PF 1 P 2平2在 PF 1F 2中,由余弦定理,得 2 PF 」]PF 2 cos602 PF 1 | PF 2|PF ^ PF 2MF 1F 2F 1F 2 近2门.12.已知双曲线与椭圆2 2£ y 9251有公共焦点F 1和F 2,它们的离心率之和为 145 (1)求双曲所以 36 100 3PF 1 PF 2,解得 PF j|PF 264 3 线的标准方程;(2)设点P 是椭圆与双曲线的一个交点,求cos F 1PF 2的值.所以S PRF 2 1 P F JI PF 2 sin602 1 64 16、.3 2 3 2 3 11.已知双曲线的中心在原点,焦点 F 1和F 2在坐标轴上,离心率为 、2,且双曲线过点 2, 2 ,(1)求双曲线的方程; (2)若点 M 在第一象限而且是渐近线上的点,又 解:(1)由椭圆方程xy1得,c 225 9 16 ,c 4925由椭圆方程容易求得椭圆的离心率为 4-,所以双 良曲线的离心率为14 上2,5554由此可求得双曲线中2, a22,所以b2 2c a 16 412,焦点为在y 轴,2 2MF 1 MF 2,求点M 的坐标;(3)求 MF^?的面积. 解:(1)由双曲线离心率为 ,2可知所求双曲线为等轴双曲线, 设其方程为x 2 y 2 a 2或y 2 x 2 a 2,因为双曲线经过点 2, 2 , 所以4 2 a 2或2 4 a 2,可得a 2 2或a 2 2 (不合题意舍去) 因此所求双曲线方程为 x 2 y 2 2 . (2)由题意双曲线的渐近线方程为 y x 因为点M 在第一象限而且是渐近线上的点,所以可设其坐标为 x , x x 022所以双曲线的方程为y —1.412(2)设| PF 」|PF 』PF 1 PF 210 根据双曲线和椭圆的定义可得:PF 1 PF 24解得 PF 1 7 , PF 2 3,又 F 1F 2 2c 8所以 cos F 1PF 2PF 『|PF 2『|吋222 2 272 32 82 1 2|PF 1|PF 22 7 37由双曲线方程x 2y 22,得c 22 2 4 ,c 21因此所求值为 一.所以两焦点坐标为2 ,0, 2,07。

高职单招数学复习第八章-平面解析几何

高职单招数学复习第八章-平面解析几何
【点评】 数形结合是一种重要的数学思想方法,在解析几何中使用
更为广泛,它可以使定性的问题直观化.在解题时要注意这一点.
【同步训练】
一、选择题
1.下列各点中,不在直线2x-y+3=0上的点是(
A.(-1,1)
B.(-2,-1)
C.(-5,-7)
【答案】D
)
D.(-3,3)
2.直线3x-2y+6=0不经过
(-2,0),则 k=
(
)
A.-3
B.3
C.-
D.
【答案】A
6.若直线 l 过点( ,-3),且倾斜角为 30° ,则直线 l 的方程为 (
A.y= x-4
B.y= x+2
C.y= x-6
D.y= x+4

【答案】A

)
3
7.过点(2,3)且斜率为 的直线方程是
(
4
.
x2 x1
2.直线的方程
(1)直线方程一览表
名称
已知条件
直线l上一点P(x0,y0)
点斜式
斜率k
斜截式
直线的斜率k
直线在y轴上的截距b
直线在x轴上的截距a
截距式
直线在y轴上的截距b
一般式
直线方程
说明
y-y0=k(x-x0)
不能表示平行于
y轴的直线(即斜
率不存在)
y=kx+b
不能表示平行于
y轴的直线(即斜
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】D
(
)
3.若直线经过点A(3,2)和点B(0,-1),则直线的斜率为(

职高数学平面解析几何练习

职高数学平面解析几何练习

职高数学平面解析几何练习
1.判断下列命题的真假:
(1)点A(-8,8)在曲线х²-у²=0上
(2)一动点到两坐标轴的距离相等的点的轨迹方程方程是х=у
(3)已知点A(1,0)B(-5,0),线段AB的垂直平分线的方程是х=-2
(4)直线垂直平分线的方程是у=3х+5与直线у=-х+5的交点不是点(0,5)(5)直线ι在х轴y轴上的截距分别为a,b(a≠b),则ι的斜率是b/a (6)对任意的m值,直线у=6х+m都与直线у=-1/6х垂直
(7)对任一不等于2的实数k,直线2x+3y+k=0与直线2x+3y+2=0平行
(8)通过坐标原点的任一条直线都是椭圆b²х²+a²y²=a²b²的对称轴
2.解答题
(1)过点(3,5)(5,-5)的直线方程是
(2)过点P(1,1)且与直线2х+3y+1=0平行的直线方程是
(3)椭圆11х²+20y²=220的焦距等于
(4)抛物线х²=4y的准线方程是
3.已知ΔABC顶点的坐标A(3,5)B(0,0)C(6,2),BC边的中点为M,求直线AB,AC 和AM的方程
4.已知点A(2,0)与点B(8,0)动点M与点A的距离等于它与点B距离的⅓,求动点M的轨迹方程
5.已知直线x-2y+2=0与椭圆x²+4y²=4相交于A,B两点,求A,B两点的距离12.求到点A(-1,0)和直线x=3距离相等的点的轨迹方程。

高职高考数学课程平面解析几何测试

高职高考数学课程平面解析几何测试

第五编平面解析几何第十章直线与方程第一节直线的倾斜角1.直线的倾斜角:(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k 表示。

即0t an (90)k αα=≠。

斜率反映直线与x 轴的倾斜程度。

当[) 90,0∈α时,0≥k ;当() 180,90∈α时,0<k ;当 90=α时,k 不存在。

②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=;注意下面四点:(1)当21x x =时,公式上边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)当直线l 与x 轴平行或重合时,00t an ;0=︒=︒=k α(4)当直线l 与x 轴垂直时,︒=90α;k 不存在。

由此可知,一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在2.两条直线平行或垂直当111:b x k y l +=,222:b x k y l +=时,(1)212121,//b b k k l l ≠=⇔;(2)12121-=⇔⊥k k l l 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(3)1212,k k b b ==⇔1l 与2l 重合;(4)12k k ≠⇔1l 与2l 相交。

另外一种形式:一般的,当1111110:0(,)l A x B y C A B ++=不全为,与2222220:0(,)l A x B y C A B ++=不全为时,(1)122112210//120A B A B l l B C B C -=-≠⎧⇔⎨⎩,或者1221122100A B A B A C A C -=⎧⎨-≠⎩。

职高数学平面几何、立体几何练习题

职高数学平面几何、立体几何练习题

高二职高数学期末考试试题Ⅰ卷(选择题)一、选择题(共15题,每题3分,共45分)1.在平面中,直线012:1=++y x l 和01-2:2=+y x l 的位置关系是( ) A .垂直 B .相交但不垂直 C .平行 D .重合2.圆0y 10-22=+y x 的圆心到直线0543:=-+y x l 的距离等于( ) A .52 B .3 C .75D .15 3.已知A )0,(x B (-2,3)且|AB|=5,则x =( ) A .-2 B .3 C .-1或6 D . -6或24.直线062y 3x =++的斜率为k ,在y 轴上的截距为b ,则有( )A .3,23-k ==bB .2,23-k -==bC .3,23-k -==b D .3,23k ==b 5以C (-3,4)为圆心,且与直线05y -2x =+相切的圆的方程是( ) A .25)4(3)-(x 22=++y B .5)4(3)(x 22=+++y C .25)4(3)-(x 22=-+y D .5)4(3)(x 22=-++y6.已知直线1-2x y :l =,圆C :4x 22=+y ,直线与圆的位置关系是( ) A .相离 B .相切 C .相交且不过圆心 D .相交且过圆心 7.下列图形中不一定是平面图形的是( )A .三角形B .平行四边形C .四条线段首尾连接成的四边形D .梯形 8.两条直线都与一个平面平行,则这两条直线的位置关系是( ) A .异面 B .相交 C .平行 D .可能共面,也可能异面9.已知二面角βα-a -为o60,P 是平面α内一点,P 到β的距离为m ,则P 在β内的射影到a 的距离为( )A .m 21B .m 3C .m 33D .m 23 10.下面四个命题(1) .一条直线和一个平面平行,就和这个平面内所有直线平行。

(2) .过一个平面外一点,只能引一条直线和这个平面平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

职高数学平面解析几何练习
1.判断下列命题的真假:
(1)点A(-8,8)在曲线х²-у²=0上
(2)一动点到两坐标轴的距离相等的点的轨迹方程方程是х=у
(3)已知点A(1,0)B(-5,0),线段AB的垂直平分线的方程是х=-2
(4)直线垂直平分线的方程是у=3х+5与直线у=-х+5的交点不是点(0,5)(5)直线ι在х轴y轴上的截距分别为a,b(a≠b),则ι的斜率是b/a (6)对任意的m值,直线у=6х+m都与直线у=-1/6х垂直
(7)对任一不等于2的实数k,直线2x+3y+k=0与直线2x+3y+2=0平行
(8)通过坐标原点的任一条直线都是椭圆b²х²+a²y²=a²b²的对称轴
2.解答题
(1)过点(3,5)(5,-5)的直线方程是
(2)过点P(1,1)且与直线2х+3y+1=0平行的直线方程是
(3)椭圆11х²+20y²=220的焦距等于
(4)抛物线х²=4y的准线方程是
3.已知ΔABC顶点的坐标A(3,5)B(0,0)C(6,2),BC边的中点为M,求直线AB,AC 和AM的方程
4.已知点A(2,0)与点B(8,0)动点M与点A的距离等于它与点B距离的⅓,求动点M的轨迹方程
5.已知直线x-2y+2=0与椭圆x²+4y²=4相交于A,B两点,求A,B两点的距离12.求到点A(-1,0)和直线x=3距离相等的点的轨迹方程。

相关文档
最新文档