(完整word版)算法设计与分析期末考试卷及答案a

合集下载

《算法设计与分析》考试题目及答案(DOC)

《算法设计与分析》考试题目及答案(DOC)

《算法设计与分析》考试题目及答案(DOC)D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。

A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。

A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。

A.B.C.D. void backtrack (int t){if (t>n) output(x);elsefor (int i=t;i<=n;i++) {swap(x[t], x[i]);if (legal(t)) backtrack(t+1); swap(x[t], x[i]);}}void backtrack (int t){if (t>n) output(x);elsefor (int i=0;i<=1;i++) {x[t]=i;if (legal(t)) backtrack(t+1); }}10. 回溯法的效率不依赖于以下哪一个因素?(C )A.产生x[k]的时间;B.满足显约束的x[k]值的个数;C.问题的解空间的形式;D.计算上界函数bound的时间;E.满足约束函数和上界函数约束的所有x[k]的个数。

F.计算约束函数constraint的时间;11. 常见的两种分支限界法为(D)A. 广度优先分支限界法与深度优先分支限界法;B. 队列式(FIFO)分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式(FIFO)分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性S(n)是指(B)A.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数。

B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和。

C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数。

算法设计与分析 期末试卷 A卷(完整含答案)

算法设计与分析 期末试卷 A卷(完整含答案)
参考解答:若字符 a~h 出现的频率恰好是前 8 个 Fibonacci 数,它们的 Haffman 编码树如下图所示。
4
0 0 0 0 0 0 0 a 1 b 1 c 1 d 1 e 1 f 1
装 订 线
考试科目: 考试时间: 年级专业 三(16) 四(24)
算法设计与分析 120 分钟
姓名 一(20) 二(25)
五(15)
总分
得分 评阅人
说明: (1)请勿漏填学号姓名等信息。本试卷仅一份,请将答案直接填于试卷上,莫将试卷当草稿,想好了再 写,若空白的位置不够,标注清楚后可以写反面; (2)答题时,对算法的描述可以采用文字、公式、图、伪代码、实例说明等混合形式。请注意表达应条 理清晰,思想简洁,勿长篇累述不得要领。
后续n-i个元素比较并判定是否逐个插入堆, 最坏情况为 O(( n i ) log i ) , 最后对i个堆中元素逐个输出堆顶 元素需要 O(i log i ) ,合计后略去低阶项为 O(n log i ) 。
得分 二、简答题(共5小题,每题5分,共25分) 1、请将下列函数的阶按上升顺序排列。 (5分)
算法 1 Loop1(n) s=0; for(i=1;i<=n;i++) for(j=1;j<=i;j++) s=s+i*j;
算法1:O(
);
算法 2 Loop2(n) s=0; for(i=1;i<=n2;i++) for(j=1;j<=n;j++) s=s+i*j;
算法2:O(
);
1
算法 3 Loop3(n) s=0; for(i=1;i<=n2;i++) for(j=1;j<=i;j++) s=s+i*j;

(完整word版)计算机算法设计与分析期末试题4套(含答案)

(完整word版)计算机算法设计与分析期末试题4套(含答案)

(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。

确定性:算法中每一条指令必须有确切的含义。

不存在二义性。

只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。

输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。

输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。

算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。

效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。

一般这两者与问题的规模有关。

经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。

利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。

在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。

不能让迭代过程无休止地重复执行下去。

迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。

算法设计与分析 期末试卷 A卷 完整含答案

算法设计与分析 期末试卷 A卷 完整含答案

装订线华南农业大学期末考试试卷(A卷) 2012学年第1学期 考试科目:算法设计与分析考试类型:(闭卷)考试 考试时间:120 分钟学号姓名年级专业题号一(20) 二(25) 三(16) 四(24) 五(15) 总分得分评阅人说明:(1)请勿漏填学号姓名等信息。

本试卷仅一份,请将答案直接填于试卷上,莫将试卷当草稿,想好了再写,若空白的位置不够,标注清楚后可以写反面;(2)答题时,对算法的描述可以采用文字、公式、图、伪代码、实例说明等混合形式。

请注意表达应条理清晰,思想简洁,勿长篇累述不得要领。

得分一、填空题(1~3题每空1分,第4题每空2分,共20分,结果直接填于划线处)1、化简下面f(n)函数的渐进上界表达式。

(5分)nnnf32/)(21,则____)(_________))((1OnfO322)(nnf,则____)(_________))((2OnfO33log)(nnf ,则____)(_________))((3OnfO2log42)(nnf ,则____)(_________))((4OnfOnnf3log)(5,则____)(_________))((5OnfO参考解答:)3())((1nOnfO ;)2())((2nOnfO ;)(log))((3nOnfO ;)())((24nOnfO ;)())((5nOnfO 。

2、用大O符号和关于n的渐进函数来表征如下算法Loop1至Loop3的运行时间。

(3分)算法1:O( );算法2:O( );12算法3:O( )参考解答:算法1:)(2n O ;算法2:)(3n O ;算法3:)(4n O 。

3、假设算法A 的计算时间为n n T 2)( ,现在一慢一快的两台计算机上测试算法A ,为解决规模n 的问题慢机运行算法A 花费t 秒,而另一台快机速度是慢机的256倍,则在快机上算法A 同样运行t 秒能解决n1规模,则n1和n 的关系为:n1= ;若算法B 的计算时间为2)(n n T ,其余条件不变,则n1= 。

《算法分析与设计》期末试题及参考答案

《算法分析与设计》期末试题及参考答案

《算法分析与设计》期末试题及参考答案一、简要回答下列问题:1.算法重要特性是什么?1.确定性、可行性、输入、输出、有穷性2.2.算法分析的目的是什么?2.分析算法占用计算机资源的情况,对算法做出比较和评价,设计出额更好的算法。

3.3.算法的时间复杂性与问题的什么因素相关?3. 算法的时间复杂性与问题的规模相关,是问题大小n的函数。

4.算法的渐进时间复杂性的含义?4.当问题的规模n趋向无穷大时,影响算法效率的重要因素是T(n)的数量级,而其他因素仅是使时间复杂度相差常数倍,因此可以用T(n)的数量级(阶)评价算法。

时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。

5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?5. 最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输入实例下的算法所耗时间。

最坏情况下的时间复杂性取的输入实例中最大的时间复杂度:W(n) = max{ T(n,I) } , I∈Dn平均时间复杂性是所有输入实例的处理时间与各自概率的乘积和:A(n) =∑P(I)T(n,I) I∈Dn6.简述二分检索(折半查找)算法的基本过程。

6. 设输入是一个按非降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x比较,如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]<x,则A[i:(i+j)/2-1]找x,否则在A[ (i+j)/2+1:j] 找x。

上述过程被反复递归调用。

7.背包问题的目标函数和贪心算法最优化量度相同吗?7. 不相同。

目标函数:获得最大利润。

最优量度:最大利润/重量比。

8.采用回溯法求解的问题,其解如何表示?有什么规定?8. 问题的解可以表示为n元组:(x1,x2,……x n),x i∈S i, S i为有穷集合,x i∈S i, (x1,x2,……x n)具备完备性,即(x1,x2,……x n)是合理的,则(x1,x2,……x i)(i<n)一定合理。

算法分析期末试题集答案(6套)

算法分析期末试题集答案(6套)

《算法分析与设计》期末复习题(一)一、选择题1.应用Johnson法则的流水作业调度采用的算法是(D)A. 贪心算法B. 分支限界法C.分治法D. 动态规划算法2.Hanoi塔问题如下图所示。

现要求将塔座A上的的所有圆盘移到塔座B上,并仍按同样顺序叠置。

移动圆盘时遵守Hanoi塔问题的移动规则。

由此设计出解Hanoi塔问题的递归算法正确的为:(B)Hanoi塔3.动态规划算法的基本要素为(C)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用4. 算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。

A.渐进下界B.渐进上界C.非紧上界D.紧渐进界E.非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6. 能采用贪心算法求最优解的问题,一般具有的重要性质为:(A)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。

A.广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。

A.广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。

A.B.C. D.10. 回溯法的效率不依赖于以下哪一个因素?(C )A. 产生x[k]的时间;B. 满足显约束的x[k]值的个数;C. 问题的解空间的形式;D. 计算上界函数bound 的时间;E. 满足约束函数和上界函数约束的所有x[k]的个数。

《算法设计与分析》考试题目及答案(DOC)

《算法设计与分析》考试题目及答案(DOC)

Typew cleft = c - cw; // 剩余容量
Typep b = cp;
// 结点的上界
// 以物品单位重量价值递减序装入物品
while (i <= n && w[i] <= cleft) {
cleft -= w[i];
b += p[i];
i++;
} // 装满背包
if (i <= n) (b += p[i]/w[i] * cleft);
cg(n) }; B. O(g(n)) = { f(n) | 存在正常数 c 和 n0 使得对所有 n n0 有:0 cg(n)
f(n) };
C. (g(n)) = { f(n) | 对于任何正常数 c>0,存在正数和 n0 >0 使得对所有 n n0 有:0 f(n)<cg(n) };
f(n)个单位时间。用 T(n)表示该分治法解规模为|P|=n 的问题所需的计算时
间,则有:T (n)

kT (n
O(1) / m)
f
(n)
n 1 n 1
通过迭代法求得
T(n)的显式表达式为:T (n)

nlogm k

logm n1
C.最优子结构性质与重叠子问题性质 D. 预排序与递归调用
7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。 A. 广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先
8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间 树。
A. 广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先

(完整版)算法设计与分析考试题及答案

(完整版)算法设计与分析考试题及答案

一、填空题(20分)1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。

2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。

3.某一问题可用动态规划算法求解的显著特征是____________________________________。

4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。

5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。

6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。

7.以深度优先方式系统搜索问题解的算法称为_____________。

8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。

9.动态规划算法的两个基本要素是___________和___________。

10.二分搜索算法是利用_______________实现的算法。

二、综合题(50分)1.写出设计动态规划算法的主要步骤。

2.流水作业调度问题的johnson算法的思想。

3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。

4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.填空题(每空2分,共30分)1.算法的时间复杂性指算法中 的执行次数。

2.在忽略常数因子的情况下,O 、Ω和Θ三个符号中, 提供了算法运行时间的一个上界。

3.设D n 表示大小为n 的输入集合,t(I)表示输入为I 时算法的运算时间, p(I)表示输入I 出现的概率,则算法的平均情况下时间复杂性A(n)= 。

4.分治算法的时间复杂性常常满足如下形式的递归方程:⎩⎨⎧>+===00n n , g(n)af(n/c)f(n)n n , d )n (f 其中,g(n)表示 。

5. 分治算法的基本步骤包括 。

6.回溯算法的基本思想是 。

7.动态规划和分治法在分解子问题方面的不同点是 。

8.贪心算法中每次做出的贪心选择都是 最优选择。

9.PQ 式的分支限界法中,对于活结点表中的结点,其下界函数值越小,优先级越 。

10.选择排序、插入排序和归并排序算法中, 算法是分治算法。

11.随机算法的一个基本特征是对于同一组输入, 不同的运行可能得到 的结果。

12.对于下面的确定性快速排序算法,只要在步骤3前加入随机化步骤 ,就可得到一个随机化快速排序算法,该随机化步骤的功能是 。

算法 QUICKSORT输入:n 个元素的数组A[1..n]。

输出:按非降序排列的数组A 中的元素。

考生 信 息 栏 ______学院______系______专业______年级姓名______学号_____ 装 订 线1. quicksort(1, n)end QUICKSORT 过程 quicksort(A, low, high) // 对A[low..high]中的元素按非降序排序。

2. if low<high then 3. w=SPLIT(A, low, high) //算法SPLIT 以A[low]为主元将A[low..high]划分成两部 //分,返回主元的新位置。

4. quicksort (A, low, w -1) 5. quicksort (A, w+1, high) 6. end if end quicksort 13.下面算法的基本运算是 运算,该算法的时间复杂性阶为Θ( )。

算法 SPLIT 输入:正整数n ,数组A[1..n]。

输出:…。

i=1 x=A[1] for j=2 to n if A[j]<=x then i=i+1 if i ≠j then A[i]↔A[j] end if end forA[i]↔A[1]w =ireturn w, Aend SPLIT二.计算题和简答题(每小题7分,共21分)1.用O 、Ω、Θ表示函数f 与g 之间阶的关系,并分别指出下列函数中阶最低和最高的函数:(1) f (n)=100 g(n)=100n(2) f(n)=6n+n ⎣⎦n log g(n)=3n(3) f(n)= n/logn -1 g(n)=n 2(4) f(n)=22n n + g(n)=n 3(5) f(n)= n 3log g(n)= n 2log2.下面是一个递归算法,其中,过程pro1和pro2的运算时间分别是1和n log 2。

给出该算法的时间复杂性T(n)满足的递归方程,并求解该递归方程,估计T(n)的阶(用Θ表示)。

算法 EX1输入:正整数n ,n=2k 。

输出:…ex1(n)end EX1过程 ex1(n)if n=1 thenpro1(n)else考 生信 息 栏 ______学院______系______专业______年级姓名______学号_____ 装 订 线 pro2(n) ex1(n/2) end if return end ex1 3.用Floyd 算法求下图每一对顶点之间的最短路径长度,计算矩阵D 0,D 1,D 2和D 3,其中D k [i, j]表示从顶点i 到顶点j 的不经过编号大于k 的顶点的最短路径长度。

三.算法填空题(共34分) 1.(10分)设n 个不同的整数按升序存于数组A[1..n]中,求使得A[i]=i 的下标i 。

下面是求解该问题的分治算法。

算法 SEARCH 输入:正整数n ,存储n 个按升序排列的不同整数的数组A[1..n]。

输出:A[1..n]中使得A[i]=i 的一个下标i ,若不存在,则输出 no solution 。

i=find ( (1) ) if i>0 then output i else output “no solution” end SEARCH 过程 find (low, high) // 求A[low..high] 中使得A[i]=i 的一个下标并返回,若不存在,//则返回0。

if (2) then return 0elsemid=⎣⎦2/)high low (+if (3) then return midelseif A[mid]<mid thenreturn find( (4) )elsereturn (5)end ifend ifend ifend find2.(10分) 下面是求解矩阵链乘问题的动态规划算法。

矩阵链乘问题:给出n 个矩阵M 1, M 2, …, M n , M i 为r i ⨯r i+1阶矩阵,i=1, 2, …, n ,求计算M 1M 2…M n 所需的最少数量乘法次数。

记 M i, j =M i M i+1…M j , i<=j 。

设C[i, j], 1<=i<=j<=n, 表示计算M i, j 的所需的最少数量乘法次数,则⎪⎩⎪⎨⎧<++==+≤<j i , }r r r j] C[k,1]-k ,i [C {min j i , 0j] ,i [C 1j k i jk i 算法 MATCHAIN输入:矩阵链长度n, n 个矩阵的阶r[1..n+1], 其中r[1..n]为n 个矩阵的行数,r[n+1]为第n 个矩阵的列数。

输出:n 个矩阵链乘所需的数量乘法的最少次数。

考 生 信息 栏 ______学院______系______ 专业 ______年级姓名______学号_____ 装订线for i=1 to n C[i, i]= (1)for d=1 to n -1for i=1 to n -dj= (2) C[i, j]= ∞ for k=i+1 to j x= (3) if x<C[i, j] then (4) =x end if end for end for end for return (5) end MATCHAIN 3.(14分) 下面是用回溯法求解马的周游问题的算法。

马的周游问题:给出一个nxn 棋盘,已知一个中国象棋马在棋盘上的某个起点位置(x0, y0),求一条访问每个棋盘格点恰好一次,最后回到起点的周游路线。

(设马走日字。

) 算法 HORSETRA VEL 输入:正整数n ,马的起点位置(x0, y0),1<=x0, y0<=n 。

输出:一条从起点始访问nxn 棋盘每个格点恰好一次,最后回到起点的周游路线;若问题无解,则输出no solution 。

tag[1..n, 1..n]=0 dx[1..8]={2, 1, -1, -2, -2, -1, 1, 2} dy[1..8]={1, 2, 2, 1, -1, -2, -2, -1} flag=falsex=x0; y=y0 ; tag[x, y]=1m=n*ni=1; k[i]=0while (1) and not flagwhile k[i]<8 and not flagk[i]= (2)x1= x+dx[k[i]]; y1= y+dy[k[i]]if ((x1,y1)无越界and tag[x1, y1]=0) or ((x1,y1)=(x0,y0) and i=m) then x=x1; y=y1tag[x, y]= (3)if i=m then flag=trueelsei= (4)(5)end ifend ifend whilei=i-1(6)(7)end whileif flag then outputroute(k) //输出路径else output “no solution”end HORSETRA VEL《算法设计与分析》期考试卷(A)标准答案 一. 填空题:1. 元运算 考生 信 息 栏 ______学院______系______ 专业 ______年级姓名______ 学号_____ 装订线四.算法设计题(15分) 1. 一个旅行者要驾车从A 地到B 地,A 、B 两地间距离为s 。

A 、B 两地之间有n 个加油站,已知第i 个加油站离起点A 的距离为i d 公里,0=s d d d n 21≤<<<Λ,车加满油后可行驶m 公里,出发之前汽车油箱为空。

应如何加油使得从A 地到B 地沿途加油次数最少?给出用贪心法求解该最优化问题的贪心选择策略,写出求该最优化问题的最优值和最优解的贪心算法,并分析算法的时间复杂性。

2. O3.∑∈n D I I t I p )()(4. 将规模为n 的问题分解为子问题以及组合相应的子问题的解所需的时间5. 分解,递归,组合6. 在问题的状态空间树上作带剪枝的DFS 搜索(或:DFS+剪枝)7. 前者分解出的子问题有重叠的,而后者分解出的子问题是相互独立(不重叠)的8. 局部9. 高10. 归并排序算法11. 不同12. v=random (low, high); 交换A[low]和A[v]的值随机选主元13. 比较n二. 计算题和简答题:1. 阶的关系:(1) f(n)= O(g(n))(2) f(n)=Ω(g(n))(3) f(n)=Ω(g(n))(4) f(n)= O(g(n))(5) f(n)=Θ(g(n))阶最低的函数是:100阶最高的函数是:n 32. 该递归算法的时间复杂性T(n)满足下列递归方程:⎩⎨⎧>+===1n ,n log T(n/2)T(n)1n , 1T(n)2 将n=k2, a=1, c=2, g(n)=n log 2, d=1代入该类递归方程解的一般形式得: T(n)=1+∑-=1k 0i i 22n log =1+k n log 2-∑-=1k 0i i =1+ k n log 2-2)1k (k -=n log 2122+n log 212+1 所以,T(n)= n log 2122+n log 212+1=)(log 2n Θ。

3.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∞=051060320D 0 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∞=051050320D 1 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∞=05850320D 2⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=058503270D 3三. 算法填空题:1. (1) 1, n (2) low>high (3) A[mid]=mid(4) mid+1, high (5) find(low, mid -1)2. (1) 0 (2) i+d (3) C[i, k -1]+C[k, j]+r[i]*r[k]*r[j+1](4) C[i, j] (5) C[1, n]3. (1) i>=1 (2)k[i]+1 (3) 1(4) i+1 (5) k[i]=0 (6) tag[x, y]=0(7) x=x -dx[k[i]]; y=y -dy[k[i]]四. 算法设计题:1. 贪心选择策略:从起点的加油站起每次加满油后不加油行驶尽可能远,直至油箱中的油耗尽前所能到达的最远的油站为止,在该油站再加满油。

相关文档
最新文档