中考数学专题复习资料--圆的有关计算
圆中考 知识点总结

圆中考知识点总结圆是中学数学中的一个重要知识点,在中考数学中起着重要的作用。
因此,掌握圆的相关知识对于中考数学是非常重要的。
本文将对中考数学中关于圆的知识点进行总结,帮助学生更好地复习和掌握圆的相关知识。
知识点总结一、基本概念1. 圆的定义:圆是由平面上距离一个确定点一定距离的点的全体组成的集合。
2. 圆的要素:圆心、半径、直径、弧、圆周。
3. 圆的性质:圆的直径是圆周的两倍,圆周上任意两点与圆心的距离相等。
二、圆的相关公式1. 圆的周长公式:C=2πr。
2. 圆的面积公式:S=πr²。
三、圆的相关定理1. 直径定理:直径所对应的两个锐角为直角。
2. 圆的切线定理:过圆外一点引圆的切线与过该点作圆的半径垂直。
3. 圆的切线与弦的性质:相交弦定理、弦切定理。
4. 圆的内切与外切定理:内切定理、外切定理。
四、圆的相关应用1. 圆的面积和周长的应用:计算圆的面积、周长和扇形面积等。
2. 圆的几何关系:切线与圆的位置关系、相交弦的性质等。
3. 圆的倒影与旋转:圆的旋转变换、圆的倒影变换。
五、解题技巧1. 熟练掌握圆的相关公式和定理,能够正确应用公式和定理解题。
2. 多做练习,培养解决问题的能力,提高解题技巧。
3. 注意细节,正确理解题目的意思和要求,避免因理解错误而导致错误答案。
六、经典例题1. 已知AB是∠O的平分线,且AC⊥BC,求证:AC=BC。
2. 已知AB与CD是两条相交的直径,P是与AB、CD相交的一点,求证:PA²+PB²=PC²+PD²。
3. 如图,ΔABC是等边三角形,M、N分别是BC、AB的中点,P为AM的垂足,若PA=2,则求BP的长。
4. 四通五达服装公司要在正方形草坪内竖立一些旗杆,使得每个旗杆都最多不见这块草坪中心的五分之一。
那么最多可以竖立几个旗杆?结语通过对圆的相关知识点进行总结,我们可以更好地掌握圆的相关概念、公式、定理和应用。
中考数学复习专题24:圆的有关计算(含中考真题解析)

专题24 圆的有关计算☞解读考点知识点名师点晴弧长和扇形面积弧长公式会求n°的圆心角所对的弧长扇形面积公式会求圆心角为n°的扇形面积圆锥侧面积计算公式能根据公式中的已知量求圆锥中的未知量☞2年中考【题组】1.(河池)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.240πcm2 B.480πcm2 C.1200πcm2 D.2400πcm2【答案】A.【解析】试题分析:这张扇形纸板的面积=12×2π×10×24=240π(cm2).故选A.考点:圆锥的计算.2.(凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm【答案】A.考点:圆锥的计算.3.(德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288° B.144° C.216° D.120°【答案】A.【解析】试题分析:∵底面圆的半径与母线长的比是4:5,∴设底面圆的半径为4x,则母线长是5x,设圆心角为n°,则524180n xxππ⨯⨯=,解得:n=288,故选A .考点:圆锥的计算.4.(宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5cm B.10cm C.20cm D.5πcm【答案】B.考点:圆锥的计算.5.(苏州)如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A .433π-B .4233π-C .3π-D .233π-【答案】A .【解析】试题分析:过O 点作OE ⊥CD 于E ,∵AB 为⊙O 的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O 的半径为2,∴OE=1,CE=DE=3,∴CD=23,∴图中阴影部分的面积为:2120211233602⋅π⋅-⨯⨯=433π-.故选A .考点:1.扇形面积的计算;2.切线的性质.6.(成都)如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和BC 弧线的长分别为( )A .2,3πB .23,πC .3,23πD .23,43π【答案】D .考点:1.正多边形和圆;2.弧长的计算.7.(甘孜州)如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A.π﹣2 B.π﹣4 C.4π﹣2 D.4π﹣4【答案】A.【解析】试题分析:S阴影部分=S扇形OAB﹣S△OAB=29021223602π⨯-⨯⨯=π﹣2.故选A.考点:扇形面积的计算.8.(攀枝花)如图,已知⊙O的一条直径AB与弦CD相交于点E,且AC=2,AE=3,CE=1,则图中阴影部分的面积为()A 239π439πC.29πD.49π【答案】D.考点:1.扇形面积的计算;2.勾股定理的逆定理;3.圆周角定理;4.解直角三角形. 9.(自贡)如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为( )A .2πB .πC .3πD .32π【答案】D . 【解析】试题分析:连接OD .∵CD ⊥AB ,∴CE=DE=12CD=3(垂径定理),故S △OCE=S △ODE ,即可得阴影部分的面积等于扇形OBD 的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S 扇形OBD=2602360π⨯=32π,即阴影部分的面积为32π.故选D .考点:1.扇形面积的计算;2.垂径定理;3.圆周角定理;4.解直角三角形. 10.(达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B′,则图中阴影部分的面积是( )A .12πB .24πC .6πD .36π 【答案】B .考点:1.扇形面积的计算;2.旋转的性质.11.(德阳)如图,已知⊙O 的周长为4π,AB 的长为π,则图中阴影部分的面积为( )A .2π-B .3π-C .πD .2 【答案】A .考点:1.扇形面积的计算;2.弧长的计算.12.(梧州)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A.95 B.185 C.365 D.725【答案】B.【解析】试题分析:根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积﹣大半圆的面积.∵MN的半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积=大半圆的面积.∴阴影部分的面积=△DMN的面积.在Rt△AOD中,OD=22AD AO+=2263+=35,∴阴影部分的面积=△DMN的面积=12MN•AD=16562⨯⨯=185.故选B.考点:1.扇形面积的计算;2.勾股定理;3.综合题.13.(咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大 B.由大到小 C.不变 D.先由小到大,后由大到小【答案】C.考点:1.扇形面积的计算;2.定值问题;3.综合题.14.(常德)若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB 与扇形A1O1B1是相似扇形,且半径OA :O1A1=k (k 为不等于0的常数).那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB ∽△A1O1B1;③11ABk A B ;④扇形AOB 与扇形A1O1B1的面积之比为2k . 成立的个数为( )A .1个B .2个C .3个D .4个【答案】D .考点:1.相似三角形的判定与性质;2.弧长的计算;3.扇形面积的计算;4.新定义;5.压轴题.15.(邵阳)如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转次后,顶点A 在整个旋转过程中所经过的路程之和是( )A .πB .3019.5πC .3018πD .3024π 【答案】D . 【解析】试题分析:转动一次A 的路线长是:90331802ππ⨯=,转动第二次的路线长是:90551802ππ⨯=,转动第三次的路线长是:9042180ππ⨯=,转动第四次的路线长是: 0,转动五次A 的路线长是:90331802ππ⨯=,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:32π+52π+2π=6π,÷4=503余3,顶点A 转动四次经过的路线长为:6π×504=3024π.故选D .考点:1.旋转的性质;2.弧长的计算;3.规律型. 16.(北海)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 . 【答案】2.考点:圆锥的计算.17.(贵港)如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.【答案】15π.【解析】试题分析:∵OB=12BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:12×6π×5=15π.故答案为:15π.考点:圆锥的计算.18.(庆阳)如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB 所在直线旋转一周,则所得几何体的表面积为(结果保留π).【答案】2π.【解析】试题分析:过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴2,∴CD=2,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2×12×4π×2282π.故答案为:82π.考点:1.圆锥的计算;2.点、线、面、体.19.(贺州)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D′,则点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是(结果保留π).【答案】2512 4π+.考点:1.扇形面积的计算;2.旋转的性质.20.(天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.【答案】4π.考点:1.弧长的计算;2.等边三角形的性质;3.综合题.21.(河南省)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB于点E,以点O为圆心,OC的长为半径作CD交OB于点D.若OA=2,则阴影部分的面积为.【答案】3 122π+.【解析】试题分析:连接OE、AE ,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=2602360π⨯=23π,S扇形ABO=2902360π⨯=π,S扇形CDO=2901360π⨯=14π,∴S阴影=S扇形ABO﹣S扇形CDO﹣(S扇形AOE﹣S△COE)=121(13)432πππ---⨯⨯=3122π+.故答案为:3122π+.考点:扇形面积的计算.22.(烟台)如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是.【答案】62.考点:圆锥的计算.23.(乐山)如图,已知A (23,2)、B (23,1),将△AOB 绕着点O 逆时针旋转,使点A 旋转到点A′(﹣2,23)的位置,则图中阴影部分的面积为 .【答案】34π.【解析】试题分析:∵A (232)、B (23,1),∴OA=4,13,∵由A (232)使点A 旋转到点A′(﹣2,23),∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,''OB C OBC S S ∆∆=,∴阴影部分的面积等于S 扇形A'OA ﹣S 扇形C'OC=22114(13)44ππ⨯-⨯=34π,故答案为:34π.考点:1.扇形面积的计算;2.坐标与图形变化-旋转.24.(镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【答案】(1)作图见试题解析;(2)15 8.试题解析:(1)如图所示,八边形ABCDEFGH即为所求;(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD的长=1355180π⨯=154π,设这个圆锥底面圆的半径为R,∴2πR=154π,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图.25.(宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).【答案】(1)答案见试题解析;(2)26.6°.(2)连接EO1,如图所示,∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO=2142EOOA==,则∠EAO≈26.6°.考点:1.圆锥的计算;2.圆柱的计算;3.作图-三视图.26.(玉林防城港)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为AD的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.【答案】(1)证明见试题解析;(2)6.考点:1.切线的性质;2.平行四边形的判定;3.扇形面积的计算;4.综合题.27.(扬州)如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.(1)求证:∠PCA=∠B;(2)已知∠P=40°,点Q在优弧ABC上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长.【答案】(1)证明见试题解析;(2)53π或133π或233π.【解析】试题分析:(1)连接OC,由PC是⊙O的切线,得到∠1+∠PCA=90°,由AB是⊙O的直径,得到∠2+∠B=90°,从而得到结论;(2)△ABQ与△ABC的面积相等时,有三种情况,即:①当∠AOQ=∠AOC=50°时;②当∠BOQ=∠AOC=50°时;③当∠BOQ=50°时,即∠AOQ=230°时;分别求得点Q所经过的弧长即可.试题解析:(1)连接OC,∵PC是⊙O的切线,∴∠PCO=90°,∴∠1+∠PCA=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠B=90°,∵OC=OA,∴∠1=∠2,∴∠PCA=∠B;考点:1.切线的性质;2.弧长的计算;3.分类讨论;4.综合题;5.轨迹.【题组】1.(·扬州)如图,已知正方形边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A.1.0 B.2.0 C.3.0 D.4.0【答案】B.【解析】试题分析:∵正方形的边长为1,圆与正方形的四条边都相切,∴22S S S10.510.250.215ππ=-=-⋅=-≈阴影正方形圆.∵0.215最接近0.2,∴阴影部分的面积与下列各数最接近的是0.2故选B.考点:1.圆和正方形的面积;2.无理数的大小估计;3.转换思想的应用.2.(·金华)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C52 D52【答案】A.故选A.考点:1.等腰直角三角形的判定和性质;2.勾股定理;3.扇形面积和圆面积的计算.3.(·辽宁省本溪市)底面半径为4,高为3的圆锥的侧面积是()A.12π B.15π C.20π D.36π【答案】B.【解析】试题分析:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl=π×3×5=15π,故选B.考点:圆锥的计算.4.(·山东省莱芜市)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.12R C3R D.32R【答案】D.【解析】试题分析:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=12R2213()22R R-=.故选D.考点:圆锥的计算.5.(·贵州安顺市)已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是()A . 30°B . 60°C .90°D .180°【答案】D .考点:圆锥的计算.6.(湖南衡阳市)圆心角为120,弧长为12π的扇形半径为 ( ) A .6 B .9 C .18 D .36 【答案】C .【解析】试卷分析:12012180rππ=,解得:r=18.故选C .考点:圆的计算.7. (南京) 如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥底面圆半径r=2cm ,扇形圆心角120θ=︒,则该圆锥母线长l 为 cm .【答案】6. 【解析】试题分析:∵圆锥底面圆半径r=2cm , ∴根据圆的周长公式,得圆的周长为2r 4ππ=,∵侧面展开后所得扇形弧长等于圆的周长,∴扇形弧长4π=.又∵侧面展开后所得扇形的圆心角为120°,∴根据扇形的弧长公式,侧面展开后所得扇形的弧长为()120l4l 6180cm ππ⋅⋅=⇒=.考点:圆锥和扇形的计算. 8.(·呼和浩特)一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为 . 【答案】1600.考点:圆锥的计算.9.(·潍坊)如图,两个半径均为3的⊙O1与⊙O2相交于A 、B 两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为 .(结果保留π)【答案】233π-.【解析】试题分析:如图,连接O1O2,过点O1作O1H ⊥AO2于点H ,由题意可得:AO1=O1O2=AO2=3,∴△AO1O2是等边三角形.∴11233HO O O sin60322=︒=⋅=.∴()12122AO O AO O 6031333S 3S 223,2460ππ∆⨯=⨯⨯===扇形.∴12212AO O AO AO O 33S S S 24π∆=-=-弓形扇形.∴图中阴影部分的面积为:33423324ππ⎛⎫-=- ⎪ ⎪⎝⎭ .考点:1.扇形面积的计算;2.等边三角形的判定和性质;3.相交两圆的性质;4. 锐角三角函数定义;5.特殊角的三角函数值;6.转换思想的应用. 10.(·重庆A )如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为 .(结果保留π)【答案】4433π-.考点:1.切线的性质;2.等腰三角形的性质;3.含30度角的直角三角形的性质;4.勾股定理;5.扇形面积的计算;6.转换思想的应用.☞考点归纳归纳 1:弧长公式 基础知识归纳:n °的圆心角所对的弧长l 的计算公式为180n r l π=注意问题归纳:①在弧长的计算公式中,n 是表示1°的圆心角的倍数,n 和180都不要带单位.②若圆心角的单位不全是度,则需要先化为度后再计算弧长. ③题设未标明精确度的,可以将弧长用π表示.④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一. 【例1】在半径为2的圆中,弦AB 的长为2,则AB 的长等于( )A .3πB .2πC .23πD .32π【答案】C .考点:弧长的计算. 归纳 2:扇形面积 基础知识归纳:扇形面积公式:lR R n S 213602==π扇注意问题归纳:其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长.【例2】如图,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,则S 扇形= cm²【答案】4. 【解析】试题分析:设围成扇形的角度为n ,∵将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形,∴围成扇形的弧长为4cm .∴根据弧长公式,得n 23604n 180ππ⋅⋅=⇒=,∴根据扇形面积公式,得()223602S 4cm 360π⋅⋅==.考点:扇形的计算. 归纳 3:圆锥的侧面积 基础知识归纳:圆锥的侧面积:122S l r rlππ=•=,其中l 是圆锥的母线长,r 是圆锥的地面半径.注意问题归纳:①圆锥的母线与展开后所得扇形的半径相等.②圆锥的底面周长与展开后所得扇形的弧长相等.【例3】一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为( ) A . 12πcm2 B .15πcm2 C .20πcm2 D .30πcm2考点:圆锥的计算.归纳 4:阴影部分面积基本方法归纳:求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.注意问题归纳:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.【例4】如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在AB上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为.π-.【答案】24考点:扇形面积的计算.☞1年模拟1.(湖北省宜昌市兴山县校级模拟)劳技课上,小颖将一顶自制的圆锥形纸帽戴在头上,已知纸帽底面圆半径为10cm,母线长50cm,则这顶纸帽的侧面积为()cm2.A.250π B.500π C.750π D.1000π【解析】试题分析:底面圆的半径为10cm ,则底面周长=20πcm ,侧面面积=π×10×50=500πcm2.故选B .考点:圆锥的计算.2.(湖北省广水市校级模拟)如图,圆锥体的高h=2cm ,底面半径r=2cm ,则圆锥体的全面积为( )cm2.A .4π B .8π C .12π D .(4+4)π【答案】C . 【解析】试题分析:底面圆的半径为2,则底面周长=4π,因为底面半径为2cm 、高为23cm ,所以圆锥的母线长为4cm ,即可求得侧面面积=12×4π×4=8π;底面积为=4π,所以全面积为:8π+4π=12πcm2.故选C . 考点:圆锥的有关计算.3.(山东省高密市模拟考试)如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是( )A .210cmB .210cm π C .220cm D .220cm π 【答案】B .考点:1.圆锥的侧面展开图;2.扇形的面积计算.4.(山东省新泰市模拟考试)如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A .77π338-B .47π338+C .πD .4π33+【答案】C .【解析】试题分析:连接BH ,BH1,∵O 、H 分别为边AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°到△A1BC1的位置,∴△OBH ≌△O1BH1,利用勾股定理可求得BH=437+=,所以利用扇形面积公式可得()()22360132********BH BC πππ=⨯-=-.故选C .考点:扇形面积的计算.5.(江苏省兴化顾庄等三校校级模拟)若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m2.【答案】154π.考点:圆锥的计算.6.(河南省三门峡市模拟考试)如图,在Rt △ABC 中,∠ABC =90°,AB =8,BC =6,分别以A 、C 为圆心,以2AC的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分的面积为 .【答案】24-254πcm2.【解析】试题分析:如图:∵Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC=2286+=10cm,△ABC的面积是:12AB•BC=12×8×6=24cm2.∴S阴影部分=12×6×8-2905360π⨯=24-254πcm2,故阴影部分的面积是:24-254πcm2.考点:扇形面积的计算.7.(湖北省武汉市校级模拟)如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(-2,3)、B(-1,2)、C(-3,1),△ABC 绕点O顺时针旋转90°后得到△A1B1C1.(1)在正方形网格中作出△A1B1C1;(2)求点A经过的路径弧AA1的长度;(结果保留π)(3)在y轴上找一点D,使DB+DB1的值最小,并直接写出D点坐标.【答案】(1)图形详见解析;(2132;(3)(0,53).试题解析:解:(1)如图如下:考点:作图—旋转变换;待定系数法求解析式;弧长公式.8.(广东省中山市校级模拟)如图,AB是的直径,点D在上,∠DAB=45°,BC∥AD,CD∥AB.(1)、判断直线CD 与的位置关系,并说明理由;(2)、若的半径为1,求图中阴影部分的面积(结果保留π).【答案】(1)、相切;(2)、324.【解析】试题分析:(1)、连接OD,根据OA=OD,∠ODA=45°得出∠AOD=90°,根据CD∥AB 得出∠ODC=90°,从而说明切线;(2)、首先求出梯形OBCD的面积,然后利用梯形的面积减去扇形OBD的面积求出阴影部分的面积.考点:切线的判定、扇形的面积计算.9.(山东省博兴县校级模拟)如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.【答案】(1)见解析;(2)3;(3)6π.【解析】试题分析:(1)连接OC交BD于点E,根据∠CDB=∠OBD=30°得出∠COB=60°,∠OEB=90°,根据AC∥BD得到∠OCA=90°;(2)根据OB=6,OE⊥BD,∠OEB=30°,求出OE和BE的长度,然后计算出BD的长度;(3)根据△OBE和△CDE全等,将阴影部分的面积转化成扇形OBC的面积,然后根据扇形的面积计算公式进行求解.试题解析:(1)证明:连接OC,交BD于点E.∵∠CDB=∠OBD=30°∴∠COB=60°,∠OEB=90°∵AC∥BD ∴∠OCA=∠OEB=90°∴OC⊥AC ∴AC是⊙O的切线.(2)∵∠OEB=90°,∠OBD=30°∴OC⊥BD,321==OB OE∴BE=DE=33273622==-∴362==DEBD(3)∵OE=CE,∠OEB=∠CED=90°,BE=DE,∴△OEB≌△CED∴ππ63606602=⋅==OBCSS扇形阴影考点:切线的判定、垂径定理、扇形的面积计算.10.(山东省高密市模拟考试)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线.(2)若⊙O的半径是4,AP=43,求图中阴影部分的面积.【答案】(1)见解析(2)16433π-.考点:1.切线的证明;2.勾股定理;3.特殊角的三角函数值;4.扇形的面积计算.。
中考数学-热点01 与圆有关的计算问题(四川成都专用)(原卷版)

热点01与圆有关的计算问题圆得计算是四川成都中考数学的必考考点,常见以选填的形式,主要是求角、长度、面积等问题,一般出现在中考的第7或8题,偶尔也会出现在A 卷填空题中,以简单题为主,但除了常规考法以外,日常练习中多注意新颖题目的考向。
【题型1与圆有关的角度问题】【例1】(2023·四川成都·统考二模)如图,BC 是O 的直径,点,A D 在O 上,若30,ADC ∠=︒则ACB ∠的度数为()A .30°B .40°C .50°D .60°【变式1-1】(2023·四川成都·统考二模)如图,正五边形ABCDE 内接于O ,连接OA AC 、,则OAC ∠的大小是()A .18︒B .24︒C .30︒D .36︒【变式1-2】(2023·四川成都·统考二模)如图,在O 中,弦AB CD ∥,若82BOD ∠=︒,则ABC ∠的度数为()A .41︒B .52︒C .68︒D .82︒【变式1-3】(2023·四川成都·统考模拟预测)如图,正六边形ABCDEF 和正方形AGDH 都内接于O ,连接BG ,则弦BG 所对圆周角的度数为()A .15︒B .30︒C .15︒或165︒D .30︒或150︒【变式1-4】(2023·四川成都·模拟预测)如图,已知正五边形ABCDE ,AB BC CD DE AE ====,A 、B 、C 、D 、E 均在O 上,连接AC ,则ACD ∠的度数是()A .72︒B .70︒C .60︒D .45︒【题型2与圆有关的长度问题】【变式2-1】(2022·四川成都则正六边形的边长为()A .3B .A .cos36r R =︒C .2tan36a r =︒【变式2-3】(2023·的外切正六边形的边长为(A .233R【题型3与圆有关的面积问题】【例3】(2023·四川成都·统考中考真题)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是【变式3-1】(2021·的长为半径画圆,则图中阴影部分的面积为(A.16πB.12πA .23π【变式3-4】(2021·(建议用时:30分钟)1.(2023·四川成都·成都实外校考一模)如图,CD 是O 的直径,弦AB CD ⊥,若28CDB ∠=︒,则AOC ∠的度数为()A .28︒B .56︒C .58︒D .62︒2.(2023·四川成都·模拟预测)如图,ABC 中,3AC =,4BC =,90C ∠=︒,O 为ABC 的内切圆,与三边的切点分别为D 、E 、F ,则O 的面积为___________(结果保留π)()A .πB .2πC .3πD .4πA.22︒B.6.(2022·四川成都·模拟预测)A.5 3π9.(2022·四川成都·模拟预测)如图,已知⊙∠AOB+∠COD=180°,则弦A.610.(2022·四川成都·一模)的面积为()A.24πππ16.(2023·四川成都·统考二模)如图,已知上一点,连接点D,若P为O17.(2023·四川成都·成都七中校考三模)如图,已知18.(2023·四川成都·模拟预测)则扇形BOC的面积为19.(2021·四川成都·成都实外校考一模)则BE=.20.(2023·四川成都·校考三模)如图,多边形∠=.PAB21.(2023·四川成都·成都七中校考三模)如图,分别以边长为边长为半径作弧,三段弧所围成的图形是一个曲边三角形,内的概率为.。
圆的有关计算中考复习

圆的有关计算中考复习圆是我们学习几何的重要内容之一,在中考中经常会考到与圆有关的问题。
下面我将为大家总结一下与圆相关的一些重要知识点和解题技巧。
一、圆的基本概念1.圆的定义:平面上距离一个定点(圆心)固定距离(半径)的所有点的集合。
2.圆的元素:圆心、半径、直径、弧、弦、切线、割线等。
3.小提琴引理:对于平面上任意两点A、B,圆中心O,如果AB是圆的直径,则A、B、O三点共线。
二、圆的性质1.圆的周长公式:C=2πr,其中C表示圆的周长,r表示圆的半径。
2.圆的面积公式:S=πr²,其中S表示圆的面积。
3.判定两条线段构成一个圆的条件:两条线段的长度相等。
三、圆的判定1.一个点在圆内的判定:如果一个点到圆心的距离小于半径,那么这个点就在圆内。
2.一个点在圆上的判定:如果一个点到圆心的距离等于半径,那么这个点在圆上。
3.一个点在圆外的判定:如果一个点到圆心的距离大于半径,那么这个点在圆外。
四、圆与其他几何图形的关系1.圆与直线的关系:圆的切线垂直于直线。
2.圆与角的关系:角内接于圆上的弧的长度是角的两倍。
3.圆与四边形的关系:四边形内切于圆的条件是四个内角顶点的对角线交点在圆的圆心上。
五、圆的相关定理和公式1.弧长定理:圆的弧长等于圆心角的度数与整圆面积的比值。
2.弧度制和角度制的换算公式:弧度制的角度=(角度制的角度×π)/180,角度制的角度=(弧度制的角度×180)/π。
3.圆心角的计算:圆心角的度数等于弧度制中的弧所对的角的弧度数。
六、圆的运用问题1.圆的位置问题:题目中给出了圆心、半径或者其他与圆有关的点的位置关系,要求求解其他未知量。
2.圆的面积和周长问题:题目中给出了圆的面积或者周长,要求求解半径或者直径等未知量。
3.动点问题:题目中给出了与圆有关的动点,要求求解动点所在的位置。
以上就是与圆相关的一些重要知识点和解题技巧,在中考复习中遇到与圆有关的问题时,可以根据这些知识点和技巧进行解题思路的整理和方法的选择,希望能对大家的复习有所帮助。
2024中考数学专题过关检测专题25 与圆有关的计算的核心知识点精讲(讲义)(解析版)

专题25 与圆有关的计算的核心知识点精讲1.掌握弧长和扇形面积计算公式;2.会利用弧长和扇形面积计算公式进弧长和扇形面积的计算考点1:圆内正多边形的计算(1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD D中进行::::2OD BD OB =;(2)正四边形同理,四边形的有关计算在Rt OAE D中进行,::OE AE OA =(3)正六边形同理,六边形的有关计算在Rt OAB D中进行,::2AB OB OA =.考点2:扇形的弧长和面积计算扇形:(1)弧长公式:180n Rl p =;(2)扇形面积公式:213602n R S lR p ==n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长S :扇形面积注意:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的; (2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.长的,即即; (4)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的 (5)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量.考点3:扇形与圆柱、圆锥之间联系1、圆柱:(1)圆柱侧面展开图2S S S =+侧表底=222rh r p p +(2)圆柱的体积:2V r h p =2、圆锥侧面展开图(1)S S S =+侧表底=2Rr r p p +(2)圆锥的体积:213V r hp =注意:圆锥的底周长=扇形的弧长(180r 2Rn ΠΠ=)【题型1:正多边形和圆的有关计算】【典例1】(2023•福建)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为,若用圆内接正十二边形作近似估计,可得π的估计值为( )A .B .2C .3D .2积的,即;C 1D 1【答案】C【解答】解:如图,AB是正十二边形的一条边,点O是正十二边形的中心,过A作AM⊥OB于M,在正十二边形中,∠AOB=360°÷12=30°,∴AM=OA=,∴S=OB•AM==,△AOB∴正十二边形的面积为12×=3,∴3=12×π,∴π=3,∴π的近似值为3,故选:C.【变式1-1】(2023•临沂)将一个正六边形绕其中心旋转后仍与原图形重合,旋转角的大小不可能是( )A.60°B.90°C.180°D.360°【答案】B【解答】解:由于正六边形的中心角为=60°,所以正六边形绕其中心旋转后仍与原图形重合,旋转角可以为60°或60°的整数倍,即可以为60°,120°,180°,240°,300°,360°,不可能是90°,故选:B.【变式1-2】(2023•安徽)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=( )A.60°B.54°C.48°D.36°【答案】D【解答】解:∵五边形ABCDE是正五边形,∴∠BAE==108°,∠COD==72°,∴∠BAE﹣∠COD=108°﹣72°=36°,故选:D.【变式1-3】(2023•山西)蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P,Q,M均为正六边形的顶点.若点P,Q的坐标分别为,(0,﹣3),则点M的坐标为( )A.(3,﹣2)B.(3,2)C.(2,﹣3)D.(﹣2,﹣3)【答案】A【解答】解:设中间正六边形的中心为D,连接DB.∵点P,Q的坐标分别为,(0,﹣3),图中是7个全等的正六边形,∴AB=BC=2,OQ=3,∴OA=OB=,∴OC=3,∵DQ=DB=2OD,∴OD=1,QD=DB=CM=2,∴M(3,﹣2),故选:A.【变式1-4】(2023•内江)如图,正六边形ABCDEF内接于⊙O,点P在上,点Q是的中点,则∠CPQ 的度数为( )A.30°B.45°C.36°D.60°【答案】B【解答】解:如图,连接OC,OD,OQ,OE,∵正六边形ABCDEF,Q是的中点,∴∠COD=∠DOE==60°,∠DOQ=∠EOQ=∠DOE=30°,∴∠COQ=∠COD+∠DOQ=90°,∴∠CPQ=∠COQ=45°,故选:B.【题型2:弧长和扇形面积的有关计算】【典例2】(2023•张家界)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC的边长为3,则该“莱洛三角形”的周长等于( )A.πB.3πC.2πD.2π﹣【答案】B【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=3,∠A=∠B=∠C=60°,∴==,∵的长==π,∴该“莱洛三角形”的周长是3π.故选:B.【变式2-1】(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是( )A.πB.πC.πD.π【答案】B【解答】解:∵CA=CB,CD⊥AB,∴AD=DB=AB′.∴∠AB′D=30°,∴α=30°,∵AC=4,∴AD=AC•cos30°=4×=2,∴,∴的长度l==π.故选:B.【变式2-2】(2022•丽水)某仿古墙上原有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接于矩形,如图.已知矩形的宽为2m,高为2m,则改建后门洞的圆弧长是( )A.m B.m C.m D.(+2)m【答案】C【解答】解:连接AC,BD,AC和BD相交于点O,则O为圆心,如图所示,由题意可得,CD=2m,AD=2m,∠ADC=90°,∴tan∠DCA===,AC==4(m),∴∠ACD=60°,OA=OC=2m,∴∠ACB=30°,∴∠AOB=60°,∴优弧ADCB所对的圆心角为300°,∴改建后门洞的圆弧长是:=(m),故选:C.【变式2-3】(2023•锦州)如图,点A,B,C在⊙O上,∠ABC=40°,连接OA,OC.若⊙O的半径为3,则扇形AOC(阴影部分)的面积为( )A.πB.πC.πD.2π【答案】D【解答】解:∵∠ABC=40°,∴∠AOC=2∠ABC=80°,∴扇形AOC的面积为,故选:D.【题型3:有圆有关的阴影面积的计算】【典例3】(2023•广元)如图,半径为5的扇形AOB中,∠AOB=90°,C是上一点,CD⊥OA,CE⊥OB,垂足分别为D,E,若CD=CE,则图中阴影部分面积为( )A.B.C.D.【答案】B【解答】解:连接OC,如图所示,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴∠AOB=∠ODC=∠OEC=90°,∴四边形OECD是矩形,∵CD=CE,∴四边形OECD是正方形,∴∠DCE=90°,△DCE和△OEC全等,∴S阴影=S△DCE+S半弓形BCE=S△OCE+S半弓形BCE=S扇形COB==,故选:B.【变式3-1】(2023•雅安)如图,某小区要绿化一扇形OAB 空地,准备在小扇形OCD 内种花,在其余区域内(阴影部分)种草,测得∠AOB =120°,OA =15m ,OC =10m ,则种草区域的面积为( )A .B .C .D .【答案】B【解答】解:S 阴影=S 扇形AOB ﹣S 扇形COD ==(m 2).故选:B .【变式3-2】(2023•鄂州)如图,在△ABC 中,∠ABC =90°,∠ACB =30°,AB =4,点O 为BC 的中点,以O 为圆心,OB 长为半径作半圆,交AC 于点D ,则图中阴影部分的面积是( )A .5πB .5﹣4πC .5﹣2πD .10﹣2π【答案】C【解答】解:连接OD .在△ABC 中,∠ABC =90°,∠ACB =30°,AB =4,∴BC =AB =4,∴OC =OD =OB =2,∴∠DOB =2∠C =60°,∴S 阴=S △ACB ﹣S △COD ﹣S 扇形ODB =×4×4﹣﹣=8﹣3﹣2π=5﹣2π.故选:C .【变式3-3】(2022•凉山州)家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角∠BAC =90°,则扇形部件的面积为( )A .米2B .米2C .米2D .米2【答案】C【解答】解:连结BC ,AO ,如图所示,∵∠BAC =90°,∴BC 是⊙O 的直径,∵⊙O 的直径为1米,∴AO =BO =(米),∴AB ==(米),∴扇形部件的面积=π×()2=(米2),故选:C .【题型4:圆锥的有关计算】【典例4】(2023•东营)如果圆锥侧面展开图的面积是15π,母线长是5,则这个圆锥的底面半径是( )A.3B.4C.5D.6【答案】A【解答】解:设底面半径为R,则底面周长=2πR,圆锥的侧面展开图的面积=×2πR×5=15π,∴R=3.故选:A.【变式4-1】(2022•牡丹江)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是( )A.90°B.100°C.120°D.150°【答案】C【解答】解:圆锥侧面展开图的弧长是:2π×1=2π,设圆心角的度数是n度.则=2π,解得:n=120.故选:C.【变式4-2】(2022•广安)蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是( )A.圆柱的底面积为4πm2B.圆柱的侧面积为10πm2C.圆锥的母线AB长为2.25mD.圆锥的侧面积为5πm2【答案】C【解答】解:∵底面圆半径DE=2m,∴圆柱的底面积为4πm2,所以A选项不符合题意;∵圆柱的高CD=2.5m,∴圆柱的侧面积=2π×2×2.5=10π(m2),所以B选项不符合题意;∵底面圆半径DE=2m,即BC=2m,圆锥的高AC=1.5m,∴圆锥的母线长AB==2.5(m),所以C选项符合题意;∴圆锥的侧面积=×2π×2×2.5=5π(m2),所以D选项不符合题意.故选:C.【变式4-3】(2022•赤峰)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长为( )A.10cm B.20cm C.5cm D.24cm【答案】D【解答】解:设母线的长为R,由题意得,πR=2π×12,解得R=24,∴母线的长为24cm,故选:D.一.选择题(共10小题)1.如图,五边形ABCDE是⊙O的内接正五边形,则正五边形的中心角∠COD的度数是( )A.72°B.60°C.48°D.36°【答案】A【解答】解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为=72°,故选:A.2.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为4,则这个正六边形的边心距OM和的长分别为( )A.2,B.,πC.2,D.2,【答案】D【解答】解:如图所示,连接OC、OB,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OC=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OB sin∠OBM=4×=2,的长==;故选:D.3.如图,⊙O的半径为1,点A、B、C都在⊙O上,∠B=45°,则的长为( )A.πB.πC.πD.π【答案】C【解答】解:∵∠B=45°,∴∠AOC=90°,∵⊙O的半径为1,∴的长===π,故选:C.4.如图,AB是半圆O的直径,C、D是半圆上两点,且满足∠ADC=120°,BC=1,则的长为( )A.B.C.D.【答案】A【解答】解:如图,连接OC.∵∠ADC=120°,∴∠ABC=60°,∵OB=OC,∴∠OCB=∠OBC=∠B=60°,OB=OC=BC=1,∴的长为=,故选:A.5.如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是( )A.πB.2πC.4πD.6π【答案】B【解答】解:依题意知:图中三条圆弧的弧长之和=×3=2π.故选:B.6.若扇形的半径是12cm弧长是20πcm,则扇形的面积为( )A.120πcm2B.240πcm2C.360πcm2D.60πcm2【答案】A【解答】解:该扇形的面积为:(cm 2).故选:A .7.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°后得到△AB 'C ',点B 经过的路径为弧BB ′,若∠BAC =60°,AC =3,则图中阴影部分的面积是( )A .B .C .D .3π【答案】C【解答】解:在Rt △ABC 中,∠ACB =90°,∠BAC =60°,AC =3,∴∠ABC =30°.∴AB =2AC =6.根据旋转的性质知△ABC ≌△AB ′C ′,则S △ABC =S △AB ′C ′,AB =AB ′.∴S 阴影=S 扇形ABB ′+S △AB ′C ′﹣S △ABC ==.故选:C .8.如图,四边形ABCD 为正方形,边长为4,以B 为圆心、BC 长为半径画,E 为四边形内部一点,且BE ⊥CE ,∠BCE =30°,连接AE ,则阴影部分面积( )A .B .6πC .D .【答案】C【解答】解:如图,作EF ⊥AB 于点F ,∵BE⊥CE,∠BCE=30°,∴BE=BC=2,∠CBE=60°,∴CE=BE=2,∠EBF=30°,∴EF=BE=1,∴S阴影=S扇形ABC﹣S△BCE﹣S△ABE=﹣×2×﹣×1=4π﹣2﹣2.故选:C.9.如图,圆锥的母线长为5cm,高是4cm,则圆锥的侧面展开扇形的圆心角是( )A.180°B.216°C.240°D.270°【答案】B【解答】解:∵圆锥的母线长为5cm,高是4cm,∴圆锥底面圆的半径为:=3(cm),∴2π×3=,解得n=216°.故选:B.10.已知圆锥的底面半径是4,母线长是5,则圆锥的侧面积是( )A.10πB.15πC.20πD.25π【答案】C【解答】解:圆锥的侧面积=×2π×4×5=20π,故选:C.二.填空题(共8小题)11.AB是⊙O的内接正六边形一边,点P是优弧AB上的一点(点P不与点A,B重合)且BP∥OA,AP 与OB交于点C,则∠OCP的度数为90° .【答案】90°.【解答】解:∵AB是⊙O的内接正六边形一边,∴∠AOB==60°,∴=30°,∵BP∥OA,∴∠OAC=∠P=30°,∴∠OCP=∠AOB+∠OAC=60°+30°=90°.故答案为:90°.12.已知正六边形的内切圆半径为,则它的周长为 12 .【答案】见试题解答内容【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长等于正六边形的半径,设正六边形的半径为a,∴△OAB是等边三角形,∴OA=AB=a,∴OG=OA•sin60°=a×=,解得a=2,∴它的周长=6a=12.故答案为:12.13.如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧,点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路的长度为40πm.【答案】见试题解答内容【解答】解:由题意得,这段弯路的长度为,故答案为:40π.14.已知扇形的圆心角为120°,面积为27πcm2,则该扇形所在圆的半径为9cm .【答案】见试题解答内容【解答】解:∵扇形的圆心角为120°,面积为27πcm2,∴由S=得:r===9cm,故答案为:9cm.15.圆锥的侧面积是10πcm2,底面半径是2cm,则圆锥的母线长为5cm.【答案】见试题解答内容【解答】解:底面半径是2cm,则扇形的弧长是4π.设母线长是l,则×4πl=10π,解得:l=5.故答案为:5.16.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是4 cm.【答案】见试题解答内容【解答】解:∵圆心角为120°,半径为6cm的扇形的弧长==4π,∴圆锥的底面圆的周长为4π,∴圆锥的底面圆的半径为2,∴这个纸帽的高==4(cm).故答案为4.17.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是6π .【答案】见试题解答内容【解答】解:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积=扇形ABB′的面积,则阴影部分的面积是:=6π,故答案为:6π.18.如图,将边长相等的正六边形和正五边形拼接在一起,则∠ABC的度数为 132°.【答案】见试题解答内容【解答】解:由题意得:正六边形的每个内角都等于120°,正五边形的每个内角都等于108°,∴∠ABC=360°﹣120°﹣108°=132°,故答案为:132.一.选择题(共7小题)1.在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受到中国人的浪漫,如图,将“雪花”图案(边长为4的正六边形ABCDEF)放在平面直角坐标系中,“雪花”中心与原点重合,C,F在y轴上,则顶点B的坐标为( )A.(4,2)B.(4,4)C.D.【答案】C【解答】解:连接OB,OA,如图所示:∵正六边形是轴对称图形,中心与坐标原点重合,∴△AOB是等边三角形,AO=BO=AB=4,AB⊥x轴,AM=BM,∵AB=4,∴AM=BM=2,∴OM=,∴点B的坐标为:(2,2),故选:C.2.如图,正五边形ABCDE内接于⊙O,点F在弧AE上.若∠CDF=95°,则∠FCD的大小为( )A.38°B.42°C.49°D.58°【答案】C【解答】解:如图,连接OE,OD,CE,∵五边形ABCDE是正五边形,∴∠CDE=(5﹣2)×180°÷5=108°,∵∠CDF=95°,∴∠FDE=∠CDE﹣∠CDF=108°﹣95°=13°,∴∠FCE=13°,∵正五边形ABCDE内接于⊙O,∴∠EOD=360°÷5=72°,∴∠ECD==36°,∴∠FCD=∠FCE+∠ECD=36°+13°=49°,故选:C.3.如图,在⊙O中,点C在优弧上,将沿BC折叠后刚好经过AB的中点D.若⊙O的半径为5,AB =4,则的长是( )A.B.C.D.4π【答案】A【解答】解:连接AC,OB,OD,CD,作CF⊥AB于点F,作OE⊥CF于点E,由垂定理可知OD⊥AB于点D,AD=BD==.又OB=5,∴OD===,∵CA、CD所对的圆周角为∠CBA、∠CBD,且∠CBA=∠CBD,∴CA=CD,△CAD为等腰三角形.∵CF⊥AB,∴AF=DF==,又四边形ODFE为矩形且OD=DF=,∴四边形ODFE为正方形.∴,∴CE===2,∴CF=CE+EF=3=BF,故△CFB为等腰直角三角形,∠CBA=45°,∴所对的圆心角为90°,∴==.故选:A.4.如图,将直径为4的半圆形分别沿CD,EF折叠使得直径两端点A,B的对应点都与圆心O重合,则图中阴影部分的面积为( )A.B.C.D.【答案】A【解答】解:连接AC,OC,OE,BE,由题意得:CD垂直平分OA,∴AC=OC,∵OC=OA,∴△OAC是等边三角形,同理△BOE是等边三角形,∴∠AOC=∠BOE=60°,∴∠COE=60°,∴弓形AMC、弓形ONC、弓形OPE的面积相等,∵圆的直径是4,∴OA=2,∴扇形OAC的面积==,△OAC的面积=OA2=,∴扇形OCE的面积=扇形OAC的面积=,∴弓形AMC的面积=扇形OAC的面积﹣△OAC的面积=﹣,∴阴影的面积=扇形OCE的面积﹣弓形AMC的面积×2=﹣2×(﹣)=2﹣.故选:A.5.如图,扇形AOB中,∠AOB=90°,点C,D分别在OA,上,连接BC,CD,点D,O关于直线BC对称,的长为π,则图中阴影部分的面积为( )A.B.C.D.【答案】A【解答】解:连接BD、OD,交BC与E,由题意可知,BD=BO,∵OD=OB,∴OD=OB=DB,∴∠BOD=60°,∵∠AOB=90°,∴∠AOD=30°,∵的长为π,∴,∴r=6,∴OB=6,∴OE==3,BE=OB=3,∴CE=OE=,+S△COE﹣S△BOE=+﹣=6π﹣3.∴阴影部分的面积=S扇形BOD故选:A.6.如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是( )A.B.C.D.【答案】B【解答】解:如图,连接OA,∵∠ABO=60°,OA=OB,∴△AOB是等边三角形,∴OA=OB=AB=8,∵AD∥BO,∴∠OAD=∠AOB=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵△OAD与△ABD与△AOB是等底等高的三角形,∴S阴影=S扇形AOB==π.故选:B.7.如图,一个圆锥的母线长为6,底面圆的直径为8,那么这个圆锥的侧面积是( )A.24πB.40πC.48πD.【答案】A【解答】解:根据题意,这个圆锥的侧面积=×8π×6=24π.故选:A.二.填空题(共5小题)8.如图,已知正方形ABCD的边长为4cm,以AB,AD为直径作两个半圆,分别取弧AB,弧AD的中点M,N,连结MC,NC,则图中阴影部分的周长为 (4) cm.【答案】(4).【解答】解:解法一:如图,取AD的中点O,连接NO,设CN交AD于点E,∵N是弧AD的中点,∴NO⊥AD,∵CD⊥AD,∴NO∥CD,∴△NOE∽△CDE,∴====,∴OE=OD=,在Rt△NOE中,NE===,∴CM=CN=3NE=2,∵点M,N分别为弧AB,弧AD的中点∴弧AB,弧AD的长度和为2×=2π,∴图中阴影部分的周长为(4)cm.解法二:作NH⊥BC于点H,则CH=2,NH=6,在Rt△NHC中,NC===2,∴CM=CN=2,∵点M,N分别为弧AB,弧AD的中点∴弧AB,弧AD的长度和为2×=2π,∴图中阴影部分的周长为(4)cm.故答案为:(4).9.如图,△ABC是边长为1的等边三角形,曲线CC1C2C3C4…是由多段120°的圆心角所对的弧组成的,其中的圆心为A,半径为AC;的圆心为B,半径为BC1;的圆心为C,半径为CC2;的圆心为A,半径为AC3……,,,,…的圆心依次按点A,B,C循环,则的长是 .(结果保留π)【答案】.【解答】解:∵△ABC是边长为1的等边三角形,∴AC=AC1=1,∠CAB=∠ABC=∠BCA=60°,;∴BC2=BC1=AB+AC1=2,CC3=CC2=BC2+AB=3,∠CAC1=∠C1BC2=C2CC3=120°,∴的半径为1;的半径为2;的半径为3;所对的圆心角为120°,∴的半径为n,所对的圆心角为120°,∴所在圆的半径为2023,所对的圆心角为120°,∴的长为.故答案为:.10.如图,已知矩形纸片ABCD,AD=2,,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为 .【答案】见试题解答内容【解答】解:cos∠BAE=,∴∠BAE=30°,∴∠DAE=60°,∴圆锥的侧面展开图的弧长为:=π,∴圆锥的底面半径为π÷2π=.11.如图,从一块半径为20的圆形纸片上剪出一个圆心角是90°的扇形ABC,如果将剪下来的扇形ABC 围成一个圆锥,则该圆锥的底面半径是 .【答案】.【解答】解:连接BC,如图,∵∠BAC=90°,∴BC为⊙O的直径,即BC=20,∴AB=10,设该圆锥的底面圆的半径为r,根据题意得2πr=,解得r=,即该圆锥的底面圆的半径为m.故答案为:.12.如图,AB是圆锥底面的直径,AB=6cm,母线PB=9cm,点C为PB的中点,若一只蚂蚁从A点处出发,沿圆锥的侧面爬行到C点处,则蚂蚁爬行的最短路程为cm .【答案】cm.【解答】解:由题意知,底面圆的直径AB=6cm,故底面周长等于6πcm,设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得6π=,解得n=120°,所以展开图中∠APD=120°÷2=60°,因为半径PA=PB,∠APB=60°,故三角形PAB为等边三角形,又∵D为PB的中点,所以AD⊥PB,在直角三角形PAD中,PA=9cm,PD=cm,根据勾股定理求得AD=(cm),所以蚂蚁爬行的最短距离为cm.故答案为:cm.1.(2023•连云港)如图,矩形ABCD内接于⊙O,分别以AB、BC、CD、AD为直径向外作半圆.若AB=4,BC=5,则阴影部分的面积是( )A.π﹣20B.π﹣20C.20πD.20【答案】D【解答】解:如图,连接BD,则BD过点O,在Rt△ABD中,AB=4,BC=5,∴BD2=AB2+AD2=41,S阴影部分=S以AD为直径的圆+S以AB为直径的圆+S矩形ABCD﹣S以BD为直径的圆=π×()2+π×()2+4×5﹣π×()2=+20﹣=20,故选:D.2.(2023•广安)如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC为半径画弧,交AB于点E,以点B为圆心,BC为半径画弧,交AB于点F,则图中阴影部分的面积是( )A.π﹣2B.2π﹣2C.2π﹣4D.4π﹣4【答案】C【解答】解:在等腰直角△ABC中,∠ACB=90°,AC=BC=2,∴∠A=∠B=45°,+S扇形CBF﹣S△ABC∴阴影部分的面积S=S扇形CAE=×2﹣=2π﹣4.故选:C.3.(2023•上海)如果一个正多边形的中心角是20°,那么这个正多边形的边数为18 .【答案】见试题解答内容【解答】解:360°÷20°=18.故这个正多边形的边数为18.故答案为:18.4.(2023•衡阳)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是10 .【答案】10.【解答】解:∵多边形是正五边形,∴正五边形的每一个内角为:×180°×(5﹣2)=108°,∴∠O=180°﹣(180°﹣108°)×2=36°,∴正五边形的个数是360°÷36°=10.故答案为:10.5.(2023•宿迁)若圆锥的底面半径为2cm,侧面展开图是一个圆心角为120°的扇形,则这个圆锥的母线长是6cm.【答案】见试题解答内容【解答】解:设圆锥的母线长为x cm,根据题意得=2π•2,解得x=6,即圆锥的母线长为6cm.故答案为6.6.(2023•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l为6cm,扇形的圆心角θ为120°,则圆锥的底面圆的半径r为2cm.【答案】2.【解答】解:由题意得:母线l=6,θ=120°,2πr=,∴r=2(cm).故答案为:2.7.(2022•广元)如图,将⊙O沿弦AB折叠,恰经过圆心O,若AB=2,则阴影部分的面积为 .【答案】.【解答】解:如图,过点O作AB的垂线并延长,垂足为C,交⊙O于点D,连结AO,AD,根据垂径定理得:AC=BC=AB=,∵将⊙O沿弦AB折叠,恰经过圆心O,∴OC=CD=r,∴OC=OA,∴∠OAC=30°,∴∠AOD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠D=60°,在Rt△AOC中,AC2+OC2=OA2,∴()2+(r)2=r2,解得:r=2,∵AC=BC,∠OCB=∠ACD=90°,OC=CD,∴△ACD≌△BCO(SAS),∴阴影部分的面积=S=×π×22=.扇形ADO故答案为:.8.(2023•金华)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为πcm.【答案】π.【解答】解:连接OE,OD,∵OD=OB,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠C=∠ODB,∴OD∥AC,∴∠EOD=∠AEO,∵OE=OA,∴∠OEA=∠BAC=50°,∴∠EOD=∠BAC=50°,∵OD=AB=×6=3(cm),∴的长==π(cm).故答案为:π.9.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5 .若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为 .【答案】5;.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得 5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.。
2024年中考重点之圆的基本性质与计算

2024年中考重点之圆的基本性质与计算圆作为几何图形中的重要概念,在数学中起着重要的作用。
本文将探讨圆的基本性质和计算方法。
一、圆的定义与特点圆由一个固定的点(圆心)和到该点距离相等的所有点(圆周)组成。
圆的基本特点包括:1. 圆心距:圆上任意一点到圆心的距离都相等,等于圆的半径。
2. 直径:穿过圆心的线段,且两端的点都在圆上。
直径是圆的最长线段,其长度等于半径的两倍。
3. 弧:圆周上的一段弯曲线段,两个端点属于圆上。
4. 弦:连接圆上任意两点的线段。
二、圆的基本计算公式1. 圆的周长:圆的周长也称为圆的长度,可以用公式C = 2πr来计算,其中r代表圆的半径,π取近似值3.14或3.1416。
2. 圆的面积:圆的面积可以用公式A = πr²来计算,其中r代表圆的半径,π取近似值3.14或3.1416。
三、圆的性质与定理1. 圆的各条弦的性质:- 弦长相等的弦,其对应的弧长也相等。
- 相等弧周角(一个圆心角)所对的弦等长。
- 垂直弦上的两个弧的和等于180度。
2. 圆周角定理:- 圆周角等于其对应的圆心角的一半。
3. 切线与弦的性质:- 切线与半径垂直相交。
四、圆的常见应用圆作为数学中常见的几何图形,在实际应用中也有广泛的运用,如:1. 圆形的轮胎和车轮:圆的旋转特性使得车辆能够平稳行驶。
2. 圆形的钟表和计时器:钟表和计时器的盘面通常为圆形,通过刻度和指针来进行时间的测量和记录。
3. 圆形的器皿和容器:如圆形的盘子、碗、杯子等,常见于生活中的餐具和容器。
综上所述,圆作为几何图形的重要概念,具有许多基本性质和特点,并且在实际生活中有广泛的应用。
熟练掌握圆的基本性质和计算方法,将有助于中考数学题目的解答和实际问题的解决。
同学们要通过大量的练习和实践,深入理解圆的性质与计算,从而在中考中取得好的成绩。
中考复习圆的计算技巧

中考复习圆的计算技巧圆是数学中一个重要的几何形状,我们在中考复习中经常会遇到与圆相关的计算题目。
正确掌握圆的计算技巧能够帮助我们更好地解决这类题目。
本文将介绍一些常用的圆的计算技巧,旨在帮助同学们在中考中取得好成绩。
一、圆的周长和面积计算1. 圆的周长圆的周长是指圆的边界一周的长度。
周长的计算公式为:C = 2πr,其中r为圆的半径,π约等于3.14。
根据这个公式,我们可以很方便地计算出圆的周长。
例题1:一个圆的半径为10cm,求其周长。
解:根据公式C = 2πr,将半径r代入公式得到C = 2 × 3.14 × 10 ≈ 62.8cm。
因此,该圆的周长约为62.8cm。
2. 圆的面积圆的面积是指圆所包围的平面区域的大小。
面积的计算公式为:S = πr²,其中r为圆的半径,π约等于3.14。
通过这个公式,我们可以轻松地计算圆的面积。
例题2:一个圆的半径为8cm,求其面积。
解:根据公式S = πr²,将半径r代入公式得到S = 3.14 × 8² ≈ 200.96cm²。
因此,该圆的面积约为200.96cm²。
二、圆的问题转化与利用有时候,我们在解决与圆相关的问题时,可以通过一些转化和利用的方法简化计算过程。
1. 圆的问题转化为正方形或矩形在某些情况下,圆的问题可以转化为正方形或矩形的问题来解决。
例如,一个圆在某一平面上切割得到的扇形,可以转化为一个与之相似的矩形,从而简化计算过程。
例题3:一个半径为6cm的圆被切割成扇形,其圆心角为60°。
求该扇形的面积。
解:将扇形转化为与之相似的矩形,可以发现圆心角60°正好是矩形的1/6,而圆的面积与扇形的面积之间的比例为1:6。
因此,扇形的面积等于圆的面积除以6。
根据例题2的计算结果,该圆的面积为200.96cm²,将其除以6得到扇形的面积约为33.49cm²。
考点19与圆有关的计算-中考数学考点一遍过

考点19与圆有关的计算-中考数学考点一遍过考点19:与圆有关的计算在中考数学中,与圆有关的计算是一个重要的考点。
掌握了这个考点,可以帮助我们解决与圆相关的各种问题。
一、圆的周长和面积的计算圆的周长C和面积S是圆的两个重要的数学量。
它们可以通过半径r或直径d来计算。
1.圆的周长C的计算:圆的周长C可以通过下面的公式计算:C=2πr或C=πd其中,π取近似值3.142.圆的面积S的计算:圆的面积S可以通过下面的公式计算:S=πr²或S=(π/4)d²其中,π取近似值3.14例题1:一个圆的直径为14cm,求其周长和面积。
解:已知直径d=14cm,半径r=d/2=14/2=7cm。
根据公式可得:C = πd = 3.14 × 14 ≈ 43.96cmS = πr² = 3.14 × 7² ≈ 153.86cm²二、圆的弧长和扇形面积的计算除了圆的周长和面积,还有两个与圆有关的重要计算量:圆的弧长和扇形面积。
1.圆的弧长L的计算:当所给定的角度为α(单位为度)时,弧长L可以通过下面的公式计算:L=(α/360)×2πr其中,α为角度,r为半径。
2.扇形的面积A的计算:当所给定的角度为α(单位为度)时,扇形的面积A可以通过下面的公式计算:A=(α/360)×πr²其中,α为角度,r为半径。
例题2:一个半径为10cm的扇形的角度为72°,求其弧长和面积。
解:已知r=10cm,α=72°。
根据公式可得:L = (α/360)× 2πr = (72/360)× 2 × 3.14 × 10 ≈37.68cmA = (α/360)× πr² = (72/360)× 3.14 × 10² ≈ 157cm²三、圆的坐标计算圆在平面直角坐标系中可以通过圆心的坐标和半径来确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的有关计算课标解读知识要点1.点和圆的位置关系若圆的半径是r,点到圆心的距离是d,那么点在圆外⇔;点在圆上⇔;点在圆内⇔.2.直线和圆的位置关系如果圆的半径是r,圆心到直线l的距离是d,那么直线l和⊙O相交⇔;直线l和⊙O相切⇔;直线l和⊙O相离⇔.3.圆的切线的性质与判定(1)切线的定义:直线和圆只有公共点时,这条直线叫做圆的切线.(2)切线的性质:圆的切线于过切点的半径.(3)判定:①和圆有公共点的直线是圆的切线;②圆心到直线的距离等于圆的,那么这条直线是圆的切线(作垂直证半径);③经过半径外端并且于这条半径的直线是圆的切线(作半径证垂直).(4)切线长:①切线的定义:经过圆外一点作圆的切线,这点与切点之间的线段的长叫做这点到圆的切线长;②切线长定理:从圆外一点引圆的两条切线,它们的切线长,这点和圆心的连线两条切线的夹角.4.确定圆的条件:的三个点确定一个圆.5.尺规作图(利用基本作图完成):如图1-12-20,过不在同一直线上的三点作圆.已知:不在同一条直线上的三个点A,B,C.求作:圆O,使它经过点A,B,C.图1-12-20典例诠释考点一确定圆的条件例1 如图1-12-21,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( )图1-12-21A.点PB.点QC.点RD.点M【答案】 B【名师点评】此题考查经过不共线的三个点作一个圆的方法,即作任意两条线段的垂直平分线,交点即为此圆的圆心.考点二点、直线和圆的位置关系例2 在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆( )A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离【答案】 C【名师点评】此题要能画出图形,结合图形来判断直线和圆的位置关系,画图是解题关键.考点三圆的切线的性质与判定例3 (2016·海淀一模)如图1-12-22,AB,AD是⊙O的弦,AO平分∠BAD.过点B作⊙O的切线交AO的延长线于点C,连接CD,BO.延长BO交⊙O于点E,交AD于点F,连接AE,DE.(1)求证:CD是⊙O的切线;(2)若AE=DE=3,求AF的长.图1-12-22(1)【证明】如图1-12-23,连接OD.图1-12-23∵BC为⊙O的切线,∴∠CBO=90°.∵AO平分∠BAD,∴∠1=∠2.∵OA=OB=OD,∴∠1=∠4=∠2=∠5,∴∠BOC=∠DOC,∴△BOC≌△DOC,∴∠CBO=∠CDO=90°,∴CD为⊙O的切线.(2)【解】∵AE=DE,∴=,∴∠3=∠4.∵∠1=∠2=∠4,∴∠1=∠2=∠3.∵BE为⊙O的直径,∴∠BAE=90°,∴∠1=∠2=∠3=∠4=30°,∴∠AFE=90°.在Rt△AFE中,∵AE=3,∠3=30°,∴AF=.【名师点评】(1)要证明CD是⊙O的切线,连接半径OD,证明∠ODC=90°,结合角平分线和等腰三角形的知识,证明△BOC≌△DOC即可.(2)利用“在同圆或等圆中,同弧所对的圆周角相等”可以得到∠DAE=∠ABE=30°.又由BE 为⊙O直径,可知∠BAE=90°,即而∠BAF=60°,故∠AFE=90°,在△AFE中,AF可解.考点四切线长定理的应用例4 如图1-12-24,P A、PB是⊙O的切线,切点是A、B,已知∠P=60°,OA=3,那么∠AOB所对劣弧的长度为( )图1-12-24A.6πB.5πC.3πD.2π【答案】 D【名师点评】此题考查切线的性质和四边形内角和定理,先求出∠AOB的度数,再利用弧长公式计算弧AB的长.基础精练1.(2016·昌平期末)已知⊙O的半径长为5,若点P在⊙O内,那么下列结论正确的是( )A.OP>5B.OP=5C.0<OP<5D.0≤OP<5【答案】 D2.(2016·通州一模)如图1-12-25,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(-2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是( )图1-12-25A.(0,0)B.(-1,1)C.(-1,0)D.(-1,-1)【答案】 B3.(2016·西城期末)如图1-12-26,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为( )图1-12-26A.12B. 12C.6D.6【答案】 C4.(2016·东城期末)如图1-12-27,AB是⊙O的一条直径,延长AB至C点,使AC=3BC ,CD与⊙O相切于D点,若CD=,则⊙O半径的长为.图1-12-27【答案】 15.(2016·东城期末)阅读下面材料:在数学课上,老师提出如下问题:尺规作图:如图1-12-28,过圆外一点作圆的切线.已知:⊙O和点P.求作:过点P的⊙O的切线.图1-12-28小涵的主要作法如下:老师说:“小涵的作法正确.”请回答:小涵的作图依据是.【答案】直径所对的圆周角为直角;经过半径的外端,并且垂直于半径的直线是圆的切线6.(2016·朝阳一模)如图1-12-30,点D在⊙O上,过点D的切线交直径AB的延长线于点P,DC⊥AB于点C.(1)求证:DB平分∠PDC;(2)若DC=6,tan∠P=,求BC的长.图1-12-30(1)【证明】如图1-12-31,连接OD.图1-12-31∵DP是⊙O的切线,∴OD⊥DP,∴∠ODP=90°,∴∠ODB+∠BDP=90°.又∵DC⊥OB,∴∠DCB=90°,∴∠BDC+∠OBD=90°.∵OD=OB,∴∠ODB=∠OBD,∴∠OBD+∠BDP=90°,∴∠BDP=∠BDC,∴DB平分∠PDC.(2)【解】如图1-12-32,过点B作BE⊥DP于点E.图1-12-32∵∠BDP=∠BDC,BC⊥DC,∴BC=BE.∵DC=6,tan∠P=,∴DP=10,PC=8.设BC=x,则BE=x,BP=8-x.∵△PEB∽△PCD,∴=,∴x=3,∴BC=3.7.(2016·东城一模)如图1-12-33,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,DB=4,求DE的长.图1-12-33(1)【证明】∵∠EDB=∠EPB,∠DOE=∠POB,∴∠PBO=∠E=90°,∴PB是⊙O的切线.(2)【解】∵PB=3,DB=4,∴PD=5.设⊙O的半径的长是r,如图1-12-34,连接OC.图1-12-34∵PD切⊙O于点C,∴OC⊥PD.∴.∴.∴r=.可求出PO=.易证△DEO∽△PBO,∴=.解得DE=.8.(2016·石景山一模)如图1-12-35,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交CA的延长线于点F.(1)求证:EF⊥AB.(2)若∠C=30°,EF=,求EB的长.图1-12-35(1)【证明】如图1-12-36,连接OD,AD,图1-12-36∵AC为⊙O的直径,∴∠ADC=90°.又∵AB=AC,∴CD=DB.又CO=AO,∴OD∥AB.∵FD是⊙O的切线,∴OD⊥DF,∴EF⊥AB.(2)【解】∵∠C=30°,∴∠AOD=60°.在Rt△ODF中,∠ODF=90°,∴∠F=30°.∴OA=OD=OF.在Rt△AEF中,∠AEF=90°,∠F=30°,∵EF=,∴AE=.∵OD∥AB,OA=OC=AF,∴OD=2AE=2,AB=2OD=4.∴EB=AB-AE=3.9.(2016·丰台一模)如图1-12-37,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.图1-12-37(1)求证:∠CBF=∠CAB;(2)连接BD,AE交于点H,若AB=5,tan∠CBF=,求BH的长.(1)【证明】连接AE,如图1-12-38.图1-12-38∵AB是⊙O的直径,∴∠AEB=90°.∵AB=AC,∴∠EAB=∠CAB.∵BF是⊙O的切线,∴∠ABE+∠CBF=90°.∵∠ABE+∠EAB=90°.∴∠CBF=∠EAB,∴∠CBF=∠CAB.(2)【解】如图1-12-39.图1-12-39∵tan∠EAB=tan∠CBF=,又∵AB=5,∴在Rt△ABE中,由勾股定理可得BE=.∵=,∴∠EBD=∠EAC=∠EAB.∴tan∠EBD=tan∠EAB=,∴=,∴EH=.∴BH==.10.(2016·西城一模)如图1-12-40,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D.点E在上,连接DE,AE,连接CE并延长交AB于点F,∠AED=∠ACF.(1)求证:CF⊥AB;(2)若CD=4,CB=4,cos∠ACF=,求EF的长.图1-12-40(1)【证明】连接BD,如图1-12-41.图1-12-41∵AB是⊙O的直径,∴∠ADB=90°.∴∠DAB+∠1=90°.∵∠1=∠2,∠2=∠3,∴∠1=∠3.∴∠DAB+∠3=90°.∴∠CF A=180°-(∠DAB+∠3)=90°.∴CF⊥AB.(2)【解】连接OE,如图1-12-42.图1-12-42∵∠ADB=90°,∴∠CDB=180°-∠ADB=90°.∵在Rt△CDB中,CD=4,CB=4,∴DB==8.∵∠1=∠3,∴cos∠1=cos∠3=.∵在Rt△ABD中,cos∠1==,∴AB=10.∴OA=OE=5,AD==6.∵CD=4,∴AC=AD+CD=10.∴在Rt△ACF中,CF=AC·cos∠3=8.∴AF==6.∴OF=AF-OA=1.∴在Rt△OEF中,EF==2.11.(2016·西城二模)如图1-12-43,四边形ABCD内接于⊙O,点E在CB的延长线上,连接AC,AE,∠ACB=∠BAE=45°.图1-12-43(1)求证:AE是⊙O的切线;(2)若AB=AD,AC=2,tan∠ADC=3,求CD的长.(1)【证明】连接OA,OB,如图1-12-44.图1-12-44∵∠ACB=45°,∴∠AOB=2∠ACB=90°.∵OA=OB,∴∠OAB=∠OBA=45°.∵∠BAE=45°,∴∠OAE=∠OAB+∠BAE=90°.∴OA⊥AE.∵点A在⊙O上,∴AE是⊙O的切线.(2)【解】过点A作AF⊥CD于点F,如图1-12-45.图1-12-45∵AB=AD,∴=.∴∠ACB=∠ACD=45°.∵AF⊥CD于点F,∴∠AFC=∠AFD=90°.∴∠ACF=∠CAF=45°,∴AF=CF.∵AC=2,∴在Rt△AFC中,AF=CF=AC·sin∠ACF=2.∵在Rt△AFD中,tan D==3,∴DF=.∴CD=CF+DF=.12.(2016·朝阳二模)如图1-12-46,O是∠MAN的边AN上一点,以OA为半径作⊙O,交∠MAN的平分线于点D,DE⊥AM于点E.图1-12-46(1)求证:DE是⊙O的切线;(2)连接OE,若∠EDA=30°,AE=1,求OE的长.(1)【证明】如图1-12-47,连接OD.图1-12-47∵AD平分∠MAN,∴∠EAD=∠OAD.∵OA=OD,∴∠ODA=∠OAD.∴∠EAD=∠ODA.∵DE⊥AM于E,∴∠AED=90°.∴∠EAD+∠EDA=90°.∴∠ODA+∠EDA=90°.∴OD⊥ED.∴DE是⊙O的切线.(2)【解】如图1-12-48,图1-12-48∵∠EDA=30°,∴∠ODA=60°.∵OA=OD,∴△ADO为等边三角形.在Rt△AED中,AE=1,可得AD=2,ED=.∴OD=AD=2.在Rt△ODE中,由勾股定理可得OE=.13. (2016·东城二模)如图1-12-49,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D,E,BC的延长线与⊙O的切线AF交于点F.(1)求证:∠ABC=2∠F AC;(2)若AC=2,sin∠CAF=,求BE的长.图1-12-49(1)【证明】如图1-12-50,连接BD.图1-12-50∵AB是⊙O的直径,∴∠ADB=90°.∴∠DAB+∠DBA=90°.∵BA=BC,∴∠ABC=2∠DBA,AD=AC.∵AF为⊙O的切线,∴∠F AB=90°.∴∠F AC+∠CAB=90°.∴∠F AC=∠DBA.∴∠ABC=2∠F AC.(2)【解】如图1-12-51,连接AE,∴∠AEB=∠AEC=90°.图1-12-51∵sin∠CAF=,∠ABD=∠CAF=∠CBD=∠CAE,∴sin∠ABD=sin∠CAF=.∵∠ADB=90°,AD=AC=,∴AB==10,∴BC=BA=10.∵∠AEC=90°,AC=2,∴CE=AC·sin∠CAE=2.∴BE=BC-CE=10-2=8.14.(2016·海淀二模)如图1-12-52,在△ABC中,∠C=90°,点E在AB上,以AE为直径的⊙O切BC于点D,连接AD.图1-12-52(1)求证:AD平分∠BAC;(2)若⊙O的半径为5,sin∠DAC=,求BD的长.(1)【证明】如图1-12-53,连接OD.∵⊙O切BC于点D,∠C=90°,∴∠ODB=∠C=90°.∴OD∥AC.∴∠ODA=∠DAC.∵OA=OD,∴∠ODA=∠OAD.∴∠OAD=∠DAC.∴AD平分∠BAC.图1-12-53(2)【解】如图1-12-53,连接DE.∵AE为⊙O的直径,∴∠ADE=90°.∵∠OAD=∠DAC,sin∠DAC=,∴sin∠EAD=sin∠OAD=.∵OA=5,∴AE=10.∴AD=4.∴CD=4,AC=8.∵OD∥AC,∴△BOD∽△BAC.∴=.即=.∴BD=.15.(2016·石景山二模)如图1-12-54,在Rt△ACB中,∠C=90°,D是AB上一点,以BD 为直径的⊙O切AC于点E,交BC于点F,连接DF.(1)求证:DF=2CE;(2)若BC=3,sin B=,求线段BF的长.图1-12-54(1)【证明】如图1-12-55,连接OE交DF于点G,图1-12-55∵AC切⊙O于点E,∴∠CEO=90°.又∵BD为⊙O的直径,∴∠DFC=∠DFB=90°.∵∠C=90°,∴四边形CEGF为矩形.∴CE=GF,∠EGF=90°.∴DG=GF.∴DF=2CE.(2)【解】在Rt△ABC中,∠C=90°,∵BC=3,sin B=,∴AB=5.设OE=x,∵OE∥BC,∴△AOE∽△ABC.∴=,∴=,∴x=.∴BD=.在Rt△BDF中,∠DFB=90°,∴BF=.真题演练1.(2016·北京)如图1-12-56,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.图1-12-56(1)【证明】如图1-12-57,连接BC.图1-12-57∵AB为⊙O的直径,∴∠ACB=90°.∵DE为⊙O的切线,∴∠EDO=90°.∵F是AC的中点且OA=OB,∴在△ABC中,FO是△ABC的一条中位线,∴FO∥BC∴∠AFO=∠ACB=90°.∴∠AFO=∠EDO,∴AC∥DE.(2)【解法1】思路:①如图1-12-58,连接CD,AD,过点D作DH⊥AB于点H.图1-12-58②由∠EDO=90°,OA=AE,得AD=OA=DO,得△DAO为等边三角形.③由OA=AE,AC∥DE得四边形ACDE为平行四边形.④由△DAO为等边三角形,得DH=a.⑤=AE·DH=.求解过程:连接CD,AD,过点D作DH⊥AB于点H.在Rt△EDO中,∵OA=AE,∴AD=OA=AE=a,∴AD=OA=DO=a.∴△DAO为等边三角形,∴DH=OA=a.∵AC∥DE,OA=AE,∴AF为△EOD的一条中位线,∴ED=2AF.∵F为AC的中点,∴AC=2AF.∴AC=ED.又∵AC∥DE,∴四边形ACDE为平行四边形.=AE·DH=a×a=.【解法2】思路:①AF为△ODE的中位线.②如图1-12-59,连接CD.△CDF≌△AOF(SAS).图1-12-59③在Rt△ODE中,由勾股定理得DE=a.④=.求解过程:在△ODE中,AF∥DE,OA=AE,∴AF是△ODE的中位线,∴OF=DF.又∵F为弦AC的中点,∴AF=CF.又∵∠CFD和∠AFO互为对顶角,∴∠CFD=∠AFO.在△CDF和△AOF中,∴△CDF≌△AOF(SAS).∴在⊙O中,OD=OA=AE=a,∴OE=2OD=2a.在Rt△ODE中,由勾股定理得DE=a.∴=OD·DE=.【解法3】思路:①如图1-12-60,连接AD,DC.图1-12-60②由直角三角形斜边中线的性质可得AD=a,进而可得△ADO是等边三角形.③由∠AOD=60°可得ED=a,DF=a,AF=FC=a.④=.求解过程:由(1)可得∠EDO=90°,又∵OA=AE=a,∴AD=OA=a.又∵OD=OA=a,∴△ADO为等边三角形.∴∠AOD=60°.又∵AC∥DE,∴∠DEO=∠CAO=30°.∴DE=a,OF=DF=a.∴AF=FC=a.∴=DF·ED+DF·AF+DF·FC=(ED+AF+FC)·DF=·a=.2.(2015·北京)如图1-12-61,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形.(2)连接OE,若DE=2,求OE的长.图1-12-61(1)【证明】∵AB是⊙O的直径,BM是⊙O的切线,∴AB⊥BM.∵CD∥BM,∴CD⊥AB,∴=.∵=,∴==,∴AD=AC=CD,∴△ACD是等边三角形.(2)【解】如图1-12-62,连接BD.图1-12-62∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°.由(1)得△ACD是等边三角形,∴∠DAF=30°,∴∠DBE =∠DAB =30°.在Rt△BDE中,∵DE=2,∴BE=2DE=4.∴BD===2.在Rt△ADB中,∵∠DAB=30°,∴AB=2BD=4,∴OB=AB=2.在Rt△BOE中,OE===2.第三节圆的有关计算课标解读考试内容考试要求考查频度A B C多边形和圆了解圆内接多边形和多边形外接圆的概念;了解三角形外心的概能利用圆内接四边形的对角互补解决有关简单问题;能利用正多★念;知道三角形的内切圆;了解三角形的内心;了解正多边形的概念及正多边形与圆的关系边形解决有关简单问题;尺规作图(利用基本作图完成):作三角形的外接圆、内切圆,作圆内接正方形和正六边形弧长、扇形面积和圆锥会计算圆的弧长和扇形的面积;会计算圆锥的侧面积和全面积能利用圆的弧长和扇形的面积解决一些简单的实际问题★知识要点1.弧长公式:扇形面积公式:l= (其中半径为r,弧所对的圆心角为n°).2.扇形面积公式:= = (n是圆心角的度数,r是扇形的半径,l是扇形弧长).3.圆锥的侧面积:= = (其中l是圆锥的母线长,r是圆锥的底面半径).4.三角形的外接圆:①经过三角形三个顶点的圆称为三角形的外接圆;这个三角形叫做圆的内接三角形;②三角形的外心:三角形外接圆的圆心叫做三角形的外心,它是三角形的交点,到三角形的距离相等.5.三角形的内切圆①定义:与三角形各边都相切的圆叫做三角形的内切圆,这个三角形叫做圆的外切三角形;②三角形的内心:三角形内切圆的圆心叫做三角形的内心,它是三角形三条的交点,到的距离相等.6.圆内接四边形①圆内接多边形:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的 .②圆内接四边形的对角 .7.尺规作图:如图1-12-63,作三角形的外接圆、内切圆,作圆内接正方形和正六边形.①作三角形的外接圆已知:△ABC,求作:△ABC的外接圆O.图1-12-63 图1-12-64②如图1-12-64,作三角形的内切圆.已知:△ABC,求作:△ABC的内切圆O.③如图1-12-65,作圆内接正方形.已知:圆O,求作:圆O的内接正方形ABCD.图1-12-65 图1-12-66④如图1-12-66,作圆内接正六边形.已知:圆O,求作:圆O的内接正六边形ABCDEF.典例诠释考点一计算弧长、扇形面积例1 如图1-12-67,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧的长为( )图1-12-67A.πB.πC.πD.π【答案】 A【名师点评】根据切线的性质,连接OB,OC,在△OBC中,可得∠BOA=60°,进而得到∠BOC=60°,再利用弧长公式计算劣弧的长.考点二圆锥的有关计算例2 如图1-12-68,如果从半径为9 cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( )图1-12-68A.6 cmB.3cmC.8 cmD.5cm【答案】 B【名师点评】此题先要根据弧长公式计算出圆锥底面圆半径的长,再利用勾股定理计算圆锥的高.考点三圆内接四边形及性质例3 (2016·石景山一模)如图1-12-69,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数为( )图1-12-69A.45°B.90°C.100°D.135°【答案】 B【名师点评】根据圆内接四边形对角互补的性质求出∠D的大小,再利用同弧的圆周角和圆心角的关系求出∠AOC的大小.基础精练1.(2016·昌平期末)如图1-12-70,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2,则阴影部分的面积为.【答案】π2.(2016·朝阳期末)如图1-12-71,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则的长为 .图1-12-71【答案】3.(2016·顺义二模)如图1-12-72,四边形ABCD内接于⊙O,∠A=110°,则∠BOD的度数是( )图1-12-72A.70°B.110°C.120°D.140°【答案】 D4.(2016·昌平二模)如图1-12-73,已知四个扇形的半径均为1,那么图中阴影部分面积的和是 .图1-12-73【答案】π5.(西城二模)一个扇形的半径长为5,且圆心角为72°,则此扇形的弧长为 . 【答案】2π6.(2016·朝阳一模)如图1-12-74,△ABC内接于⊙O,若⊙O的半径为6,∠A=60°,则图1-12-74A.2πB.4πC.6πD.12π【答案】 B7.(怀柔二模)如图1-12-75,某校教学楼有一花坛,花坛由正六边形ABCDEF和6个半径为1米,圆心分别在正六边形ABCDEF的顶点上的⊙A,⊙B,⊙C,⊙D,⊙E,⊙F组合而成.现要在阴影部分种植月季,则种植月季面积之和为.图1-12-75【答案】2π8.(2016·丰台期末)圆心角是60°的扇形的半径为6,则这个扇形的面积是 .【答案】6π9.(门头沟二模)如图1-12-76,四边形ABCD内接于⊙O,E是DC延长线上一点,如果⊙O的半径为6,∠BCE=60°,那么的长为( )A.6πB.12πC.2πD.4π图1-12-76【答案】 D10.(2016·朝阳一模)如图1-12-77,四边形ABCD内接于⊙O,E为DC延长线上一点,∠A=50°,则∠BCE的度数为( )图1-12-77A.40°B.50°C.60°D.130°【答案】 B11.(2016·石景山期末)如图1-12-78,折扇的骨柄OA的长为5a,扇面的宽CA的长为3a,折扇张开的角度为n°,则扇面的面积为(用代数式表示).图1-12-78【答案】12.(2016·顺义一模)如图1-12-79,⊙O的半径为5,正五边形ABCDE内接于⊙O,则的长度为 .图1-12-79【答案】2π13.(西城一模)已知⊙O,如图1-12-80所示.(1)求作⊙O的内接正方形(要求尺规作图,保留作图痕迹,不写作法);(2)若⊙O的半径为4,则它的内接正方形的边长为.图1-12-80 图1-12-81【答案】(1)如图1-12-81. (2)4.14.(西城一模)阅读下面材料:如图1-12-82,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在OC两侧分别作矩形OGHI和正方形ODEF,且点I,F在OC上,点H,E在半圆上,求证:IG=FD. 小云发现连接已知点得到两条线段,便可证明IG=FD.请回答:小云所作的两条线段分别是和,证明IG=FD的依据是.图1-12-82【答案】OH,OE,矩形的对角线相等;同圆的半径相等;等量代换15.(2014·浙江舟山)一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为( )A.1.5B.2C.2.5D.3【答案】 D16.(2014·河北)如图1-12-83,将长为8 cm的铁丝AB首尾相接围成半径为2 cm的扇形,则=.图1-12-83【答案】 417.(2016·昌平期末)【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sin α=,求sin 2α的值.小娟是这样给小芸讲解的:如图1-12-84,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°.设∠BAC=α,则sin α==,易得∠BOC=2α.设BC=x,则AB=3x,则AC=2x.作CD⊥AB于点D,求出CD = (用含x的式子表示),可求得sin 2α== .图1-12-84 图1-12-85【问题解决】已知,如图1-12-85,点M,N,P为⊙O上的三点,且∠P=β,sin β=,求sin 2β的值.【解】[问题学习]CD=x sin 2α==.[问题解决]如图1-12-86,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR⊥QN于点R.在⊙O中,∠NMQ=90°.图1-12-86∵∠Q=∠P=β,∴∠MON=2∠Q=2β.在Rt△QMN中,∵sin β==,∴设MN=3k,则NQ=5k,易得OM=NQ=k.∴MQ==4k.∵=MN·MQ=NQ·MR,∴3k·4k=5k·MR,∴MR=k.在Rt△MRO中,sin 2β=sin∠MOR===.真题演练1.(2016·玉林)如图1-12-87,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为,正八边形外侧八个扇形(阴影部分)面积之和为,则=( )图1-12-87A. B. C. D.1【答案】 B2.(2014·遵义)有一圆锥,它的高为8 cm,底面半径为 6 cm,则这个圆锥的侧面积是.(结果保留π)【答案】60π。