2019年中考数学计算题专项训练(超详细,经典!!!)

合集下载

2019全国中考数学真题分类汇编:与圆的有关计算及参考答案

2019全国中考数学真题分类汇编:与圆的有关计算及参考答案

一、选择题1.(2019·德州)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°【答案】B.【解析】由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选B.2.(2019·滨州)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°【答案】B【解析】如图,连接AD,∵A B为⊙O的直径,∴∠ADB=90°.∵∠A和∠BCD都是弧BD所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.【解析】由题意可知∠BOC=2∠A=45°⨯2=90°,S阴=S扇△-SOBC,S扇=144π42=4π,△S O BC=1.3、(2019·遂宁)如图,△ABC内接于⊙O,若∠A=45°,⊙O的半径r=4,则阴影部分的面积为()A.4π-8B.2πC.4πD.8π-8【答案】A1S圆=2⨯42=8,所以阴影部分的面积为4π-8,故选A.4(2019·广元)如图,AB,AC分别是O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB=10,AC=8,则BD的长为()A.25B.4C.213D.4.8第6题图【答案】C【解析】∵AB是直径,∴∠C=90°,∴BC=AB2-AC2=6,又∵OD⊥AC,∴OD∥BC,∴△OAD∽△BAC,∴CD=AD =12AC=4,∴BD=BC2+C D2=213,故选C.A.5342B.42C.23-π5.(2019·温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.32πB.2πC.3πD.6π【答案】D【解析】扇形的圆心角为90°,它的半径为6,即n=90°,r=6,根据弧长公式l=nπr180,得6π.故选D. 6.(2019·绍兴)如图,ABC内接于圆O,∠B=65°,∠C=70°,若BC=22,则弧BC的长为() A.π B.2π C.2π D.22π【答案】A【解析】在△ABC中,得∠A=180°-∠B-∠C=45°,连接OB,OC,则∠BOC=2∠A=90°,设圆的半径为r,由勾股定理,得r2+r2=(22)2,解得r=2,所以弧BC的长为90π⨯2180=π.7.(2019·山西)如图,在△R t ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()-π53π+ D.43-π2第10题图【答案】A-=-,故选【解析】根据扇形的面积公式,S==12π,故本题选:C.2C.2D.【解题过程】在△R t ABC中,连接OD,∠ABC=90°,AB=23,BC=2,∴∠A=30°,∠DOB=60°,过点D作DE⊥AB于点E,∵AB=23,∴AO=OD=3,∴DE=32,∴S阴影=S△ABC-S△AOD-S扇形BOD=23-334π53π242A.8.(2019·长沙)一个扇形的半径为6,圆心角为120°,则该扇形的面积是【】A.2πB.4πC.12πD.24π【答案】C120×π×623609.(2019·武汉)如图,AB是⊙O的直径,M、N是弧AB(异于A、B)上两点,C是弧MN上动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.2B.π352C【答案】A【解题过程】由题得∠1=∠2=12∠C=45°,∠3=∠4,∠5=∠6MAP3412E4tO56QNB设∠3=∠4=m,∠5=∠6=n,得m+n=45°,∴∠AEB=∠C+m+n=90°+45°=135°∴E在以AD为半径的⊙D上(定角定圆)2tDt⨯2π⨯1∴=360=22t⨯2π⨯22 B.π【解析】连接OA,OB,过点O作OD⊥AB交AB于点E,由题可知OD=DE=1D.8-如图,C的路径为MN,E的路径为PQ设⊙O的半径为1,则⊙D的半径为2,4tMNPQ36010.(2019·泰安)如图,将O沿弦AB折叠,AB恰好经过圆心O,若O的半径为3,则AB的长为1A.π C.2π D.3π【答案】C1ODOE=OA,在△R t AOD中,sinA==22OA 1nπr,∴∠A=30°,∴∠AOD=60°,∠AOB=120°,AB==2π,故选C.218011.(2019·枣庄)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD与点E,则图中阴影部分的面积是(结果保留π)A.8-πB.16-2πC.8-2π1π2【解析】在边长为4的正方形ABCD中,BD是对角线,∴AD=AB=4,∠BAD=90°,∠ABE=45°,∴S△ABD=⋅AD⋅AB 45⋅π⋅42周长为12π,即为侧面扇形的弧长,所以圆锥的侧面积=×10×12π=60π,故选D.2B.2π8D.【答案】C12=8,S扇形ABE==8-2π,故选C.36012.(2019·巴中)如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是()A.15πB.30πC.45πD.60π【答案】D【解析】圆锥的高,母线和底面半径构成直角三角形,其中r=6,h=8,所以母线为10,即为侧面扇形的半径,底面1213.(2019·凉山)如图,在△AOC中,OA=3cm,OC=lcm,将△AOC绕点D顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为(▲)cm2A.πC.17π19π8【答案】B【解析】AC边在旋转过程中所扫过的图形的面积=△SOCA+S扇形OAB-S扇形OCD-△SODB①△由旋转知:OCA≌△ODB,∴△SOCA=S△ODB,∴①式=S扇形OAB-S扇形OCD=90π⨯3290π⨯12-=2π,故选B.360360∴S正方形ABCD BC2=4k2,⊙O的面积为πr2=π×(k)2=2πk2.14.(2019·自贡)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A. B. C. D.【答案】C.【解析】由题意可知,⊙O是正方形ABCD的外接圆,过圆心O点作OE⊥BC于E,在△R t OEC中,∠COE=45°,∴sin∠COE=,设CE=k,则OC=CE=k,∵OE⊥BC,∴CE=BE=k,即BC=2k.=∴正方形==≈.lR ,∴l = ·∴下面圆锥的侧面积 lR = · · 2 R = 2 .故选 D . 15.(2019·湖州)已知圆锥的底面半径为 5cm ,母线长为 13cm ,则这个圆锥的侧面积是()A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 2【答案】B .【解析】∵r =5,l =13,∴S 锥侧=πrl =π×5×13=65π(cm 2).故选 B .16. (2019·金华)如图,物体由两个圆锥组成,其主视图中,∠A =90°,∠ABC =105°,若上面圆锥的侧面积 为 1,则下面圆锥的侧面积为()A.2B.3C.ABD3 2D. 2C【答案】D .【解析】∵∠A =90°,∠ABC =105°,∴∠ABD =45°,∠CBD =60°,∴△ABD 是等腰直角三角形,△CBD 是等边三角形.设 AB 长为 R ,则 BD 长为 2 R .∵上面圆锥的侧面积为 1,即 1=1 22 R为1 12 2 2 R17.(2019·宁波)如图所示,矩形纸片 ABCD 中,AD =6cm,把它分割成正方形纸片 ABFE 和矩形纸片 EFCD 后,分别裁出扇形 ABF 和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则 AB 的长为A.3.5cmB.4cmC.4.5cmD.5cm【答案】B【解析】AE=1∴AC1⋅2π⋅AB,右侧圆的周长为π⋅DE,∵恰好能作为一个圆锥的底面和侧面,∴,⋅2π⋅AB=44π⋅DE,AB=2DE,即AE=2ED,∵AE+ED=AD=6,∴AB=4,故选B.18.(2019·衢州)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形。

中考数学计算题专项训练120道及答案

中考数学计算题专项训练120道及答案

2019年中考数学计算题专项训练100道一、集训一(代数计算) 1. 计算: (1)3082145+-Sin (2)错误!未找到引用源。

(3)2×(-5)+23-3÷12 (4)22+(-1)4+(5-2)0-|-3|;(6)︒+-+-30sin 2)2(20 (8)()()022161-+--(9)( 3 )0- ( 12 )-2 + tan45° (10)()()0332011422---+÷-2.计算:345tan 32312110-︒-⨯⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--3.计算:()()()︒⨯-+-+-+⎪⎭⎫⎝⎛-30tan 331212012201031100124.计算:()()112230sin 4260cos 18-+︒-÷︒---5.计算:12010(60)(1)|2(301)cos tan -÷-+- 二、集训二(分式化简)1.. 2。

21422---x x x 、 3. (a+b )2+b (a ﹣b ). 4. 11()a a a a --÷ 5.2111x x x -⎛⎫+÷ ⎪⎝⎭6、化简求值(1)⎝⎛⎭⎫1+ 1 x -2÷ x 2-2x +1 x 2-4,其中x =-5. (2)(a ﹣1+错误!未找到引用源。

)÷(a 2+1),其中a=错误!未找到引用源。

﹣1.(3)2121(1)1a a a a++-⋅+,其中a (4))252(423--+÷--a a a a , 1-=a (5))12(1aa a a a --÷-,并任选一个你喜欢的数a 代入求值. (6)22121111x x x x x -⎛⎫+÷⎪+--⎝⎭然后选取一个使原式有意义的x 的值代入求值(7)8、化简2111x x x -⎛⎫+÷ ⎪⎝⎭9、化简求值:111(11222+---÷-+-m m m m m m ), 其中m =3.10、先化简,再求代数式2221111x x x x -+---的值,其中x=tan600-tan45011、化简:xx x x x x x x x 416)44122(2222+-÷+----+, 其中22+=x12、化简并求值:221122a b a b a a b a -⎛⎫--+ ⎪-⎝⎭,其中33a b =-=. 13、计算:332141222+-+÷⎪⎭⎫ ⎝⎛---+a a a a a a a . 14、先化简,再求值:13x -·32269122x x x xx x x-+----,其中x =-6. 15、先化简:再求值:⎝⎛⎭⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 .16、先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a <2.17、先化简,再求值:222211yxy x x y x y x ++÷⎪⎪⎭⎫⎝⎛++-,其中1=x ,2-=y . 18、先化简,再求值:2222(2)42x x x x x x -÷++-+,其中12x =. 19、先化简,再求值:222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°) 20、22221(1)121a a a a a a +-÷+---+. 21、先化简再求值:1112421222-÷+--∙+-a a a a a a ,其中a 满足20a a -=. 22、先化简:144)113(2++-÷+-+a a a a a ,并从0,1-,2中选一个合适的数作为a 的值代入求值。

天津市2019年中考数学真题试题(含解析)(1)

天津市2019年中考数学真题试题(含解析)(1)

2019年天津市初中毕业生学生考试试卷数学试卷满分120分,考试时间100分钟。

第I 卷一、选择题目(本大题12小题,每小题3分,共36分)1.计算(-3)×9的结果等于A. -27B. -6C. 27D. 6 【答案】A【解析】有理数的乘法运算:=-3×9=-27,故选A. 2.︒60sin 2的值等于A. 1B. 2C. 3D. 2 【答案】B【解析】锐角三角函数计算,︒60sin 2=2×23=3,故选A. 3.据2019年3月21日《天津日报》报道:“伟大的变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次,将4230000用科学记数法表示为A. 0.423×107B.4.23×106C.42.3×105D.423×104【答案】B【解析】科学记数法表示为4.23×106,故选B.4.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看做是轴对称图形的是【答案】A【解析】美、丽、校、园四个汉子中,“美”可以看做轴对称图形。

故选A 5.右图是一个由6个相同的正方体组成的立体图形,它的主视图是【答案】B【解析】图中的立体图形主视图为,故选B.6.估计33的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间 【答案】D 【解析】因为,所以,故选D.7.计算1212+++a a a 的结果是 A. 2 B. 22+a C. 1 D.14+a a【答案】A 【解析】21221212=++=+++a a a a a ,故选A. 8.如图,四边形ABCD 为菱形,A 、B 两点的坐标分别是(2,0),(0,1),点C 、D 在坐标轴上,则菱形ABCD 的周长等于A.5B.34C.54D. 20【答案】C【解析】由勾股定理可得,由菱形性质可得, 所以周长等于故选C. 9.方程组⎩⎨⎧=-=+1126723y x y x ,的解是A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x【答案】D【解析】用加减消元法,⎩⎨⎧=-=+②①1126723y x y x①+②=1172623+=-++y x y x189=x 2=x代入2=x 到①中,726=+y 则21=y ,故选D. 10.若点A (-3,1y ),B (-2,2y ),C (1,3y )都在反比函数xy 12-=的图象上,则321,,y y y 的关系 A. 312y y y << B.213y y y << C.321y y y << D.123y y y << 【答案】B【解析】将A (-3,1y ),B (-2,2y ),C (1,3y )代入反比函数xy 12-=中,得:12-112,6212,4312321=-==--==--=y y y ,所以213y y y <<,故选B. 11.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是A.AC=ADB.AB ⊥EBC. BC=DED.∠A=∠EBC【答案】D【解析】由旋转性质可知,AC=CD ,AC ≠AD ,∴A 错 由旋转性质可知,BC=EC ,BC ≠DE ,∴C 错由旋转性质可知,∠ACB=∠DCE ,∵∠ACB=∠ACD+∠DCB ,∠DCE=∠ECB+∠DCB ∴∠ACD=∠ECB ,∵AC=CD ,BC=CE ,∴∠A=∠CDA=21(180°-∠ECB ),∠EBC=∠CEB=21(180°-∠ECB ), ∴D 正确,由于由题意无法得到∠ABE=90°,∴B 选项错误. 故选D 。

广西贵港市2019年届中考数学复习专项(一)计算求值题试题

广西贵港市2019年届中考数学复习专项(一)计算求值题试题

题型专项(一) 计算求值题类型1 实数的运算1.(2019·钦州)计算:|-8|+(-2)3+tan45°- 4.解:原式=8-8+1-2=-1.2.(2019·河池模拟)计算:(π-3)0-|3-2|+(-13)-2-tan60°. 解:原式=1+3-2+9-3=8.3.(2019·昆明)计算:2 0160-|-2|+(13)-1+2sin45°. 解:原式=1-2+(3-1)-1+2×22=1-2+3+2=4. 类型2 分式的化简求值1.(2019·盐城)先化简,再求值:(x x -2+2x -4x 2-4x +4)·1x +2的值,其中x =3. 解:原式=x (x -2)+2x -4(x -2)2·1x +2=(x +2)(x -2)(x -2)2·1x +2 =1x -2. 当x =3时,原式=1.2.先化简,再求值:a 2-b 2a 2-2ab +b 2·a -b a +b -a a -b,其中a =1+3,b =1- 3. 解:原式=(a +b )(a -b )(a -b )2·a -b a +b -a a -b=a +b a -b ·a -b a +b -a a -b=1-a a -b =-b a -b . 当a =1+3,b =1-3时, 原式=-1-31+3-1+3=-1-323=3-36. 类型3 解分式方程1.(2019·龙岩)解方程:2x x -2+1=32-x. 解:方程两边都乘以(x -2),得2x +(x -2)=-3,解得x =-13.经检验,x =-13是原分式方程的解. 2.解方程:x +2x -2-1x +2=16x 2-4. 解:方程两边同乘(x 2-4),得(x +2)2-(x -2)=16,解得x 1=2,x 2=-5.检验:把x 1=2代入(x 2-4),得x 2-4=0,∴x =2是原方程的增根.把x 2=-5代入(x 2-4),得x 2-4=21≠0,∴原方程的解为x =-5.类型4 不等式(组)的解法1.(2019·南京)解不等式组:⎩⎪⎨⎪⎧3x +1≤2(x +1),①-x<5x +12,②并写出它的整数解. 解:解不等式①,得x≤1.解不等式②,得x>-2.∴不等式组的解集是-2<x≤1.∴该不等式组的整数解是-1、0、1.2.(2019·威海)解不等式组:⎩⎪⎨⎪⎧2x +5≤3(x +2),①1-2x 3+15>0,②并把解集表示在数轴上.解:解不等式①,得x≥-1.解不等式②,得x<45. ∴原不等式组的解集为-1≤x<45. ∴原不等式组的解集在数轴上表示为2019-2020学年数学中考模拟试卷一、选择题1.下列运算正确的是()A.3a3+a3=4a6B.(a+b)2=a2+b2C.5a﹣3a=2a D.(﹣a)2•a3=﹣a62.《九章算术》是中国传统数学最重要的著作之一,其中记载:“今有共买物人出八,盈三;人出七,不足四问人数、物价各几何?”译文:“几个人去购买物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱问有多少人,物品的价格是多少”?设有m人,物品价格是n钱,下列四个等式:①8m+3=7m﹣4;②=;③=;④8m﹣3=7m+4,其中正确的是()A.①②B.②④C.②③D.③④3.如图,一个平行四边形被分成面积为S1、S2、S3、S4四个小平行四边形,当CD沿AB自左向右在平行四边形内平行滑动时,S1S4与S2S3的大小关系为()A.S1S4>S2S3B.S1S4<S2S3C.S1S4=S2S3D.无法确定4.若关于x的不等式组无解,且关于y的分式方程有非正整数解,则符合条件的所有整数k的值之和为()A.﹣7B.﹣12C.﹣20D.﹣345.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AC的中点,连接BD,按以下步骤作图:①分别以B,D为圆心,大于12BD的长为半径作弧,两弧相交于点P和点Q;②作直线PQ交AB于点E,交BC于点F,则BF=()A .56B .1C .136D .526.国家统计局统计资料显示,2018年第一季度我国国内生产总值为31355.55亿元,用科学记数法表示为( )元.(用四舍五入法保留3个有效数字)A .831355.510⨯B .133.1410⨯C .123.1410⨯D .123.1310⨯7.不等式组222x x >⎧⎨-≥-⎩的解集在数轴上表示为( )A .B .C .D .8.若两个连续整数x ,y 满足x <19﹣1<y ,则这两个整数是( )A .1和2B .2和3C .3和4D .4和59.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k 的值为( )A .6-B .5-C .4-D .3-10.如图,A 是半径为1的⊙O 上两点,且OA ⊥OB .点P 从A 点出发,在⊙O 上以每秒一个的速度匀速单位运动:回A 点运动结束.设运动时间为x ,弦BP 长为y ,那么图象中可能表示数关y 与x 的函数关系的是( )A .①B .②C .①或④D .③或④11.《庄子》一书里有:“一尺之棰(木棍),日取其半,万世不竭(尽,完)”这句话可以用数学符号表示:1=23111++222+…+12n +…;也可以用图形表示.上述研究问题的过程中体现的主要数学思想是( )A .函数思想B .数形结合思想C .公理化思想D .分类讨论思想 12.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,给出下列四个结论:①abc >0;3b+2c <0;③4a+c<2b ;④当y >0时,﹣52<x <12.其中结论正确的个数是( )A .2B .3C .4D .1二、填空题 13.正方形ABCD 中,F 是AB 上一点,H 是BC 延长线上一点,连接FH ,将△FBH 沿FH 翻折,使点B 的对应点E 落在AD 上,EH 与CD 交于点G ,连接BG 交FH 于点M ,当GB 平分∠CGE 时,BM=226,AE=8,则ED=_____.14.在矩形ABCD 中,AB=3cm ,BC=4cm ,则点A 到对角线BD 的距离为___________15.“任意打开一本100页的书,正好是第30页”,这是__事件(选填“随机”或“必然”或“不可能”).16.如图,直角ABC ∆中,090∠=A ,030B ∠=,4AC =,以A 为圆心,AC 长为半径画四分之一圆,则图中阴影部分的面积是________.(结果保留π)17.分解因式(x -1)2-4的结果是______.18.如图,在平面直角坐标系xOy 中,点A ,P 分别在x 轴、y 轴上,∠APO =30°.先将线段PA 沿y 轴翻折得到线段PB ,再将线段PA 绕点P 顺时针旋转30°得到线段PC ,连接BC .若点A 的坐标为(﹣1,0),则线段BC 的长为_____.三、解答题19.如图,在平面直角坐标系中,A(0,1),B(4,2),C(2,0).(1)将△ABC沿y轴翻折得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕着点(﹣1,﹣1)旋转180°得到△A2B2C2,画出△A2B2C2;(3)线段B2C2可以看成是线段B1C1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为.20.如图,在▱ABCD中,过A、B、C三点的⊙O交AD于点E,连接BE、CE,BE=BC.(1)求证:△BEC∽△CED;(2)若BC=10,DE=3.6,求⊙O的半径.21.某单位需要购买一些钢笔和笔记本.若购买2支钢笔和1本笔记本需42元,购买3支钢笔和2本笔记本需68元.(1)求买一支钢笔要多少钱?(2)若购买了钢笔和笔记本共50件,付款可能是810元吗?说明理由.22.3(1)5 5(1)3(5)x yy x-=+⎧⎨-=+⎩23.如图,直线m:y=kx(k>0)与直线n:3233y x=-+相交于点C,点A、B为直线n与坐标轴的交点,∠COA=60°,点P从O点出发沿线段OC向点C匀速运动,速度为每秒1个单位,同时点Q从点A出发沿线段AO向点O匀速运动,速度为每秒2个单位,设运动时间为t秒.(1)k=;(2)记△POQ的面积为S,求t为何值时S取得最大值;(3)当△POQ的面积最大时,以PQ为直径的圆与直线n有怎样的位置关系,请说明理由.24.甲、乙两家商场平时以同样价格出售相同的商品.春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中不超过200元的不打折,超过200元后的价格部分打7折.设商品原价为x元,顾客购物金额为y元.(I).根据题意,填写下表:商品原价100 150 250 …甲商场购物金额(元) 80 …乙商场购物金额(元) 100 …(Ⅱ).分别就两家商场的让利方式写出y关于x的函数关系式;(Ⅲ).若x≥500时,选择哪家商场去购物更省钱?并说明理由.25.如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sin∠PAB的值.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C D C B C C C C D C B A二、填空题13.414.125cm15.随机16.4 433π-17.(x-3)( x+1)18.2三、解答题19.(1)详见解析;(2)详见解析;(3)(﹣2,﹣2).【解析】【分析】(1)利用关于y轴对称的点坐标特征写出点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A1、B1、C1的对应点A2、B2、C2,从而得到△A2B2C2;(3)作B1B2和C1C2的垂直平分线,它们相交于点P,则点P为旋转中心,然后写出P点坐标即可.【详解】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)如图,线段B2C2可以看成是线段B1C1绕着点P逆时针旋转90°得到,此时P点的坐标为(﹣2,﹣2).故答案为(﹣2,﹣2).【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20.(1)见解析;(2)5091 91【解析】【分析】(1)证明两个等腰三角形相似,证明一个底角对应相等即可;(2)利用直径构造直角三角形,从而涉及到半径(直径),再利用垂径定理即可解决问题.【详解】(1)证明:∵BE=BC,∴∠BEC=∠BCE∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD.∴∠BCE=∠DEC,∠A+∠D=180°.∴∠BEC=∠DEC∵四边形ABCD内接于⊙O,∴∠A+∠BCE=180°.∴∠BCE=∠D∴△BEC∽△CED即得证.(2)过点O作OF⊥CE,垂足为F,连接OC,如下图.∴CF=12 CE,∴直线OF垂直平分CE,∵BE=BC,∴直线OF经过点B,∵△BEC∽△CED,又由(1)可知CE=CD,∴BC CE CE DE=,∵BC=10,DE=3.6,∴CE=CD=6∴CF=12CE=3,设⊙O的半径为r,可得BF=2291BC CF-=,OF=91﹣r,在Rt△OCF中,OF2+CF2=OC2,∴(91﹣r)2+9=r2∴r=5091 91,即圆的半径为5091 91.【点睛】本题考查的是相似三角形的判定与性质,尤其是对两个等腰三角形的判定更为特殊,利用直径构造直角三角形是相关问题中的常用思路.21.(1)16;(2)不可能,理由见解析.【解析】【分析】(1)设一支钢笔x 元,一本笔记本y 元,根据“购买2支钢笔和1本笔记本需42元,购买3支钢笔和2本笔记本需68元.”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设学校购买m 支钢笔,则购买(50﹣m )本笔记本,根据总价=单价×数量结合购买的费用为810元,即可得出关于m 的一元一次方程,解得m 的值为不大于50的正整数即可.【详解】解:(1)设一支钢笔x 元,一本笔记本y 元,根据题意得:2423268x y x y +=⎧⎨+=⎩, 解得:1610x y =⎧⎨=⎩. 答:一支钢笔16元,一本笔记本10元.(2)设学校购买m 支钢笔,则购买(50﹣m )本笔记本,根据题意得:16m+10(50﹣m )=810,解得:m =52>50,不符合题意.答:若购买了钢笔和笔记本共50件,付款不可能是810元.【点睛】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次方程.22.57x y =⎧⎨=⎩ 【解析】【分析】先将原方程组中的每个方程整理后利用加减消元法即可解答.【详解】原方程组可整理为:383520x y x y -=⎧⎨-+=⎩①② ①+②得:4y=28y=7把y=7代入①得:3x-7=8x=5∴原方程组的解为:57x y =⎧⎨=⎩ 【点睛】 本题考查解一元一次方程组,对于较复杂的方程组要先整理成一般形式再解方程组.掌握解一元一次方程组的方法:代入消元法、加减消元法是关键.23.(1)k =3;(2)当t =32时,S 有最大值;(3)直线AB 与以PQ 为直径的圆O 相离,理由详见解析. 【解析】【分析】(1)依据k =tan ∠COA 进行求解即可;(2)如图1所示:过点P 作PD ⊥OA ,垂足为D .由锐角三角函数的定义和特殊锐角三角函数值可求得PD =32t ,然后利用三角形的面积公式列出关系式,最后利用配方法求得三角形面积最大时t 的值即可; (3)如图2所示:过点P 作PD ⊥OA 垂足为D ,过圆心O 作OE ⊥AB ,垂足为E .首先证明四边形,四边形OPCE 为矩形,然后求得d 和r 的值即可.【详解】(1)k =tan ∠COA =tan60°=3.(2)如图1所示:过点P 作PD ⊥OA ,垂足为D .令直线n :y =﹣33 x+23的y =0得:﹣33x+23=0,解得x =6, ∴OA =6. ∵∠COA =60°,PD ⊥OA , ∴32PD OP = ,即32PD t =. ∴PD =32t . 2222133333393(62)(3()())()22222228OPQ S t t t t t =⨯-⨯=--+-=--+△ ∴当t =32时,S 有最大值. (3)如图2所示:过点P 作PD ⊥OA 垂足为D ,过圆心O 作OE ⊥AB ,垂足为E .令直线n:y =﹣33x+23的x=0得:y=23.∴OB=23.∵tan∠BAO =23363OBOA==,∴∠BAO=30°.∴∠ABO=60°.∴OC=OBsin60°=2332⨯=3.∵∠COA=60°,∴∠BOC=30°.∴∠BOC+∠OBC=90°.∴∠OCA=90°.当t=32时,OD=3122⨯=34,PD =3333=224⨯.DQ=3﹣34=94.∴tan∠PQO =3334=934.∴∠PQO=30°.∴∠BAO=∠PQO.∴PQ∥AB,∴∠CPQ+∠PCA=180°.∴∠CPQ=180°﹣90°=90°.∴∠ECP=∠CPO=∠OEC=90°.∴四边形OPCE为矩形.∴d=OE=PC=OC﹣OP=3﹣32=32.PQ=OQsin 60°=3×333=22.∴r=PO =13333=224⨯.∵d>r.∴直线AB与以PQ为直径的圆O相离.本题主要考查的是直线和圆的位置关系、一次函数、矩形的性质和判定、二次函数的最值、锐角三角函数的综合应用,求得d 和r 的值是解题的关键.24.(Ⅰ)120,150,200,235;(Ⅱ)甲商场0.8y x =(0)x ≥;乙商场y=(0200)0.760(200)x x x x ≤≤⎧⎨+>⎩;(Ⅲ)当600x =时,选择这两家商场一样合算;当x 600>时,选择乙商场更省钱;当500x<600≤时,选择甲商场更省钱【解析】【分析】(Ⅰ)根据题意分别求出购物金额即可;(Ⅱ)根据题意可得y 1的解析式,分别讨论0200x ≤≤时和x>200时,根据题意可得y 2的解析式;(Ⅲ)设顾客甲商场与乙商场的购物金额的差为y 元,得出x≥500时y 关于x 的解析式,根据一次函数的性质解答即可.【详解】(Ⅰ)150×80%=120(元),150×100%=150(元),250×80%=200(元),200+(250-200)×70%=235(元),故答案为:120,150,200,235(Ⅱ)甲商场()0.80y x x =≥;乙商场:当0≤x≤200时,y=x ,当x>200时,y=200+(x-200)×70%=0.7x+60,∴y=()02000.760(200)x x x x ⎧≤≤⎨+>⎩(Ⅲ)设顾客甲商场与乙商场的购物金额的差为y 元.∵x 500≥,()y 0.8x 0.7x 60∴=-+,即y 0.1x 60=-.当y=0时,即0.1x 600-=,得600x =.∴当600x =时,选择这两家商场一样合算.∵0.10>,∴y 随x 的增大而增大.∴当600x >时,有0y >,选择乙商场更省钱;当500x<600≤时,有0y <,选择甲商场更省钱【点睛】本题考查一次函数的实际应用,熟练掌握一次函数的性质是解题关键.25.(1)详见解析;(2)45【解析】(1)要证明是圆的切线,须证明过切点的半径垂直,所以连接OBB ,证明OB ⊥PE 即可;(2)证明∠PAB =∠AOC 即可得到结论.【详解】(1)证明:连接OB ,∵PA 为⊙O 相切于点A ,∴∠OAP =90°∵PO ⊥AB ,∴AC =BC ,∴PA =PB ,在△PAO 和△PBO 中PA PB AO B0PO P0=⎧⎪=⎨⎪=⎩,∴△PAO ≌△PBO (SSS ),∴∠OBP =∠OAP =90°,即PB ⊥OB ,∵OB 为⊙O 的半径,∴PB 是⊙O 的切线;(2)在Rt △ACO 中,OC =3,AC =4,∴AO =5,∵∠PAB+∠CAO =90°,∠AOC+∠CAO =90°∴∠PAB =∠AOC ,∴sin ∠PAB =AC AO =45. 【点睛】本题考查了切线的判定以及求三角函数值.能够通过角转移到相应的直角三角形中,是解答此题的关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,在正方形ABCD 中,E 为AB 的中点,G ,F 分别为AD 、BC 边上的点,若AG=1,BF=2,∠GEF=90°,则GF 的长为( )A.2B.3C.4D.52.下列四个图案中,不是中心对称图案的是( )A. B. C. D.3.某地今年计划栽插这种超级杂交水稻3000亩,预计该地今年收获这种超级杂交水稻的总产量是2460000千克.用科学记数法表示是( )A.62.510⨯千克B.52.510⨯千克C.62.4610⨯千克D.52.4610⨯千克4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .25005.从甲,乙,丙三人中任选一名代表,甲被选中的可能性是 A.12 B.1 C.23 D.136.如图,在菱形ABOC 中,∠ABO =120°,它的一个顶点C 在反比例函数k y x=的图象上,若将菱形向下平移2个单位,点A 恰好落在函数图象上,则该反比函数的表达式为( )A .3y x =-B .33y x =-C .3y x =-D .23y x=- 7.若5-m m-3()>0,则( )A .m <5B .3≤m<5C .3≤m≤5D .3<m <5 8.计算11x -- 1x x -的结果为( )A .1B .2C .﹣1D .﹣29.如图,在△ABC 中,BD 平分∠ABC ,DE ∥BC ,且交AB 于点E ,∠A =60°,∠BDC =86°,则∠BDE 的度数为( )A .26°B .30°C .34°D .52°10.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .11.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A.|a|>|b|B.a >﹣3C.a >﹣dD.11c< 12.如图,已知等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点O ,则下列判断不正确的是( )A .△ABC ≌△DCBB .△AOD ≌△COBC .△ABO ≌△DCOD .△ADB ≌△DAC二、填空题 13.若关于x 的一元二次方程(k ﹣1)x 2+4x+1=0有实数根,则k 的取值范围是_____.14.已知△ABC 与△DEF 相似且周长比为2:5,则△ABC 与△DEF 的相似比为________15.正方形ABCD 的边长为10,点M 在AD 上,8AM =,过M 作MN AB ∥,分别交AC 、BC 于H 、N 两点,若E 、F 分别为(3)(2)x x f f ≤、BM 的中点,则EF 的长为_________________16.如图,在等腰Rt ABC 中,90ACB ︒∠=,4AC =,以边AC 为直径的半圆交AB 于点D ,则图中阴影部分的面积是__________(结果保留π).17.一次函数y x b =-+,当0b <时,这个一次函数的图象不经过的象限是________.18.据统计,2018年哈尔滨冰雪大世界接待中外游客突破45000000人次,请将45000000人用科学记数法表示为__________人.三、解答题19.云峰中学为了了解学生上学的交通方式,提高学生交通安全意识,开展了以“我上学的主要交通方式”为主题的调查活动,围绕“在乘公交车、城私家车、乘送子车、步行、骑自行车共五种方式中,你上学的主要交通方式是哪种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请你根据统计图中的信息回答下列问题:()1本次调查共抽取了多少名学生?()2通过计算补全条形统计图;()3若云峰中学共有1200名学生,请你估计该中学步行上学的学生有多少名.20.我市某高科技公司生产一种矩形新型材料板,其长宽之比为 3∶2,每张材料板的成本 c 与它的面积成正比例。

2019备战中考数学专项练习(全国通用)-运用有理数的运算解决简单问题(含解析)

2019备战中考数学专项练习(全国通用)-运用有理数的运算解决简单问题(含解析)

2019备战中考数学专项练习(全国通用)-运用有理数的运算解决简单问题(含解析)【一】单项选择题1.8个人用35天完成了某项工程的。

此时,又增加6个人,那么要完成剩余的工程,还需要的天数是()A.18B.35C.40D.602.三味书屋推出售书优惠方案:〔1〕一次性购书不超过100元,不享受优惠;〔2〕一次性购书超过100元但不超过200元一律打九折;〔3〕一次性购书超过200元及以上一律打八折。

如果王明同学一次性购书162元,那么王明所购书的原价一定为〔〕A.180元B.202.5元C.180元或202.5元D.180元或200元3.学校为了改善办学条件,从银行贷款100万元,盖起了实验大楼,贷款年息为12%,房屋折旧每年2%,学校约1400名学生,仅贷款付息和房屋折旧两项,每个学生每年承受的实验费用为()A.约104元B.1000元C.100元D.约21.4元4.甲、乙、丙三地的海拔高度分别为20m、-15m和-10m,那么最高的地方比最低的地方高〔〕A.5mB.10mC.25mD.35m5.把5克盐放入100克水中,盐和盐水的比是〔〕A.1:21B.20:21C.21:20D.5:1006.从甲地到乙地可坐飞机、火车、汽车,从乙地到丙地可坐飞机、火车、汽车、轮船,某人乘坐以上交通工具,从甲地经乙地到丙地的方法有〔〕种.A.4B.7C.12D.81.7.一种面粉的质量标识为〝25±0.25千克〞,那么以下面粉中合格的是〔〕A.25.30千克B.24.70千克C.25.51千克D.24.80千克8.小涛家的冰箱冷藏室温度是3℃,冷冻室的温度是-2℃,那么他家冰箱冷藏室温度比冷冻室温度高〔〕A.3℃B. -3℃C.5℃D. -7℃9.甲、乙、丙三地的海拔高度为20米,-15米,-10米,那么最高的地方比最低的地方高()A.5米B.10米C.25米D.35米10.某种品牌的同一种洗衣粉有A,B,C三种袋装包装,每袋分别装有400克、300克、200克洗衣粉,售价分别为3.5元、2.8元、1.9元.A,B,C三种包装的洗衣粉每袋包装费用(含包装袋成本)分别为0.8元、0.6元、0.5元.厂家销售A,B,C三种包装的洗衣粉各1200千克,获得利润最大的是〔〕.A.A种包装的洗衣粉B.B种包装的洗衣粉C.C种包装的洗衣粉D.三种包装的都相同11.某商场以90元出售甲商品,亏了25%,于是就把原价100元的商品加价25%卖出,那么这家商场在这两笔生意总体上是〔〕A.赚了B.亏了C.不亏也不赢D.不能确定12.某市打市电话的收费标准是:每次3分钟以内〔含3分钟〕收费0.2元,以后每分钟收费0.1元〔不足1分钟按1分钟计〕.某天小芳给同学打了一个6分钟的市话,所用电话费为0.5元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费0.4元.如果你想给某同学打市话,准备通话10分钟,那么你所需要的电话费至少为〔〕A.0.6元B.0.7元C.0.8元D.0.9元13.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费〔〕A.64元B.66元C.72元D.96元14.某天傍晚,北京的气温由中午的零上3℃下降了5℃,这天傍晚北京的气温是〔〕A.零上8℃.B.零上2℃.C.零下8℃.D.零下2℃.【二】填空题15.如右图是一数值转换机,假设输入的x为4,那么输出的结果为________.16.某种蔬菜按品质分成三个等级销售,销售情况如表:那么售出蔬菜的平均单价为________元/千克.17.南昌一月的某天最高气温为10℃,最低气温为-1℃,那么这天的最高气温比最低气温高________℃.18.有一种感冒止咳药品的说明书上写着:〝青少年每日用量80~120mg,分3~4次服用.〞一次服用这种药品剂量的范围为________.19.某自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因,实际每天的生产量与计划量相比有出入。

2019中考数学专题练习-算式与方程(含解析)

2019中考数学专题练习-算式与方程(含解析)

2019中考数学专题练习-算式与方程(含解析)一、单选题1.下列说法中:①相反数等于本身的数只有0;②绝对值等于本身的数是正数;③﹣的系数是3;④将式子x﹣2=﹣y变形得:x﹣y=3;⑤若,则4a=7b;⑥几个有理数的积是正数,则负因数的个数一定是偶数,错误的有()个.A. 2B. 3C. 4D. 52.下列方程为一元一次方程的是()A. y+3=0B. x+2y=3C. x2=2xD. +y=23.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x元,那么下列所列方程正确的是()A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=144.下列结论不正确的是()A. 已知a=b,则a2=b2B. 已知a=b,m为任意有理数,则ma=mbC. 已知ma=mb,m为任意有理数,则a=bD. 已知ax=b,且a≠0,则x=5.下列方程中,解为x=4的方程是( )A. x-1=4B. 4x=1C. 4x-1=3x+3D. (x-1)=16.下列方程中,解为x=1的是()A. 2x=x+3B. 1﹣2x=1C. =1D. -=27.运用等式性质进行的变形,不正确的是()A. 如果a=b,那么a﹣c=b﹣cB. 如果a=b,那么a+c=b+cC. 如果a=b,那么D. 如果a=b,那么ac=bc8.运用等式性质进行的变形,正确的是()A. 若a=b,则a+c=b﹣cB. 若x=y,则C. 若,则x=yD. 若a2=3a,则a=39.关于x的方程mx2﹣4x+4=0有解,则m的取值为()A. m≥1B. m≤1C. m≥1且m≠0D. m≤1且m≠010.若x=5是关于x的方程2x+3m﹣1=0的解,则m的值为()A. 0B. ﹣1C. ﹣2D. ﹣311.把方程x=1变形为x=2,其依据是()A. 等式的两边同时乘以B. 等式的两边同时除以C. 等式的两边同时减去D. 等式的两边同时加上12.运用等式的基本性质进行变形,正确的是()A. 如果a=b,那么a+c=b﹣cB. 如果6+a=b﹣6,那么a=bC. 如果a=b,那么a×3=b÷3D. 如果3a=3b,那么a=b13.已知x=3是4x+3a=6的解,则a的值为()A. -2B. -1C. 1D. 214.下列运用等式的性质,变形不正确的是()A. 若x=y,则x﹣5=y﹣5B. 若a=b,则ac=bcC. 若x=y,则x+a=y+aD. 若x=y,则=二、填空题15.已知方程的解也是方程|3x﹣2|=b的解,则b=________.16.方程是关于x的一元一次方程,则=________17.2x+1=5的解也是关于x的方程3x﹣a=4的解,则a=________.18.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为________.19.关于x的方程(a﹣1)x2+x+a2﹣4=0是一元一次方程,则方程的解为 ________20.如图所示,两个天平都平衡,则与3个球体相等质量的正方体的个数为________.21.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:2y﹣= y﹣▌,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y=﹣,于是很快补好了这个常数,你能补出这个常数是多少吗?它应是________.三、计算题22.等式y=ax3+bx+c中,当x=0时,y=3;当x=﹣1时,y=5;求当x=1时,y的值.23.列等式:x的2倍与10的和等于18.24.已知关于x的方程x﹣= 的解是非负数,m是正整数,求m的值.25.已知关于x的方程与方程3(x﹣2)=4x﹣5的解相同,求a的值.26.如果方程5(x﹣3)=4x﹣10的解与方程4x﹣(3a+1)=6x+2a﹣1的解互为相反数,求a 的值.27.利用等式的性质解方程:3x﹣6=﹣31﹣2x.四、综合题28.某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某假期该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购满100元返购物券30元(销售不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说出他可以选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?29.根据等式和不等式的性质,可以得到:若a﹣b>0,则a>b;若a﹣b=0,则a=b;若a ﹣b<0,则a<b.这是利用“作差法”比较两个数或两个代数式值的大小.(1)试比较代数式5m2﹣4m+2与4m2﹣4m﹣7的值之间的大小关系;(2)已知A=5m2﹣4(m﹣),B=7(m2﹣m)+3,请你运用前面介绍的方法比较代数式A与B的大小.答案解析部分一、单选题1.下列说法中:①相反数等于本身的数只有0;②绝对值等于本身的数是正数;③﹣的系数是3;④将式子x﹣2=﹣y变形得:x﹣y=3;⑤若,则4a=7b;⑥几个有理数的积是正数,则负因数的个数一定是偶数,错误的有()个.A. 2B. 3C. 4D. 5【答案】C【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,单项式,等式的性质,有理数的乘法【解析】【解答】解:相反数等于本身的数只有0,所以①的所法正确;绝对值等于本身的数是正数或0,所以②的说法错误;﹣的系数是﹣,所以③的说法错误;将式子x﹣2=﹣y变形得:x+y=2,所以④的说法错误;若,则7a=4b,所以⑤的说法错误;几个有理数的积是正数,则负因数的个数一定是偶数,所以⑥的说法正确.故选C.【分析】根据相反数等于它本身的数只有0;绝对值等于它本身的数是非负数;单项式的系数是单项式前面的数字因数;若=,则ac=bd;等式的基本性质;几个不等于0的数相乘,负因数的个数是奇数个时,积为负,负因数的个数是偶数个时,积为正。

天津市2019年中考数学真题试题(含解析)

天津市2019年中考数学真题试题(含解析)

2019年天津市初中毕业生学生考试试卷数学试卷满分120分,考试时间100分钟。

第I 卷一、选择题(本大题12小题,每小题3分,共36分) 1.计算(-3)×9的结果等于A. -27B. -6C. 27D. 6 【答案】A【解析】有理数的乘法运算:=-3×9=-27,故选A. 2.︒60sin 2的值等于A. 1B. 2C. 3D. 2 【答案】B【解析】锐角三角函数计算,︒60sin 2=2×23=3,故选A. 3.据2019年3月21日《天津日报》报道:“伟大的变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次,将4230000用科学记数法表示为A. 0.423×107B.4.23×106C.42.3×105D.423×104【答案】B【解析】科学记数法表示为4.23×106,故选B.4.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看做是轴对称图形的是【答案】A【解析】美、丽、校、园四个汉子中,“美”可以看做轴对称图形。

故选A 5.右图是一个由6个相同的正方体组成的立体图形,它的主视图是【答案】B【解析】图中的立体图形主视图为,故选B.6.估计33的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间 【答案】D 【解析】因为,所以,故选D.7.计算1212+++a a a 的结果是 A. 2 B. 22+a C. 1 D.14+a a【答案】A 【解析】21221212=++=+++a a a a a ,故选A. 8.如图,四边形ABCD 为菱形,A 、B 两点的坐标分别是(2,0),(0,1),点C 、D 在坐标轴上,则菱形ABCD 的周长等于A.5B.34C.54D. 20【答案】C【解析】由勾股定理可得,由菱形性质可得, 所以周长等于故选C. 9.方程组⎩⎨⎧=-=+1126723y x y x ,的解是A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x【答案】D【解析】用加减消元法,⎩⎨⎧=-=+②①1126723y x y x①+②=1172623+=-++y x y x189=x 2=x代入2=x 到①中,726=+y 则21=y ,故选D. 10.若点A (-3,1y ),B (-2,2y ),C (1,3y )都在反比函数xy 12-=的图象上,则321,,y y y 的关系 A. 312y y y << B.213y y y << C.321y y y << D.123y y y << 【答案】B【解析】将A (-3,1y ),B (-2,2y ),C (1,3y )代入反比函数xy 12-=中,得:12-112,6212,4312321=-==--==--=y y y ,所以213y y y <<,故选B. 11.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是A.AC=ADB.AB ⊥EBC. BC=DED.∠A=∠EBC【答案】D【解析】由旋转性质可知,AC=CD ,AC ≠AD ,∴A 错 由旋转性质可知,BC=EC ,BC ≠DE ,∴C 错由旋转性质可知,∠ACB=∠DCE ,∵∠ACB=∠ACD+∠DCB ,∠DCE=∠ECB+∠DCB ∴∠ACD=∠ECB ,∵AC=CD ,BC=CE ,∴∠A=∠CDA=21(180°-∠ECB ),∠EBC=∠CEB=21(180°-∠ECB ), ∴D 正确,由于由题意无法得到∠ABE=90°,∴B 选项错误. 故选D 。

2019年中考数学试题含答案 (12)

2019年中考数学试题含答案 (12)

2019年中考数学试卷一、选择题(本大题共10小题,共30分)1.比1小2的数是()A. −1B. −2C. −3D. 1【答案】A【解析】解:1−2=−1.故选:A.求比1小2的数就是求1与2的差.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.2.下列运算正确的是()A. a3⋅a4=a12B. a6÷a3=a2C. 2a−3a=−aD. (a−2)2=a2−4【答案】C【解析】解:A、应为a3⋅a4=a7,故本选项错误;B、应为a6÷a3=a3,故本选项错误;C、2a−3a=−a,正确;D、应为(a−2)2=a2−4a+4,故本选项错误.故选:C.根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,计算时要认真.3.长度单位1纳米=10−9米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是()A. 25.1×10−6米B. 0.251×10−4米C. 2.51×105米D. 2.51×10−5米【答案】D【解析】解:2.51×104×10−9=2.51×10−5米.故选D.先将25100用科学记数法表示为2.51×104,再和10−9相乘.a×10n中,a的整数部分只能取一位整数,1≤|a|<10.此题中的n应为负数.4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是()A. 12B. 18C. 38D. 12+12+12【答案】B【解析】解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是1,8故选:B.列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A. 和B. 谐C. 凉D. 山【答案】D【解析】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.注意正方体的空间图形,从相对面入手,分析及解答问题.6.一组数据:3,2,1,2,2的众数,中位数,方差分别是()A. 2,1,0.4B. 2,2,0.4C. 3,1,2D. 2,1,0.2【答案】B【解析】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,[(3−2)2+2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为153×(2−2)2+(1−2)2]=0.4,即中位数是2,众数是2,方差为0.4.故选:B.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均)数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.利用方差公式计算方差.本题属于基础题,考查了确定一组数据的中位数、方差和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.7.若ab<0,则正比例函数y=ax与反比例函数y=b在同一坐标系中的大致图象可x能是()A. B. C. D.【答案】B【解析】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A. AD=BC′B. ∠EBD=∠EDBC. △ABE∽△CBDD. sin∠ABE=AEED【答案】C【解析】解:A、BC=BC′,AD=BC,∴AD=BC′,所以正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB正确.D、∵sin∠ABE=AE,BE∴∠EBD=∠EDB∴BE=DE∴sin∠ABE=AE.ED故选:C.主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.10.如图,⊙O是△ABC的外接圆,已知∠ABO=50∘,则∠ACB的大小为()A. 40∘B. 30∘C. 45∘D. 50∘【答案】A【解析】解:△AOB中,OA=OB,∠ABO=50∘,∴∠AOB=180∘−2∠ABO=80∘,∠AOB=40∘,∴∠ACB=12故选:A.首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.二、填空题(本大题共6小题,共24分)11.分解因式:9a−a3=______,2x2−12x+18=______.【答案】a(3+a)(3−a);2(x−3)2【解析】解:9a−a3=a(9−a2)=a(3+a)(3−a);2x2−12x+18=2(x2−6x+9)=2(x−3)2.观察原式9a−a3,找到公因式a后,发现9−a2符合平方差公式的形式,直接运用公式可得;观察原式2x2−12x+18,找到公因式2后,发现x2−6x+9符合完全平方差公式的形式,直接运用公式可得.本题考查整式的因式分解.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.12.已知△ABC∽△A′B′C′且S△ABC:S△A′B′C′=1:2,则AB:A′B′=______.【答案】1:√2【解析】解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:√2.根据相似三角形的面积比等于相似比的平方求解即可.本题的关键是理解相似三角形的面积比等于相似比的平方.13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______.【答案】小林【解析】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14. 已知一个正数的平方根是3x −2和5x +6,则这个数是______. 【答案】494【解析】解:根据题意可知:3x −2+5x +6=0,解得x =−12, 所以3x −2=−72,5x +6=72,∴(±72)2=494故答案为:494.由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.本题主要考查了平方根的逆运算,平时注意训练逆向思维.15. 若不等式组{b −2x >0x−a>2的解集是−1<x <1,则(a +b)2009=______. 【答案】−1【解析】解:由不等式得x >a +2,x <12b , ∵−1<x <1, ∴a +2=−1,12b =1∴a =−3,b =2,∴(a +b)2009=(−1)2009=−1. 故答案为−1.解出不等式组的解集,与已知解集−1<x <1比较,可以求出a 、b 的值,然后相加求出2009次方,可得最终答案.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.16. 将△ABC 绕点B 逆时针旋转到△A′BC′,使A 、B 、C′在同一直线上,若∠BCA =90∘,∠BAC =30∘,AB =4cm ,则图中阴影部分面积为______cm 2. 【答案】4π【解析】解:∵∠BCA =90∘,∠BAC =30∘,AB =4cm , ∴BC =2,AC =2√3,∠A′BA =120∘,∠CBC′=120∘, ∴阴影部分面积=(S △A′BC′+S 扇形BAA ′)−S 扇形BCC′−S △ABC =120π360×(42−22)=4πcm 2.故答案为:4π.易得整理后阴影部分面积为圆心角为120∘,两个半径分别为4和2的圆环的面积.本题利用了直角三角形的性质,扇形的面积公式求解.三、计算题(本大题共3小题,共24分)17.先化简,再选择一个你喜欢的数(要合适哦!)代入求值:(1+1x )÷x2−1x.【答案】解:(1+1x )÷x2−1x=x+1x⋅x(x+1)(x−1)=1x−1,当x=2时,原式=12−1=1.【解析】根据分式的加法和除法可以化简题目中的式子,再选取一个使得原分式有意义的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的计算方法.18.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45∘方向上,从A向东走600米到达B处,测得C在点B的北偏西60∘方向上.(1)MN是否穿过原始森林保护区,为什么?(参考数据:√3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?【答案】解:(1)理由如下:如图,过C作CH⊥AB于H.设CH=x,由已知有∠EAC=45∘,∠FBC=60∘,则∠CAH=45∘,∠CBA=30∘.在Rt△ACH中,AH=CH=x,在Rt△HBC中,tan∠HBC=CHHB∴HB=CHtan30∘=x√33=√3x,∵AH+HB=AB,∴x+√3x=600,解得x=6001+√3≈220(米)>200(米).∴MN不会穿过森林保护区.(2)设原计划完成这项工程需要y天,则实际完成工程需要(y−5)天.根据题意得:1y−5=(1+25%)×1y解得:y=25.经检验知:y=25是原方程的根.答:原计划完成这项工程需要25天.【解析】(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离.要构造直角三角形,再解直角三角形;(2)根据题意列方程求解.考查了构造直角三角形解斜三角形的方法和分式方程的应用.19.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【答案】解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.【解析】利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.四、解答题(本大题共7小题,共72分)20.计算:|3.14−π|+3.14÷(√32+1)0−2cos45∘+(√2−1)−1+(−1)2009.【答案】解:原式=π−3.14+3.14−2×√22+1√2−1−1=π−√2+√2+1−1=π.【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.观察下列多面体,并把如表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a61012棱数b912面数c58观察表中的结果,你能发现、、之间有什么关系吗?请写出关系式.【答案】解:填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a681012棱数b9121518面数c5678根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:a+c−b=2.【解析】结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.此题主要考查了欧拉公式,熟记常见棱柱的特征,可以总结一般规律:n棱柱有(n+2)个面,2n个顶点和3n条棱是解题关键.22.如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算的面积S.【答案】解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:即为所求;.【解析】(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出;(3)直接利用(2)中图形求出三角形面积即可.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.23.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)【答案】解:设涨到每股x元时卖出,根据题意得1000x−(5000+1000x)×0.5%≥5000+1000,(4分)解这个不等式得x≥1205199,即x≥6.06.(6分)答:至少涨到每股6.06元时才能卖出.(7分)【解析】根据关系式:总售价−两次交易费≥总成本+1000列出不等式求解即可.本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价−两次交易费≥总成本+1000”列出不等关系式.24.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,求y与x之间的函数关系式.【答案】解:(1)∵一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,∴从中随机抽取出一个黑球的概率是:47;(2)∵往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,∴x+37+x+y =14,则y=3x+5.【解析】(1)直接利用概率公式直接得出取出一个黑球的概率;(2)直接利用从口袋中随机取出一个白球的概率是14,进而得出答案函数关系式.此题主要考查了概率公式,正确掌握概率求法是解题关键.25.如图,在平面直角坐标系中,点O1的坐标为(−4,0),以点O1为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成60∘的角,且交y轴于C 点,以点O2(13,5)为圆心的圆与x轴相切于点D.(1)求直线l的解析式;(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,当⊙O2第一次与⊙O1外切时,求⊙O2平移的时间.【答案】解:(1)由题意得OA =|−4|+|8|=12, ∴A 点坐标为(−12,0).∵在Rt △AOC 中,∠OAC =60∘,OC =OAtan∠OAC =12×tan60∘=12√3. ∴C 点的坐标为(0,−12√3).设直线l 的解析式为y =kx +b , 由l 过A 、C 两点,得{−12√3=b 0=−12k +b ,解得{b =−12√3k =−√3∴直线l 的解析式为:y =−√3x −12√3.(2)如图,设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1.则O 1O 3=O 1P +PO 3=8+5=13. ∵O 3D 1⊥x 轴,∴O 3D 1=5,在Rt △O 1O 3D 1中,O 1D 1=√O 1O 32−O 3D 12=√132−52=12.∵O 1D =O 1O +OD =4+13=17,∴D 1D =O 1D −O 1D 1=17−12=5, ∴t =51=5(秒).∴⊙O 2平移的时间为5秒.【解析】(1)求直线的解析式,可以先求出A 、C 两点的坐标,就可以根据待定系数法求出函数的解析式.(2)设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1.在直角△O 1O 3D 1中,根据勾股定理,就可以求出O 1D 1,进而求出D 1D 的长,得到平移的时间.本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.26. 如图,已知抛物线y =x 2+bx +c 经过A(1,0),B(0,2)两点,顶点为D .(1)求抛物线的解析式;(2)将△OAB 绕点A 顺时针旋转90∘后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为B 1,顶点为D 1,若点N 在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.【答案】解:(1)已知抛物线y=x2+bx+c经过A(1,0),B(0,2),∴{2=0+0+c0=1+b+c,解得{c=2b=−3,∴所求抛物线的解析式为y=x2−3x+2;(2)∵A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2−3x+2得y=2,可知抛物线y=x2−3x+2过点(3,2),∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2−3x+1;(3)∵点N在y=x2−3x+1上,可设N点坐标为(x0,x02−3x0+1),将y=x2−3x+1配方得y=(x−32)2−54,∴其对称轴为直线x=32.①0≤x0≤32时,如图①,∵S△NBB1=2S△NDD1,∴12×1×x0=2×12×1×(32−x0)∵x0=1,此时x02−3x0+1=−1,∴N点的坐标为(1,−1).②当x0>32时,如图②,同理可得12×1×x0=2×12×(x0−32),∴x0=3,此时x02−3x0+1=1,∴点N的坐标为(3,1).③当x<0时,由图可知,N点不存在,∴舍去.综上,点N的坐标为(1,−1)或(3,1).【解析】(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2−3x+2得y=2,可知抛物线y= x2−3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2−3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年中考数学计算题专项训练(超详细,经典!!!)
一、集训一(代数计算)
1. 计算: (1)30
82
145+-Sin (2)
(3)2×(-5)+23-3÷1
2 (4)22+(-1)4+(5-2)0-|-3|;
(5)︒+-+-30sin 2)2(20 (6)()()0
2
2161-+--
(7)( 3 )0
- ( 12 )-2 + tan45° (8)()()0332011422
---+÷-
2.计算:345tan 3231211
0-︒-⨯⎪⎭

⎝⎛+⎪⎭⎫ ⎝⎛--
3.计算:(
)
()
()
︒⨯-+-+-+
⎪⎭

⎝⎛-30tan 3312120122010311001
2
4.计算:()
(
)
11
2230sin 4260cos 18-+
︒-÷︒---
5.计算:1
2010
02
(60)(1)
|28|(301)21
cos tan -÷-+--
⨯--
二、集训二(分式化简)
注意:此类要求的题目,如果没有化简,直接代入求值一分不得! 考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算
1.
. 2。

2
1
422
---x x x
3.(a+b )2
+b (a ﹣b ). 4. 11()a a a a --÷ 5.2
11
1x x x -⎛⎫+÷ ⎪⎝⎭
6、化简求值
(1)⎝⎛⎭⎫1+ 1 x -2÷ x 2
-2x +1
x 2-4,其中x =-5(2)(a ﹣1+
)÷(a 2
+1),其中a=

1
(3)2121
(1)1a a a a
++-⋅+,其中a 2
(4))2
5
2(423--+÷--a a a a , 1-=a
(5))1
2(1a
a a a a --÷-,并任选一个你喜欢的数a 代入求值. (6)221
21111x x x x x -⎛⎫+÷ ⎪+--⎝⎭
然后选取一个使原式有意义的x 的值代入求值
(7)
8、化简2
11
1x x x -⎛⎫+÷ ⎪⎝⎭
9、化简求值: 11
1(1
1222+---÷-+-m m m m m m ), 其中m =3.
10、先化简,再求代数式22
21111
x x x x -+---的值,其中x=tan600-tan450
11、化简:x
x x x x x x x x 416
)44122(2222+-÷+----+, 其中22+=x
12、化简并求值:221122a b a b a a b a -⎛⎫--+ ⎪-⎝⎭
,其中33a b =-=.
13、计算:332141
222+-+÷
⎪⎭
⎫ ⎝⎛---+a a a a a a a .
14、先化简,再求值:13x -·322
69122x x x x
x x x
-+----,其中x =-6.
15、先化简:再求值:⎝⎛⎭⎫1-1a -1÷a 2
-4a +4
a 2
-a ,其中a =2+ 2 .
16、先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1
a 2-1,其中a 为整数且-3<a <2.
17、先化简,再求值:222211y xy x x
y x y x ++÷⎪⎪⎭
⎫ ⎝⎛++-,其中1=x ,2-=y .
18、先化简,再求值:22
22(2)42
x x x x x x -÷++-+,其中1
2x =.
19、先化简,再求值:
222112
(
)2442x x x x x x

--+-,其中2x =(tan45°-cos30°)
20、22221
(1)121
a a a a a a +-÷+---+.
21、先化简再求值:1
1
12421222-÷+--•+-a a a a a a ,其中a 满足20a a -=.
22、先化简:1
44)113(2++-÷+-+a a a a a ,并从0,1-,2中选一个合适的数作为a 的值代入求值。

23、先化简,再求值:)1
1(x -÷1
122
2-+-x x x ,其中x =2
24、化简:2222
2369x y x y y
x y x xy y x y
--÷-++++.
25、先化简,再求值:222
4441
x x x
x x x x --+÷-+-,其中x=-3.
三、集训三(求解方程)
1. 解方程x 2
﹣4x+1=0. 2。

解分式方程2
3
22-=
+x x
3.解方程:3x = 2
x -1 . 4。

已知|a ﹣1|+
=0,求方裎+bx=1的解.
5.解方程:x 2+4x -2=0 6。

解方程:x x - 1 - 31- x
= 2.
四、集训四(解不等式)
1.解不等式组,并写出不等式组的整数解.
2.解不等式组()()()
⎩⎨⎧+≥--+-14615362x x x x 3.解不等式组:⎩
⎨⎧2x +3<9-x ,2x -5>3x .
4.解不等式组⎪⎩⎪
⎨⎧<+>+.22
1,12x x 5.解方程组
,并求的值.
6.解不等式组⎪⎩

⎨⎧-≤-〉-121
312x x x x 7. 解不等式组⎩⎪⎨⎪⎧x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来。

8. 解不等式组:102(2)3x x x -≥⎧⎨+>⎩ 9. 解不等式组313
112123x x x x +<-⎧⎪
++⎨+⎪⎩
≤,并写出整数解.
五、集训五(综合演练)
1、(1)计算: |2-
|o 2o 12sin30((tan 45)-+-+;
(2)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中12-=a .
2、解方程: 0322=--x x
3、解不等式组1
(4)22
3(1) 5.
x x x ⎧+<⎪⎨⎪-->⎩,
4、 (1)12)21(30tan 3)2
1
(001
+-+---;(2))21
2(112a
a a a a a +-+÷--
5、(1)︳-33︱-︒30cos 2-12-2
2-+(3-π)0(2)(-2010)0
+1--2sin60°
(2) 先化简,再求值.3
4
)311(2+-÷
+-x x x ,其中x=3..
(3)已知x 2-2x =1,求(x -1)(3x +1)-(x +1)2的值.
6.先化简,再求值:2111
1211
a a a a a a ++-÷
+-+-
,其中a =
7.先化简,再求值:53
(2)224
x x x x ---÷
++
,其中3x =.
8.解分式方程:2641313-=
--x x . 9.解方程组:3419
4x y x y +=⎧⎨-=⎩
10.(1)计算:(-1)2+tan60°-(π+2010)0
11、如图,在一块五边形场地的五个角修建五个半径为2米的扇花台,那么五个花台的总面积是______平方米.(结果中保留π)
12、已知a 、b 互为相反数,并且523=-b a ,则
=+22b a .
13、已知⎩

⎧=+=+625
2y x y x 那么x-y 的值是( )
A. 1
B. ―1
C. 0
D. 2
14、若不等式组220
x a b x ->⎧⎨
->⎩的解集是11x -<<,求()2010
a b +的值
第11题
15
、计算:
452005)
--︒-+
16 、计算:
1
3
1-





+
2
3
2006⎪⎪




-3
-tan60°。

相关文档
最新文档