2017中考数学计算题专项训练全面
【数学试题专项】2017年度中考数学试题专项整理(63)(精选不同省市)

2017年辽宁省中考数学试卷一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)﹣5的相反数是()A.﹣5 B.±5 C.D.52.(3分)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱3.(3分)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x 4.(3分)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:月用水量/m34568910户数679521则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,75.(3分)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<06.(3分)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°7.(3分)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC 为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD8.(3分)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=9.(3分)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.710.(3分)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A. B.C.D.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.15.(3分)如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.16.(3分)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为.17.(3分)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.18.(3分)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n 的面积为.(用含n的代数式表示)三、解答题(19小题10分,20小题10分,共20分.)19.(10分)先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0,y=sin60°.20.(10分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示).四、解答题(21题12分,22小题12分,共24分)21.(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.22.(12分)如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)五、解答题(23小题12分,24小题12分,共24分)23.(12分)如图,点E在以AB为直径的⊙O上,点C是的中点,过点C 作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.(1)求证:CD是⊙O的切线;(2)若cos∠CAD=,BF=15,求AC的长.24.(12分)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.六、解答题(本题满分14分)25.(14分)在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;(3)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF 绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.七、解答题(本题满分14分)26.(14分)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B 两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】2017年辽宁省营口市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个正确的,每小题3分,共30分.)1.(3分)(2017•营口)﹣5的相反数是()A.﹣5 B.±5 C.D.5【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故选:D.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)(2017•营口)下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱【分析】分别写出各个立体图形的三视图,判断即可.【解答】解:A、球体的主视图、左视图、俯视图都是圆形;故本选项正确B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、圆柱的主视图、左视图是矩形、俯视图是圆,故本选项错误;D、三棱柱球体的主视图、左视图是三角形、俯视图三角形,但大小不一定相同,故本选项正确.故选:A.【点评】本题考查了简单几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.3.(3分)(2017•营口)下列计算正确的是()A.(﹣2xy)2=﹣4x2y2B.x6÷x3=x2C.(x﹣y)2=x2﹣y2D.2x+3x=5x【分析】根据同底数幂的除法、积的乘方、完全平方公式和合并同类项的运算法则分别进行计算即可得出答案.【解答】解:A、(﹣2xy)2=4x2y2,故本选项错误;B、x6÷x3=x3,故本选项错误;C、(x﹣y)2=x2﹣2xy+y2,故本选项错误;D、2x+3x=5x,故本选项正确;故选D.【点评】此题考查了同底数幂的除法、积的乘方、完全平方公式和合并同类项,熟练掌握运算法则是解题的关键,是一道基础题.4.(3分)(2017•营口)为了解居民用水情况,小明在某小区随机抽查了30户家庭的月用水量,结果如下表:月用水量/m34568910户数679521则这30户家庭的月用水量的众数和中位数分别是()A.6,6 B.9,6 C.9,6 D.6,7【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:表中数据为从小到大排列,数据6出现了9次最多为众数,在第15位、第16位都是6,其平均数6为中位数,所以本题这组数据的中位数是6,众数是6.故选A.【点评】本题主要考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(3分)(2017•营口)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<0【分析】由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a <0,b>0,然后一一判断各选项即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a﹣b<0,故B错误,ab<0,故C错误,<0,故D正确.故选D.【点评】本题考查一次函数的图象与系数的关系,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.6.(3分)(2017•营口)如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是()A.75°B.85°C.60°D.65°【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.7.(3分)(2017•营口)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30°D.AB=CD【分析】由AB=AC,∠CAB=45°,根据等边对等角及三角形内角和定理求出∠B=∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根据三角形内角和定理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,从而判断A正确;根据三角形的中位线定理得到FE=AB,FE∥AB,根据平行线的性质得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性质得到FD=AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE=∠FED=22.5°,进而判断B正确;由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C错误;在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代换得到AB=CD,从而判断D正确.【解答】解:∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,∴∠FDE=∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴AC=CD,∵AB=AC,∴AB=CD,故D正确,不符合题意.故选C.【点评】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.(3分)(2017•营口)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【分析】过点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解答】解:过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:A.【点评】本题考查的是反比例函数综合题目,考查了反比例函数解析式的求法、坐标与图形性质、菱形的性质、平移的性质等知识;本题综合性强,有一定难度.9.(3分)(2017•营口)如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC 上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.7【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=1,BC=4,得到BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′===5.故选B.【点评】此题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD 的值最小是解题的关键.10.(3分)(2017•营口)如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A. B.C.D.【分析】分别求出0<t≤2和2<t≤4时,S与t的函数关系式即可爬判断.【解答】解:当0<t≤2时,S=t2,当2<t≤4时,S=t2﹣(2t﹣4)2=﹣t2+8t﹣8,观察图象可知,S与t之间的函数关系的图象大致是C.故答案为C.【点评】本题考查动点问题的函数图象,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(每小题3分,共24分,将答案填在答题纸上)11.(3分)(2017•营口)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为 2.915×1010.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:29150000000=2.915×1010.故答案为:2.915×1010.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•营口)函数y=中,自变量x的取值范围是x≥1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知:x﹣1≥0;分母不等于0,可知:x+1≠0,所以自变量x的取值范围就可以求出.【解答】解:根据题意得:x,﹣1≥0且x+1≠0,解得:x≥1.故答案为:x≥1.【点评】考查使得分式和二次根式有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.(3分)(2017•营口)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是15个.【分析】利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出口袋中蓝色球的个数.【解答】解:根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计袋中蓝色球的个数为15个.故答案为15.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.14.(3分)(2017•营口)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>且k≠1.【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=22﹣4(k ﹣1)×(﹣2)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,解得:k>且k≠1.故答案为:k>且k≠1.【点评】本题考查了一元二次方程ax 2+bx +c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(3分)(2017•营口)如图,将矩形ABCD 绕点C 沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为π﹣2.【分析】先求出CE=2CD ,求出∠DEC=30°,求出∠DCE=60°,DE=2,分别求出扇形CEB′和三角形CDE 的面积,即可求出答案. 【解答】解:∵四边形ABCD 是矩形,∴AD=BC=4,CD=AB=2,∠BCD=∠ADC=90°, ∴CE=BC=4, ∴CE=2CD , ∴∠DEC=30°, ∴∠DCE=60°, 由勾股定理得:DE=2,∴阴影部分的面积是S=S 扇形CEB′﹣S △CDE =﹣×2×2=,故答案为:.【点评】本题考查了扇形的面积,勾股定理,直角三角形的性质的应用,解此题的关键是能正确求出扇形CEB′和三角形CDE 的面积,题目比较好,难度适中.16.(3分)(2017•营口)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为﹣=8 .【分析】设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x ,根据“原计划所用时间﹣实际所用时间=8”列方程即可.【解答】解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据题意可得:﹣=8,故答案为:﹣=8.【点评】本题主要考查由实际问题抽象出分式方程,解题的关键是找到题目蕴含的相等关系.17.(3分)(2017•营口)在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为3或6.【分析】由AD=8、AB=6结合矩形的性质可得出AC=10,△EFC为直角三角形分两种情况:①当∠EFC=90°时,可得出AE平分∠BAC,根据角平分线的性质即可得出=,解之即可得出BE的长度;②当∠FEC=90°时,可得出四边形ABEF为正方形,根据正方形的性质即可得出BE的长度.【解答】解:∵AD=8,AB=6,四边形ABCD为矩形,∴BC=AD=8,∠B=90°,∴AC==10.△EFC为直角三角形分两种情况:①当∠EFC=90°时,如图1所示.∵∠AFE=∠B=90°,∠EFC=90°,∴点F在对角线AC上,∴AE平分∠BAC,∴=,即=,∴BE=3;②当∠FEC=90°时,如图2所示.∵∠FEC=90°,∴∠FEB=90°,∴∠AEF=∠BEA=45°,∴四边形ABEF为正方形,∴BE=AB=6.综上所述:BE的长为3或6.故答案为:3或6.【点评】本题考查了翻折变换、矩形的性质、角平分线的性质、正方形的判定与性质以及勾股定理,分∠EFC=90°和∠FEC=90°两种情况寻找BE的长度是解题的关键.18.(3分)(2017•营口)如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)【分析】由点A1的坐标可得出OA1=2,根据直线l1、l2的解析式结合解直角三角形可求出A1B1的长度,由等边三角形的性质可得出A1A2的长度,进而得出。
【数学试题专项】2017年度中考数学试题专项整理(39)(精选不同省市)

2017年浙江省中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)实数2,,,0中,无理数是()A.2 B.C.D.02.(3分)在平面直角坐标系中,点P(1,2)关于原点的对称点P'的坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)3.(3分)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB的值是()A.B.C.D.4.(3分)一元一次不等式组的解集是()A.x>﹣1 B.x≤2 C.﹣1<x≤2 D.x>﹣1或x≤25.(3分)数据﹣2,﹣1,0,1,2,4的中位数是()A.0 B.0.5 C.1 D.26.(3分)如图,已知在Rt△ABC中,∠C=90°,AC=BC,AB=6,点P是Rt △ABC的重心,则点P到AB所在直线的距离等于()A.1 B.C.D.27.(3分)一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A.B.C.D.8.(3分)如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A.200cm2B.600cm2C.100πcm2D.200πcm29.(3分)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是()A.B.C.D.10.(3分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13 B.14 C.15 D.16二、填空题(每题4分,满分24分,将答案填在答题纸上)11.(4分)把多项式x2﹣3x因式分解,正确的结果是.12.(4分)要使分式有意义,x的取值应满足.13.(4分)已知一个多边形的每一个外角都等于72°,则这个多边形的边数是.14.(4分)如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC 于点D.若∠BAC=40°,则的度数是度.15.(4分)如图,已知∠AOB=30°,在射线OA上取点O1,以O1为圆心的圆与OB相切;在射线O1A上取点O2,以O2为圆心,O2O1为半径的圆与OB相切;在射线O2A上取点O3,以O3为圆心,O3O2为半径的圆与OB相切;…;在射线O9A上取点O10,以O10为圆心,O10O9为半径的圆与OB相切.若⊙O1的半径为1,则⊙O10的半径长是.16.(4分)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)计算:2×(1﹣)+.18.(6分)解方程:=+1.19.(6分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.20.(8分)为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了20天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第7天,这一路口的行人交通违章次数是多少次?这20天中,行人交通违章6次的有多少天?(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了4次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?21.(8分)如图,O为Rt△ABC的直角边AC上一点,以OC为半径的⊙O与斜边AB相切于点D,交OA于点E.已知BC=,AC=3.(1)求AD的长;(2)求图中阴影部分的面积.22.(10分)已知正方形ABCD的对角线AC,BD相交于点O.(1)如图1,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG;(2)如图2,H是BC上的点,过点H作EH⊥BC,交线段OB于点E,连结DH交CE于点F,交OC于点G.若OE=OG,①求证:∠ODG=∠OCE;②当AB=1时,求HC的长.23.(10分)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W 最大?并求出最大值.(利润=销售总额﹣总成本)24.(12分)如图,在平面直角坐标系xOy中,已知A,B两点的坐标分别为(﹣4,0),(4,0),C(m,0)是线段A B上一点(与A,B点不重合),抛物线L1:y=ax2+b1x+c1(a<0)经过点A,C,顶点为D,抛物线L2:y=ax2+b2x+c2(a <0)经过点C,B,顶点为E,AD,BE的延长线相交于点F.(1)若a=﹣,m=﹣1,求抛物线L1,L2的解析式;(2)若a=﹣1,AF⊥BF,求m的值;(3)是否存在这样的实数a(a<0),无论m取何值,直线AF与BF都不可能互相垂直?若存在,请直接写出a的两个不同的值;若不存在,请说明理由.2017年浙江省湖州市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•湖州)实数2,,,0中,无理数是()A.2 B.C.D.0【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:2,,0是有理数,是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)(2017•湖州)在平面直角坐标系中,点P(1,2)关于原点的对称点P'的坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【解答】解:点P(1,2)关于原点的对称点P'的坐标是(﹣1,﹣2),故选:D.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.(3分)(2017•湖州)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB的值是()A.B.C.D.【分析】根据余弦的定义解答即可.【解答】解:在Rt△ABC中,BC=3,AB=5,∴cosB==,故选:A.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的邻边a与斜边c的比叫做∠A的余弦是解题的关键.4.(3分)(2017•湖州)一元一次不等式组的解集是()A.x>﹣1 B.x≤2 C.﹣1<x≤2 D.x>﹣1或x≤2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x>x﹣1,得:x>﹣1,解不等式x≤1,得:x≤2,则不等式组的解集为﹣1<x≤2,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(3分)(2017•湖州)数据﹣2,﹣1,0,1,2,4的中位数是()A.0 B.0.5 C.1 D.2【分析】根据中位数的定义即可得.【解答】解:这组数据的中位数为=0.5,故选:B.【点评】本题主要考查中位数,掌握:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数是解题的关键.6.(3分)(2017•湖州)如图,已知在Rt△ABC中,∠C=90°,AC=BC,AB=6,点P是Rt△ABC的重心,则点P到AB所在直线的距离等于()A.1 B.C.D.2【分析】连接CP并延长,交AB于D,根据重心的性质得到CD是△ABC的中线,PD=CD,根据直角三角形的性质求出CD,计算即可.【解答】解:连接CP并延长,交AB于D,∵P是Rt△ABC的重心,∴CD是△ABC的中线,PD=CD,∵∠C=90°,∴CD=AB=3,∵AC=BC,CD是△ABC的中线,∴CD⊥AB,∴PD=1,即点P到AB所在直线的距离等于1,故选:A.【点评】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.7.(3分)(2017•湖州)一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出红球情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出红球的有9种情况,∴两次摸出红球的概率为;故选D.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.8.(3分)(2017•湖州)如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A.200cm2B.600cm2C.100πcm2D.200πcm2【分析】首先判断出该几何体,然后计算其面积即可.【解答】解:观察三视图知:该几何体为圆柱,高为2,底面直径为1,侧面积为:πdh=2×π=2π,∵是按1:10的比例画出的一个几何体的三视图,∴原几何体的侧面积=100×2π=200π,故选D.【点评】本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.9.(3分)(2017•湖州)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是()A.B.C.D.【分析】解答此题要熟悉七巧板的结构:五个等腰直角三角形,有大、小两对全等三角形;一个正方形;一个平行四边形,根据这些图形的性质便可解答.【解答】解:图C中根据图7、图4和图形不符合,故不是由原图这副七巧板拼成的.故选C【点评】此题是一道趣味性探索题,结合我国传统玩具七巧板,用七巧板来拼接图形,可以培养学生动手能力,展开学生的丰富想象力.10.(3分)(2017•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13 B.14 C.15 D.16【分析】根据从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换,计算出按A﹣C﹣F的方向连续变换10次后点M的位置,再根据点N的位置进行适当的变换,即可得到变换总次数.【解答】解:如图1,连接AC,CF,则AF=3,∴两次变换相当于向右移动3格,向上移动3格,又∵MN=20,∴20÷3=,(不是整数)∴按A﹣C﹣F的方向连续变换10次后,相当于向右移动了10÷2×3=15格,向上移动了10÷2×3=15格,此时M位于如图所示的5×5的正方形网格的点G处,再按如图所示的方式变换4次即可到达点N处,∴从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是14次,故选:B.【点评】本题主要考查了几何变换的类型以及勾股定理的运用,解题时注意:在平移变换下,对应线段平行且相等,两对应点连线段与给定的有向线段平行(共线)且相等.解决问题的关键是找出变换的规律.二、填空题(每题4分,满分24分,将答案填在答题纸上)11.(4分)(2017•湖州)把多项式x2﹣3x因式分解,正确的结果是x(x﹣3).【分析】直接提公因式x即可.【解答】解:原式=x(x﹣3),故答案为:x(x﹣3).【点评】此题主要考查了提公因式法分解因式,关键是正确确定公因式.12.(4分)(2017•湖州)要使分式有意义,x的取值应满足x≠2.【分析】分式有意义时,分母不等于零.【解答】解:依题意得:x﹣2≠0,解得x≠2.故答案是:x≠2.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.13.(4分)(2017•湖州)已知一个多边形的每一个外角都等于72°,则这个多边形的边数是5.【分析】用多边形的外角和360°除以72°即可.【解答】解:边数n=360°÷72°=5.故答案为:5.【点评】本题考查了多边形的外角和等于360°,是基础题,比较简单.14.(4分)(2017•湖州)如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D.若∠BAC=40°,则的度数是140度.【分析】首先连接AD,由等腰△ABC中,AB=AC,以AB为直径的半圆交BC 于点D,可得∠BAD=∠CAD=20°,即可得∠ABD=70°,继而求得∠AOD的度数,则可求得的度数.【解答】解:连接AD、OD,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴∠BAD=∠CAD=∠BAC=20°,BD=DC,∴∠ABD=70°,∴∠AOD=140°∴的度数为140°;故答案为140.【点评】此题考查了圆周角定理以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.15.(4分)(2017•湖州)如图,已知∠AOB=30°,在射线OA上取点O1,以O1为圆心的圆与OB相切;在射线O1A上取点O2,以O2为圆心,O2O1为半径的圆与OB相切;在射线O2A上取点O3,以O3为圆心,O3O2为半径的圆与OB 相切;…;在射线O9A上取点O10,以O10为圆心,O10O9为半径的圆与OB相切.若⊙O1的半径为1,则⊙O10的半径长是29.【分析】作O1C、O2D、O3E分别⊥OB,易找出圆半径的规律,即可解题.【解答】解:作O1C、O2D、O3E分别⊥OB,∵∠AOB=30°,∴OO1=2CO1,OO2=2DO2,OO3=2EO3,∵O1O2=DO2,O2O3=EO3,∴圆的半径呈2倍递增,∴⊙O n的半径为2n﹣1 CO1,∵⊙O1的半径为1,∴⊙O10的半径长=29,故答案为29.【点评】本题考查了圆切线的性质,考查了30°角所对直角边是斜边一半的性质,本题中找出圆半径的规律是解题的关键.16.(4分)(2017•湖州)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD ⊥x轴于点D,交y=的图象于点C,连结AC.若△ABC是等腰三角形,则k 的值是或.【分析】根据一次函数和反比例函数的解析式,即可求得点A、B、C的坐标(用k表示),再讨论①AB=BC,②AC=BC,即可解题.【解答】解:∵点B是y=kx和y=的交点,y=kx=,解得:x=,y=3,∴点B坐标为(,3),点A是y=kx和y=的交点,y=kx=,解得:x=,y=,∴点A坐标为(,),∵BD⊥x轴,∴点C横坐标为,纵坐标为=,∴点C坐标为(,),∴BA≠AC,若△ABC是等腰三角形,①AB=BC,则=3﹣,解得:k=;②AC=BC,则=3﹣,解得:k=;故答案为k=或.【点评】本题考查了点的坐标的计算,考查了一次函数和反比例函数交点的计算,本题中用k表示点A、B、C坐标是解题的关键.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)(2017•湖州)计算:2×(1﹣)+.【分析】根据二次根式的乘法以及合并同类二次根式进行计算即可.【解答】解:原式=2﹣2+2=2.【点评】本题考查了二次根式的混合运算,掌握合并同类二次根式是解题的关键.18.(6分)(2017•湖州)解方程:=+1.【分析】方程两边都乘以x﹣1得出2=1+x﹣1,求出方程的解,再进行检验即可.【解答】解:方程两边都乘以x﹣1得:2=1+x﹣1,解得:x=2,检验:∵当x=2时,x﹣1≠0,∴x=2是原方程的解,即原方程的解为x=2.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键,注意:解分式方程一定要进行检验.19.(6分)(2017•湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.【点评】本题主要考查解一元一次方程和一元一次不等式不等式的能力,根据题意列出方程和不等式是解题的关键.20.(8分)(2017•湖州)为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了20天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第7天,这一路口的行人交通违章次数是多少次?这20天中,行人交通违章6次的有多少天?(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了4次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?【分析】(1)根据折线统计图即可直接求解;(2)根据折线图确定违章8次的天数,从而补全直方图;(3)利用加权平均数公式求得违章的平均次数,从而求解.【解答】解:(1)根据统计图可得:第7天,这一路口的行人交通违章次数是8次;这20天,行人交通违章6次的有5天;(2)根据折线图可得交通违章次数是8次的天数是5.;(3)第一次调查,平均每天行人的交通违章次数是=7(次).7﹣4=3.答:通过宣传教育后,这一路口平均每天还出现3次行人的交通违章.【点评】本题考查的是条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(8分)(2017•湖州)如图,O为Rt△ABC的直角边AC上一点,以OC为半径的⊙O与斜边AB相切于点D,交OA于点E.已知BC=,AC=3.(1)求AD的长;(2)求图中阴影部分的面积.【分析】(1)首先利用勾股定理求出AB的长,再证明BD=BC,进而由AD=AB ﹣BD可求出;(2)利用特殊角的锐角三角函数可求出∠A的度数,则圆心角∠DOA的度数可求出,在直角三角形ODA中求出OD的长,最后利用扇形的面积公式即可求出阴影部分的面积.【解答】解:(1)在Rt△ABC中,∵BC=,AC=3.∴AB==2,∵BC⊥OC,∴BC是圆的切线,∵⊙O与斜边AB相切于点D,∴BD=BC,∴AD=AB﹣BD=2﹣=;(2)在Rt△ABC中,∵sinA===,∴∠A=30°,∵⊙O与斜边AB相切于点D,∴OD⊥AB,∴∠AOD=90°﹣∠A=60°,∵=tanA=tan30°,∴=,∴OD=1,。
2017全国部分省市中考数学真题汇编---分式的乘除(含解析)

2017全国部分省市中考数学真题汇编---分式的乘除一.选择题1.化简÷的结果是()A.a2B.C.D.2.化简(1﹣)÷(1﹣)的结果为()A.B.C.D.3.如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3 B.﹣1 C.1 D.34.已知m2+n2=n﹣m﹣2,则﹣的值等于()A.1 B.0 C.﹣1 D.﹣5.如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.816.下列算式中,你认为错误的是()A.B.C.D.7.化简的结果是()A.B.C.D.8.化简:(﹣)÷的结果是()A.﹣m﹣1 B.﹣m+1 C.﹣mn﹣m D.﹣mn﹣n9.化简:的结果为()A.B.C.D.2a10.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2二.填空题11.计算:(+)•=.12.化简:÷=.13.计算:÷(x﹣)=.14.化简:÷(﹣1)•a=.15.化简:(+)•=.三.解答题16.先化简,再求值:÷﹣,其中x=.17.已知a=b+2018,求代数式•÷的值.18.先化简,再求值:÷(1+),其中x=+1.19.先化简,再求值:(﹣)(﹣),其中x=4.20.已知a、b、c为实数,且.求的值参考答案与解析一.选择题1.(2017•济南)化简÷的结果是()A.a2B. C. D.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=•=,故选:D.【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.2.(2017•泰安)化简(1﹣)÷(1﹣)的结果为()A. B. C. D.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故选A【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.3.(2017•北京)如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3 B.﹣1 C.1 D.3【分析】根据分式的减法和乘法可以化简题目中的式子,然后对a2+2a﹣1=0变形即可解答本题.【解答】解:(a﹣)•===a(a+2)=a2+2a,∵a2+2a﹣1=0,∴a2+2a=1,∴原式=1,故选C.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.4.(2017•眉山)已知m2+n2=n﹣m﹣2,则﹣的值等于()A.1 B.0 C.﹣1 D.﹣【分析】把所给等式整理为2个完全平方式的和为0的形式,得到m,n的值,代入求值即可.【解答】解:由m2+n2=n﹣m﹣2,得(m+2)2+(n﹣2)2=0,则m=﹣2,n=2,∴﹣=﹣﹣=﹣1.故选:C.【点评】考查分式的化简求值,把所给等式整理为2个完全平方式的和为0的形式是解决本题的突破点;用到的知识点为:2个完全平方式的和为0,这2个完全平方式的底数为0.5.如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.81【分析】由于()2÷()2=3,首先利用积的乘方运算法则化简,然后结合所求代数式即可求解.【解答】解:∵()2÷()2=3,∴×=3,∴a4b2=3,∴a8b4=(a4b2)2=9.故选B.【点评】此题主要考查了分式的混合运算,解题时首先把等式利用积的乘方法则化简,然后结合所求代数式的形式即可求解.6.下列算式中,你认为错误的是()A.B.C.D.【分析】A、利用同分母分式的加法法则计算得到结果,即可做出判断;B、利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到结果,即可做出判断;C、原式通分并利用同分母分式的减法法则计算得到结果,即可做出判断;D、原式约分得到结果,即可做出判断.【解答】解:A、原式==1,本选项正确;B、原式=1××=,本选项错误;C、原式==﹣,本选项正确;D、原式=•=,本选项正确.故选B.【点评】此题考查了分式的乘除法,分式的乘除法的关键是约分,约分的关键是找公因式.7.化简的结果是()A. B. C. D.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•=.故选A.【点评】此题考查了分式的乘除法,分式乘除法的关键是约分,约分的关键是找公因式.8.化简:(﹣)÷的结果是()A.﹣m﹣1 B.﹣m+1 C.﹣mn﹣m D.﹣mn﹣n【分析】直接利用分式乘除运算法则,首先将分母分解因式进而除法化成乘法化简求出即可.【解答】解:(﹣)÷=(﹣)×=﹣m﹣1.故选:A.【点评】此题主要考查了分式的乘除法,正确分解因式是解题关键.9.化简:的结果为()A. B.C. D.2a【分析】分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.【解答】解:==×=故选:B.【点评】本题主要考查了分式的除法运算,解题时注意:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.10.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2【分析】根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.【解答】解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:;②当a,b,c为两负一正时:.由①②知所有可能的值为0.应选A.【点评】本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.二.填空题11.(2017•绥化)计算:(+)•=.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=×=故答案为:【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型12.(2017•咸宁)化简:÷=x﹣1.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式==x﹣1故答案为:x﹣1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.13.(2017•临沂)计算:÷(x﹣)=.【分析】先算括号内的减法,把除法变成乘法,再根据分式的乘法法则进行计算即可.【解答】解:原式=÷=•=,故答案为:.【点评】本题考查了分式的混合运算,能正确运用分式的运算法则进行化简是解此题的关键,注意运算顺序.14.(2017•包头)化简:÷(﹣1)•a=﹣a﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=••a=﹣(a+1)=﹣a﹣1,故答案为:﹣a﹣1【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.(2017•黄冈)化简:(+)•=1.【分析】首先计算括号內的加法,然后计算乘法即可化简.【解答】解:原式=(﹣)•=•=1.故答案为1.【点评】本题考查了分式的化简,熟练掌握混合运算法则是解本题的关键.三.解答题16.(2017•恩施州)先化简,再求值:÷﹣,其中x=.【分析】先化简分式,然后将x的值代入即可求出答案.【解答】解:当x=时,∴原式=÷﹣=×﹣=﹣==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(2017•百色)已知a=b+2018,求代数式•÷的值.【分析】先化简代数式,然后将a=b+2018代入即可求出答案.【解答】解:原式=××(a﹣b)(a+b)=2(a﹣b)∵a=b+2018,∴原式=2×2018=4036【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(2017•贺州)先化简,再求值:÷(1+),其中x=+1.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=当x=+1时,原式==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(2017•常德)先化简,再求值:(﹣)(﹣),其中x=4.【分析】先根据分式的混合运算顺序和法则化简原式,再将x的值代入求解可得.【解答】解:原式=[+]•[﹣]=•(﹣)=•=x﹣2,当x=4时,原式=4﹣2=2.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.20.已知a、b、c为实数,且.求的值【分析】要求的值,可先求出其倒数的值,根据,分别取其倒数即可求解.【解答】解:将已知三个分式分别取倒数得:,即,将三式相加得;,通分得:,即=.【点评】本题考查了分式的化简求值,难度不大,关键是通过先求其倒数再进一步求解.。
中考数学计算题100道

中考数学计算题100道练习1. 解方程组:{x 3−y 2=15x +3y =82. 解下列方程组:(1){4a +b =153b −4a =13(2){2(x −y)3−x +y 4=−16(x +y)−4(2x −y)=163. 解下列方程组(1){3x +5y =112x −y =3 (2){x 2−y+13=13(x +2)=−2y +124. 解下列方程组:(1){4x −3y =11y =13−2x; (2){x 4+y 3=33x −2(y −1)=11.5. 解下列方程(组)(1) 2−x x−3+3=23−x (2){2x −y =57x −3y =206. 解下列方程:(1)1−2x−56=3−x 4;(2)1.7−2x 0.3=1−0.5+2x 0.6.7. 解下列方程12[x −12(x −1)]=23(x −1)8. 2x−112−3x−24=19.解方程:(1)5(x+8)=6(2x−7)+5(2)0.1x−0.20.02−x+10.5=310.(1)化简:(x+y)(x−y)−(2x−y)(x+3y);(2)解方程:(3x+1)(3x−1)−(3x+1)2=−8.11.解方程:(1)(x−1)2=4;(2)xx+1=2x3x+3+1.12.解方程:(1)x2=3x.(2)3x2−8x−2=0.13.x2−2(√2x−2)=2.14.解方程:(1)(x−3)(x−1)=3.(2)2x2−3x−1=0.15.解方程:(1)x2−121=0(2)2(x−1)2=33816.解方程(1)x2−2x−6=0;(2)(2x−3)2=3(2x−3).17.解方程:(1)3(x−2)2=x(x−2);(2)3x2−6x+1=0(用配方法).18. 用适当的方法解下列方程:(1)x 2−12x −4=0(2)x(3−2x)= 4 x −619. 计算:(1)|−2|+(sin36°−12)0−√4+tan45°;(2)用配方法解方程:4x 2−12x −1=0.20. 解分式方程x x−1−1=3x 2−121. 解分式方程:2x 2−4=1−x x−2.22. 解下列方程:(1)x x−1−2x−1x 2−1=1(2)2−x x −1+11−x =123.解方程(1)23+x3x−1=19x−3(2)xx2−4+2x+2=1x−224.解方程(1)x2x−5+55−2x=1(2)8x2−1+1=x+3x−125.解下列分式方程:(1)1x−2+3=1−x2−x;(2)x+1x−1−4x2−1=1.26.解方程1x−3+1=4−xx−3.27.解下列方程:(1)3x−1−1=11−x;(2)xx+1−2x2−1=1.28.解方程:5−xx−4=1−34−x.29.解方程:16x2−4−x+2x−2=−1.30.(1)计算:(√7−1)0−(−12)−2+√3tan30∘;(2)解方程:x+1x−1+41−x2=1.31.解方程:2(x+1)x−1−x−1x+1=1.32.解分式方程:(1)1x−4=1−x−34−x.(2)810.9x−661.1x=4033.解方程:(1)3x+2=43x−1(2)xx+1−2x2−1=134.解分式方程:1x +3x−3=23x−x235.(1)分解因式:3a3−27a;(2)解方程:2x =3x−2.36.解分式方程:(1)3x−2+2=x2−x.(2)2x−1=4x2−1.37.计算:(1)(a−2b)2+(a−2b)(a+2b)(2)解分式方程3x−2=3+x2−x38.解方程:x−12−x −2=3x−2.39.解答下列各题(1)解方程:x24−x2=1x+2−1.(2)先化简,再求值:a−33a2−6a ÷(a+2−5a−2),其中a2+3a−1=0.40.解方程:3x+1=x2x+2+141.(1)分解因式:(a−b)(x−y)−(b−a)(x+y)(2)分解因式:5m(2x−y)2−5mn2(3)解方程:2x+1−2x1−x2=1x−142.解方程:x2+1x2−2(x+1x)−1=0.43.解方程xx−2+6x+2=144. 解分式方程(1)3x+2=2x−3 (2)8x 2−4−x x−2=−145. 求不等式组{2x −1≤13x −3<4x 的整数解.46. 解不等式组:{3(x +1)>x −1x+92>2x47. 解不等式组{2x +3≤x +112x+53−1>2−x .48. 解不等式组:{2x −1>x +13(x −2)−x ≤449. 解下列方程:(1)解方程:x 2+4x −2=0;(2)解不等式组:{x −3(x −2)≥24x −2<5x +1.50. (1)计算:(π−2)0+√8−4×(−12)2(2)解不等式组:{3(x −2)≤4x −55x−24<1+12x51. 解不等式:1−x 2>−1.52. 解下列不等式,并把解集在数轴上表示出来:(1)5x−13−2x >3; (2)x−12−x+43>−2.53. 解不等式组{2x −1⩽x +2x−23<x 2+1,并把解在数轴上表示出来.54.解不等式组:{x+1>05−4(x−1)<155.解不等式4(x−1)+3≤2x+5,并把它的解集在数轴上表示出来.56.解不等式组{2x≥−4①12x+1<32②,并把不等式组的解集表示在数轴上.57.因式分解:(1)24ax2−6ay2;(2)(2a−b)2+8ab 58.因式分解(1)2x2−4x59. 分解因式:8ab −8b 2−2a 2 60. (1)分解因式:2x 2−18(2)解不等式组{5m −3≥2(m +3)13m +1>12m61. 因式分解:(1)16m (m −n )2+56(n −m )3;(2)(2a +3b )(a −2b )−(3a +2b )(2b −a ).62. 因式分解:(1)4a 2−9 (2)x 3−2x 2y +xy 263.分解因式:(1)6m2n−15n2m+30m2n2;(2)x(x−y)2−y(x−y).64.因式分解:(1)x(x−12)+4(3x−1).(2)m3n−4m2n+4mn65.因式分解:(x2−5)2+8(x2−5)+1666.分解因式:(1)x3−3x2−28x(2)12x2−x−2067.化简:(1)(x+y)2−(x−2y)(x+y)(2)(2x+1x2−4x+4−1x−2)÷x+3x2−4(1)√12−|−3|−3tan30∘+(−1+√2)0 (2) (x +1)(x −1)−(x −2)269. 计算:(1)√643+|√2−1|−π0+(12)−1;(2)(2x −1)2−(3x +1)(3x −1)+5x(x −1).70. (1)计算: |−3|−4cos60°+(2019−2020)0.(2)先化简,再求值:(x +2)2−x (x −2),其中x =2.71. 化简:(√3+√2)2019⋅(√3−√2)2020.72. 解下列各题:(1)计算:(x +2)2+(2x +1)(2x −1)−4x(x +1)(2)分解因式:−y 3+4xy 2−4x 2y73. 先化简,再求值:[a (a 2b 2−ab )−b (a 2−a 3b )]÷2a 2b ,其中a =−12,b =13.74. 计算:(1)(−2)2×|−3|−(√6)0 (2)(x +1)2−(x 2−x)75. 计算(1)|−1|+(3−π)0+(−2)3−(13)−2(2)(x 4)3+(x 3)4−2x 4⋅x 876. 计算:(1)(2x 2)3−x 2·x 4;(2)−22+(12)−2−2−1×(−12)0.77. 计算:①(−2020)0+√−83+tan45∘;②(a +b)(a −b)+b(b −2).78.(1)计算:x(x−9y)−(x−8y)(x−y)(2)计算:(−12a5b3+6a2b−3ab)÷(−3ab)−(−2a2b)2.)−279.计算:|√3−2|+(π−2019)0+2cos30∘−(−13)−1+|1−2cos45°|80.√2×(−1)2017−(1281.计算:cos245∘−2sin60∘−|√3−2|.)−2−(2019+π)0−|2−√5|82.计算:(−12)0;83.(1)计算:−24−√12+|1−4sin60°|+(π−23(2)解方程:2x2−4x−1=0.)−2−|√3−2|84.计算√27−3tan 30∘+(−12)−3.85.计算:√3×(−√6)+|−2√2|+(123−√(−5)2+(π−3.14)0+|1−√2|.86.计算:√273−√1+9;(2)√(−2)2+|√2−1|−(√2−1) 87.计算(1)√16+√−2788. 计算:(12)−1+(−2019)0−√9+√27389. 计算:(−2)−1−12√8−(5−π)0+4cos45∘90. 计算:(12)−1−(√2−1)0+|1−√3|+√1291. (1)计算(−12)−1+√16−(π−3.14)0−|√2−2|(2)化简:(2m m+2−m m−2)÷m m 2−4.92. 计算下列各题.(1)√4+(π−3.14)0−|−√3|+(13)−1 (2)√−83+(√3)2+√(−3)2+|1−√2|93. 计算:|1−√2|−√6×√3+(2−√2)0.94. 计算:(√12+√3)×√6−4√32÷√395. 计算:12×(√3−1)2√2−1−(√22)−1.96. 已知a =2+√3,求1−2a+a 2a−1−√a 2−2a+1a 2−a 的值.97. √(1−√3)2−√24×√122−√398. 计算:(1)√32−√8+√12×√3 (2)|√3−2|+(√3)−1−(√2−1)099. 计算:(1)2√45+3√15+√(2−√5)2; √2√6−2√3(√6−√2).100.先化简,再求值:1−a−2a ÷a 2−4a 2+a ,请从−2,−1,0,1,2中选择一个合适的数,求此分式的值.答案和解析1.【答案】解:{x 3−y 2=1①5x +3y =8②,①×6,得2x −3y =6③②+③,得7x =14,解得x =2,把x =2代入②,得10+3y =8,解得y =−23,∴原方程组的解为{x =2y =−23.【解析】本题主要考查二元一次方程组的解法,可利用加减消元法求解,将①×6得③,再利用②+③解得x 值,再将x 值代入②求解y 值,即可得解.2.【答案】解:(1){4a +b =15 ①3b −4a =13 ②, ①+②得,4b =28,解得:b =7,把b =7代入①得:4a +7=15,解得:a =2, 则方程组的解为{a =2b =7; (2)将原方程组变形得{5x −11y =−12①x −5y =−8②, ②×5−①得:−14y =−28,解得:y =2,把y =2代入②得:x =2, 则方程组的解为{x =2y =2.【解析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.3.【答案】 解:(1){3x +5y =11①2x −y =3②, ①+②×5,得:13x =26,解得:x =2,将x =2代入②,得:4−y =3,解得:y =1,所以方程组的解为{x =2y =1; (2)将方程组整理成一般式为{3x −2y =8①3x +2y =6②, ①+②,得:6x =14,解得:x =73,将x =73代入①,得:7−2y =8,解得:y =−12,所以方程组的解为{x =73y =−12.【解析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.4.【答案】解:(1)原方程可化为{4x −3y =11①2x +y =13②, ②×2−①得:5y =15,解得:y =3,把y =3代入②得:x =5,所以方程组的解为{x =5y =3; (2)整理原方程组得{3x +4y =36①3x −2y =9②, ①−②得:6y =27,解得:y =92,把y =92代入②得:x =6,所以方程组的解为{x =6y =92.【解析】本题主要考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.5.【答案】解:(1)去分母得:2−x +3(x −3)=−2,解得:x =2.5,经检验x =2.5为原分式方程的解;(2){2x −y =5①7x −3y =20②, ②−①×3得:x =5,把x =5代入①得:y =5,则方程组的解为{x =5y =5.【解析】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)方程组利用加减消元法求出方程组的解即可.6.【答案】解:(1)去分母,得12−4x +10=9−3x ,移项、合并同类项,得−x =−13;系数化为1,得x =13;(2)去分母得:3.4−4x =0.6−0.5−2x ,移项合并得:2x =3.3,解得:x =1.65.【解析】本考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x 系数化为1,求出解;方程整理后,去分母,去括号,移项合并,把x 系数化为1,即可求出解.7.【答案】12[x −12(x −1)]=23(x −1)解:12x −14(x −1)]=23(x −1)6x −3(x −1)]=8(x −1)6x −3x +3=8x −86x −3x −8x =−8−3−5x =−11x =115【解析】此题考查了解一元一次方程,去括号,去分母,再去括号,移项合并,把未知数系数化为1,求出解.8.【答案】解:去分母,得2x −1−3(3x −2)=12,去括号,得2x −1−9x +6=12,移项,得2x −9x =12+1−6,合并同类项,得−7x =7,系数化成1,得x =−1.【解析】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.先去分母,再去括号,最后移项,合并同类项,化系数为1,从而得到方程的解.9.【答案】解:(1)原方程去括号得5x +40=12x −42+5,移项可得:12x −5x =40+42−5,合并同类项可得:7x =77,解得:x =11.(2)原方程去分母得5x −10−2(x +1)=3,去括号得5x −10−2x −2=3,移项合并可得:3x =15,解得:x=5.【解析】本题考查的是解一元一次方程有关知识.(1)首先对该方程去括号变形,然后再进行合并,最后再解答即可;(2)首先对该方程去分母变形,然后再解答即可.10.【答案】解:(1)原式=x2−y2−(2x2+5xy−3y2)=−x2−5xy+2y2;(2)去括号,得9x2−1−(9x2+6x+1)=−8,9x2−1−9x2−6x−1=−8,合并,得−6x−2=−8,解得x=1.【解析】(1)先根据平方差公式和多项式乘多项式法则计算,再合并同类项即可求解;(1)先根据平方差公式和完全平方公式计算,再合并同类项得到−6x−2=−8,再解一元一次方程即可求解.本题考查了平方差公式,多项式乘多项式,完全平方公式,解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.11.【答案】解:(1)(x−1)2=4,两边直接开平方得:x−1=±2,∴x−1=2或x−1=−2,解得:x1=3,x2=−1;(2)xx+1=2x3x+3+1方程两边都乘3(x+1),得:3x=2x+3(x+1),解得:x=−32,经检验x=−32是方程的解,∴原方程的解为x=−32.【解析】本题主要考查了一元二次方程的解法和分式方程的解法,解分式方程的关键是去分母,将分式方程转化为整式方程,注意解分式方程要检验.(1)先两边直接开平方,然后转化为两个一元一次方程,解之即可;(2)先在方程两边同时乘以3(x+1),去掉分母,然后解整式方程,最后检验即可.12.【答案】解:(1)x2=3xx2−3x=0x(x−3)=0x 1=0 ,x 2=3(2)3x 2−8x −2=0∵△=64−4×3×(−2)=88∴x =8±√886=4±√223 x 1=4+√223 ,x =4−√223【解析】本题考查一元二次方程的解法,熟练应用各种解法是解题的关键.(1)先把方程化为一元二次方程的一般形式,用因式分解法解方程即可;(2)用公式法解方程,先求出△的值,然后运用一元二次方程的求根公式求出方程的根即可.13.【答案】解:∵x 2−2(√2x −2)=2,∴x 2−2√2x +4=2,∴x 2−2√2x +2=0,∴(x −√2)2=0,解得:x 1=x 2=√2.【解析】本题主要考查的是直接开平方法解一元二次方程的有关知识,先将给出的方程进行变形为(x −√2)2=0,然后直接开平方求解即可.14.【答案】解:(1)原式化简得x 2−4x =0,因式分解得x(x −4)=0,即x =0或x −4=0,解得x 1=0,x 2=4;(2)2x 2−3x −1=0,∵a =2,b =−3,c =−1,则b 2−4ac =9+8=17>0,则x = 3±√174 , 则x 1= 3+√174 ,x 2= 3−√174 .【解析】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.(1)先化简,提取公因式x 可得x(x −4)=0,然后解两个一元一次方程即可;(2)直接运用公式法来解方程.15.【答案】解:(1)x 2=121,x =±11,x 1=11,x 2=−11;(2)(x −1)2=169,x −1=±13,x 1=14, x 2=−12.【解析】略16.【答案】解:(1)x 2−2x −6=0,x 2−2x =6,x 2−2x +1=7,(x −1)2=7,x −1=±√7,∴x 1=1+√7,x 2=1−√7;(2)(2x −3)2=3(2x −3).(2x −3)2−3(2x −3)=0,(2x −3)(2x −3−3)=0,∴2x −3=0或2x −6=0,∴x 1=32,x 2=3.【解析】本题主要考查了一元二次方程的解法,解一元二次方程常用的方法有:直接开平方法,因式分解法,配方法,公式法,解答时应根据方程的特征选择恰当的方法.(1)根据方程的特征可用直接开平方法解答,解答时先将常数项移项到方程的右边将方程变为x 2−2x =6,然后方程两边同时加上1分解可得(x −1)2=7,再用直接开平方法解答即可;(2)先移项,然后分解因式可得(2x −3)(2x −6)=0,可得2x −3=0或2x −6=0,然后解之即可.17.【答案】解:(1)原方程可变形为(x −2)(3x −6−x )=0,∴x −2=0或2x −6=0,解得:x 1=2,x 2=3(2)∵3(x 2−2x +1−1)+1=0,∴3(x −1)2−3+1=0,∴3(x −1)2=2,∴x −1=±√63, ∴x 1=1+√63,x 2=1−√63【解析】本题考查的是解一元二次方程有关知识.(1)首先对该方程进行因式分解,然后再进行解答即可;(2)首先对该方程进行配方,然后再解答.18.【答案】解:(1)∵a =1,b =−12,c =−4,∴Δ=144+16=160,∴x =12±4√102, x 1=6+2√10,x 2=6−2√10;(2)x(3−2x)+2(3−2x)= 0,(x +2)(3−2x)= 0,x 1=−2,x 2=32.【解析】本题考查利用公式法和因式分解法求一元二次方程的解.(1)按公式法,先求出判别式的值,再代入公式求解;(2)将方程右边移项到左边,提取公因式后,利用因式分解法求解.19.【答案】解:(1)原式=2+1−2+1=2(2)原方程化为x 2−3x =14x 2−3x +(32)2=104 (x −32)2=±√102∴原方程的根x 1=3+√102,x 2=3−√102.【解析】本题主要考查了实数的运算和解一元二次方程,关键是熟练掌握特殊角的三角函数值和配方法解方程的方法.(1)利用零指数幂公式、绝对值和算术平方根、特殊角的三角函数值计算,最后计算加减可得结果;(2)利用配方法进行解方程即可.20.【答案】解:x x−1−1=3(x−1)(x+1),x(x +1)−(x −1)(x +1)=3,解得,x =2,经检验:当x =2时,(x −1)(x +1)≠0,∴x =2是原分式方程的解.【解析】本题考查了解分式方程,解分式方程的基本思想是转化,把分式方程转化为整式方程求解,解分式方程一定注意要验根;先把分式方程去分母,注意没有分母的项也要乘以公分母(x −1)(x +1),求出整式方程的解得到x 的值,经检验即可得到分式方程的解.21.【答案】解:等号两边同乘(x +2)(x −2)得:2=x 2−4−x 2−2x ,2x =−6,解得:x =−3,检验,当x =−3时,(x +2)(x −2)≠0,所以x =−3是原方程的解.【解析】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.22.【答案】解:(1)方程两边同时乘以x 2−1得:x (x +1)−2x +1=x 2−1, 解得:x =2,经检验,x =2是原方程的解;(2)方程两边同时乘以x −1得:2−x −1=x −1,解得:x =1,经检验,x =1是增根,∴原方程无解.【解析】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,注意解分式方程一定要验根.(1)方程两边同时乘以x 2−1去分母,转化为整式方程x (x +1)−2x +1=x 2−1,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)方程两边同时乘以x −1去分母,转化为整式方程2−x −1=x −1,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.23.【答案】解:(1)23+x3x−1=19x−3,两边同乘以3(3x−1)得,2(3x−1)+3x=1,去括号得,6x−2+3x=1,移项合并得,9x=3,系数化为1得,x=13,检验:当x=13时,3(3x−1)=0,∴x=13时原方程的增根,原方程无解;(2)xx2−4+2x+2=1x−2方程两边同乘以(x+2)(x−2)得,x+2(x−2)=x+2,去括号得,x+2x−4=x+2,移项合并得,2x=6,系数化为1得,x=3,当x=3时,(x+2)(x−2)≠0,所以原方程的解为x=3.【解析】本题主要考查了解分式方程,熟练掌握解分式方程的方法是解题的关键,两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.(1)方程两边同乘以3(3x−1)转化为整式方程2(3x−1)+3x=1,解出x并检验即可;(2)方程两边同乘以(x+2)(x−2)转化为整式方程x+2(x−2)=x+2,解出x并检验即可.24.【答案】解:(1)去分母,得x−5=2x−5,移项,得x−2x=−5+5,解得x=0,检验:把x=0代入2x−5≠0,所以x=0是原方程的解;(2)去分母,得8+x2−1=(x+3)(x+1),去括号,得8+x2−1=x2+4x+3,解得x=1,把x=1代入(x+1)(x−1)=0,所以x=1是原方程的增根,所以原方程无解.【解析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到结论.25.【答案】解:(1)原方程可变形为1+3(x−2)=x−1,整理可得:2x=4,解得:x=2,经检验:x=2是原方程的增根,所以原方程无解;(2)原方程可变形为(x+1)2−4=x2−1,整理可得:2x=2,解得:x=1,经检验:x=1是原方程的增根,所以原方程无解;【解析】本题考查的是解分式方程有关知识.(1)首先对该方程变形,然后再进行解答即可;(2)首先对该方程变形,然后再进行解答即可.26.【答案】解:去分母得1+x−3=4−x解得x=3.经检验x=3是原方程的增根.∴原方程无解【解析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验是原方程的增根,所以原方程无解.27.【答案】解:(1)方程两边同时乘以(x−1)得3−x+1=−1,解得x=5,经检验x=5是分式方程的解;(2)方程两边同时乘以(x2−1)得x(x−1)−2=x2−1解得x=−1,经检验x=−1是方程的增根,∴原分式方程无解.【解析】本题考查解分式方程,关键是熟练分式方程的解法步骤.(1)先将分式方程转化为整式方程,解得x的值进行检验即可得出方程的解;(2)先将分式方程转化为整式方程,解得x的值进行检验即可得出方程的解.28.【答案】解:方程两边同时乘以最简公分母(x−4),得5−x=x−4+3,整理,得−2x=−6,解得x=3,检验:当x=3时,x−4≠0,所以原分式方程的根是x=3.【解析】本题考查的知识点是解分式方程,在解分式方程去分母时,两边同时乘以最简公分母,每一项都要乘,不能漏乘某一项,本题易出现如下错解:方程两边同时乘以最简公分母(x−4),得5−x=1+3,解得x=1,检验:当x=1时,x−4≠0,所以原分式方程的根是x=1,错误的原因是去分母时,常数项漏乘最简公分母,故一定要注意不能漏乘.29.【答案】解:16x2−4−x+2x−2=−1,16−(x+2)2=4−x2,16−x2−4x−4−4+x2=0,16−4x−8=0,x=2,经检验,x=2为增根,此方程无解.【解析】本题综合考查了解分式方程的解法.注意,分式方程需要验根.先去分母,然后移项、合并同类项,最后化未知数系数为1.30.【答案】解:(1)原式=1−4+√3×√33=1−4+1=−2;(2)x+1x−1+41−x2=1整理得:x+1x−1−4x2−1=1,去分母得:(x+1)2−4=x2−1,去括号得:x2+2x+1−4=x2−1,移项得:2x=−1−1+4,合并同类项得:2x=2,系数化为1得:x=1,经检验:x=1时,x−1=0,∴此方程无解.【解析】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.31.【答案】解:去分母,得2(x+1)2−(x−1)2=x2−1,化简,得6x=−2,解得x=−13.经检验,x=−13是原方程的根.所以原方程的根为x=−13.【解析】本题考查了解分式方程,根据解分式方程的步骤,去分母,去括号,化简x系数为1,即可求得答案.(注意,一定要验根)32.【答案】解:(1)去分母得:1=x−4+x−3,解得:x=4,检验:当x=4时,x−4=0,所以x=4是原方程的增根,原方程无解;(2)原方程整理得:90x −60x=40,去分母得:40x=30,解得:x=34,检验:当x=34时,0.99x≠0,所以x=34是原方程的根.【解析】本题主要考查的是解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.(1)方程两边都乘以x−4,分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)先化简方程,然后方程两边都乘以x,分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.33.【答案】解:(1)方程两边乘(x+2)(3x−1),得3(3x−1)=4(x+2)解得x=115检验:当x=115时,(x+2)(3x−1)≠0是原分式方程的解,∴原分式方程的解为x=115;(2)方程两边乘(x+1)(x−1),得x(x−1)−2=(x+1)(x−1)解得x=−1检验:当x=−1时,(x+1)(x−1)=0∴x=−1不是原分式方程的解,∴原分式方程无解【解析】本题考查了分式方程的解法.解题关键是把分式方程转化为整式方程,掌握解分式方程的一般步骤,特别最后需要验根.(1)先找出最简公分母,去分母,把分式方程化为整式方程,解出整式方程后,再验根即可.(2)先把各分母分解因式,找出最简公分母,去分母,把分式方程化为整式方程,解出整式方程后,再验根即可.注意在去分母时不能漏乘不含分母的项“1”.34.【答案】解:原方程可化为1x +3x−3=−2x(x−3)方程两边同乘x(x−3),得x−3+3x=−2,4x=1,x=14,检验:当x=14时,x(x−3)≠0,∴x=14是原分式方程的解.【解析】本题考查了解分式方程,掌握解分式方程的步骤是解题的关键,属于基础题.方程的两边同时乘以x(x−3)化为x−3+3x=−2,解之即可,注意分式方程要检验.35.【答案】(1)解:原式=3a(a2−9)=3a(a+3)(a−3);(2)解:方程两边同乘x(x−2),得2(x−2)=3x2x−4=3x2x−3x=4−x=4x=−4检验:当x=−4时,x(x−2)≠0,∴原方程的解为x=−4.【解析】此题考查了解分式方程,以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.(1)原式提取3a,再利用平方差公式分解即可;(2)分式方程两边同乘x(x−2),转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.36.【答案】解:(1)方程两边乘x−2,得3+2x−4=−x,−x−2x=−4+3,−3x=−1x=13,检验:x=13时,x−2≠0.∴原方程的根是x=1;3(2)方程两边乘(x+1)(x−1),得2(x+1)=4,2x+2=4,2x=2,解得x=1.检验:当x=1时,(x+1)(x−1)=0,x=1是增根.∴原方程无解.【解析】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;解分式方程一定注意要验根.(1)观察可得最简公分母是x−2,方程两边乘最简公分母,可以把分式方程转化为整式方程,求解即可;(2)观察可得最简公分母是(x+1)(x−1),方程两边乘最简公分母,可以把分式方程转化为整式方程,求解.37.【答案】解:(1)原式=a2−4ab+4b2+a2−4b2=2a2−4ab; (2)两边同乘以x−2得,3=3(x−2)−x,3=3x−6−x,2x=9,x=4.5,检验:当x=4.5时,x−2≠0,∴x=4.5是原方程的解,∴原分式方程的解为x=4.5.【解析】(1)此题考查了整式的混合运算,完全平方公式,平方差公式,掌握整式的混合运算法则是关键,先去括号再合并,即可得到答案.(2)此题考查了解分式方程,掌握解分式方程的步骤是关键,分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验后即可得到分式方程的解.38.【答案】解:x−1−2(2−x)=−3,x−1−4+2x=−3,3x=2,x=2,3时,2−x≠0,检验:当x=23∴x=2是原分式方程的解.3【解析】此题考查了分式方程的求解方法,此题难度不大,注意转化思想的应用,注意解分式方程一定要验根.本题的最简公分母是2−x,方程两边都乘以最简公分母转化为整式方程求解,最后要代入最简公分母验根.39.【答案】解:(1)方程两边都乘(2−x)(2+x),得x2=2−x−4+x2,解得:x=−2,检验:当x=−2时,(2−x)(2+x)=0,∴x=−2是增根,原方程无解;(2)原式=a−33a(a−2)÷(a+3)(a−3)a−2=a−33a(a−2)⋅a−2(a+3)(a−3)=13a(a+3),由a2+3a−1=0,得到a2+3a=a(a+3)=1,则原式=13.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.此题考查了分式的化简求值,以及解分式方程,熟练掌握运算法则是解本题的关键.40.【答案】解:去分母得:6=x+2x+2,移项合并得:3x=4,解得:x=43,经检验x=43是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.41.【答案】解:(1)原式=(a−b)(x−y)+(a−b)(x+y)=(a−b)(x−y+x+y)=2x(a−b);(2)原式=5m[(2x−y)2−n2]=5m(2x−y+n)(2x−y−n);(3)方程两边都乘以(x+1)(x−1),得:2(x−1)+2x=x+1,解得:x=1,,检验:当x=1时,(x+1)(x−1)=0,则x=1是原分式方程的增根,所以分式方程无解.【解析】本题考查因式分解及其解分式方程,掌握运算法则是解题关键.(1)直接提取公因式(a−b)进行分解即可;(2)首先提取公因式5m,然后运用平方差公式进行分解即可;(3)首先方程两边都乘以(x+1)(x−1),得到整式方程2(x−1)+2x=x+1,解这个方程并检验即可.42.【答案】解:原方程可化为(x+1x )2−2−2(x+1x)−1=0即:(x+1x )2−2(x+1x)−3=0设x+1x=y,则y2−2y−3=0,即(y−3)(y+1)=0.解得y =3或y =−1.当y =3时,x +1x =3,即x 2−3x +1=0解得∴x 1=3+√52,x 2=3−√52; 当y =−1时,x +1x =−1无实数根.经检验,x 1=3+√52,x 2=3−√52都是原方程的根. ∴原方程的根为x 1=3+√52,x 2=3−√52.【解析】本题考查了换元法解分式方程,换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.整理可知,方程的两个分式具备平方关系,设x +1x =y ,则原方程化为y 2−2y −3=0.用换元法解一元二次方程先求y ,再求x.注意检验. 43.【答案】解:x x−2+6x+2=1x (x +2)+6(x −2)=x 2−4x 2+2x +6x −12=x 2−48x =8x =1,经检验,x =1是分式方程的解.【解析】本题考查了解分式方程,先将分式方程化为整式方程,求得整式方程的解,然后进行检验即可.44.【答案】解:(1)3x+2=2x−3,3(x −3)=2(x +2)3x −9=2x +43x −2x =4+9x =13,检验:当x =13时,(x +2)(x −3)≠0,所以x =13是原方程的解;(2)2x 2−4+x x−2=12+x (x +2)=x 2−4 2+x 2+2x =x 2−42x =−6x =−3 检验:当x =−3时,(x +2)(x −2)≠0,所以x =−3是原方程的解.【解析】本题考查了解分式方程.注意验根.先去分母、去括号、合并同类项、称项、系数为1即可求出.45.【答案】解:解不等式2x −1≤1得x ≤1,解不等式3x −3<4x 得x > −3,则不等式组的解集是−3<x ≤1,则符合条件的整数解有−2、−1、0、1【解析】本题主要考查一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法是解决问题的关键.先求出每一个不等式的解集。
【数学试题专项】2017年度中考数学试题专项整理(18)(精选不同省市)

2017年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.32.(3分)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠43.(3分)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差4.(3分)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.5.(3分)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m46.(3分)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°7.(3分)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.8.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨 B.18.6×109吨C.1.86×1010吨D.0.186×1011吨9.(3分)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是()A.综合法B.反证法C.举反例法D.数学归纳法10.(3分)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.5πcm2B.10πcm2C.15πcm2D.20πcm2二、填空题(本大题共5个小题,每小题3分)11.(3分)计算:4﹣9=.12.(3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.13.(3分)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为.14.(3分)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)15.(3分)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.17.(6分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.18.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.19.(7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.(12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)21.(7分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC 交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22.(12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.23.(14分)如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).(1)求直线BC的函数表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)②在点P、Q运动的过程中,当PQ=PD时,求t的值;(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.2017年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(2017•山西)计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.3【分析】直接利用有理数加减运算法则得出答案.【解答】解:﹣1+2=1.故选:C.【点评】此题主要考查了有理数加法,正确掌握运算法则是解题关键.2.(3分)(2017•山西)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.【解答】解:由∠1=∠3,可得直线a与b平行,故A能判定;由∠2+∠4=180°,∠2=∠5,∠4=∠3,可得∠3+∠5=180°,故直线a与b平行,故B能判定;由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;由∠3=∠4,不能判定直线a与b平行,故选:D.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.3.(3分)(2017•山西)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;【解答】解:因为方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.故选D.【点评】本题考查平均数、方差、众数、中位数等知识,解题的关键是理解方差的意义,属于中考常考题型.4.(3分)(2017•山西)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解集;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣4在数轴上表示为:故选:A.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)(2017•山西)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m4【分析】根据整式和有理数的除法的法则,乘方的性质,合并同类项的法则,零指数的性质,幂的乘方与积的乘方的运算法则计算即可.【解答】解:A、(﹣1)0=1,正确,不符合题意;B、(﹣3)2÷=4,错误,符合题意;C、5x2﹣6x2=﹣x2,正确,不符合题意;D、(2m3)2÷(2m)2=m4,正确,不符合题意;故选B.【点评】本题考查了整式和有理数的除法的法则,乘方的性质,合并同类项的法则,零指数的性质,幂的乘方与积的乘方的运算法则,熟记法则是解题的关键.6.(3分)(2017•山西)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D 与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°【分析】根据矩形的性质,可得∠ABD=35°,∠DBC=55°,根据折叠可得∠DBC'=∠DBC=55°,最后根据∠2=∠DBC'﹣∠DBA进行计算即可.【解答】解:∵∠1=35°,CD∥AB,∴∠ABD=35°,∠DBC=55°,由折叠可得∠DBC'=∠DBC=55°,∴∠2=∠DBC'﹣∠DBA=55°﹣35°=20°,故选:A.【点评】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.7.(3分)(2017•山西)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=﹣==﹣故选(C)【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8.(3分)(2017•山西)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨 B.18.6×109吨C.1.86×1010吨D.0.186×1011吨【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:186亿吨=1.86×1010吨.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(3分)(2017•山西)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p 与q 是互质的两个正整数).于是()2=()2=2,所以,q 2=2p 2.于是q 2是偶数,进而q 是偶数,从而可设q=2m ,所以(2m )2=2p 2,p 2=2m 2,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数. 这种证明“是无理数”的方法是( )A .综合法B .反证法C .举反例法D .数学归纳法【分析】利用反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确,进而判断即可.【解答】解:由题意可得:这种证明“是无理数”的方法是反证法.故选:B .【点评】此题主要考查了反证法,正确把握反证法的一般步骤是解题关键.10.(3分)(2017•山西)如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .5πcm 2B .10πcm 2C .15πcm 2D .20πcm 2【分析】根据已知条件得到四边形ABCD 是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=2S扇形AOD,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=72°,于是得到结论. 【解答】解:∵AC 与BD 是⊙O 的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°, ∴四边形ABCD 是矩形,∴△ABO 与△CDO 的面积的和=△AOD 与△BOC 的面积的和, ∴图中阴影部分的面积=S 扇形AOD +S 扇形BOC =2S 扇形AOD , ∵OA=OB ,∴∠BAC=∠ABO=36°, ∴∠AOD=72°,∴图中阴影部分的面积=2×=10π,故选B .【点评】本题考查了扇形的面积,矩形的判定和性质,圆周角定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(本大题共5个小题,每小题3分) 11.(3分)(2017•山西)计算:4﹣9= 3.【分析】先化简,再做减法运算即可. 【解答】解:原式=12=3,故答案为:3.【点评】本题主要考查了二次根式的加减法,先化简再求值是解答此题的关键.12.(3分)(2017•山西)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 1.08a 元.【分析】根据题意可以得到最后打折后的零售价,从而可以解答本题. 【解答】解:由题意可得,该型号洗衣机的零售价为:a (1+20%)×0.9=1.08a (元),故答案为:1.08a.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.13.(3分)(2017•山西)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为(6,0).【分析】由平移的性质和旋转的性质作出图形,即可得出答案.【解答】解:如图所示:∵A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,∴A′、B′、C′的坐标分别为(4,4),B(3,1),C(2,2),再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,则点A″的坐标为(6,0);故答案为:(6,0).【点评】本题考查了坐标与图形性质、平移的性质、旋转的性质;熟练掌握平移和旋转的性质是解决问题的关键.14.(3分)(2017•山西)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为15.3米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)【分析】在Rt△ACD中,求出AD,再利用矩形的性质得到BD=CE=1.5,由此即可解决问题.【解答】解:如图,过点C作CD⊥AB,垂足为D.则四边形CEBD是矩形,BD=CE=1.5m,在Rt△ACD中,CD=EB=10m,∠ACD=54°,∵tan∠ACE=,∴AD=CD•tan∠ACD≈10×1.38=13.8m.∴AB=AD+BD=13.8+1.5=15.3m.答:树的高度AB约为15.3m.故答案为15.3【点评】本题考查解直角三角形的应用﹣仰角俯角问题、锐角三角函数等知识,解题的关键是通过添加辅助线,构造直角三角形解决问题.15.(3分)(2017•山西)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为(+)cm.【分析】过A作AG⊥DC于G,得到∠ADC=45°,进而得到AG的值,在30°的直角三角形ABD和45°直角三角形BCD中,计算出BD,CB的值.再由AG ∥EF∥BC,E是AB的中点,得到F为CG的中点,最后由梯形中位线定理得到EF的长.【解答】解:过点A作AG⊥DC与G.∵∠CDB=∠CBD=45°,∠ADB=90°,∴∠ADG=45°.∴AG==2.∵∠ABD=30°,∴BD=AD=4.∵∠CBD=45°,∴CB==2.∵AG⊥CG,EF⊥CG,CB⊥CG,∴AG∥EF∥BC.又∵E是AB的中点,∴F为CG的中点,∴EF=(AG+BC)=(2+2)=+.故答案为:(+).【点评】本题主要考查的是梯形的中位线定理、特殊锐角三角函数值的应用,证得EF为梯形ABCG的中位线是解题的关键.三、解答题(本大题共8个小题,共75分)16.(10分)(2017•山西)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.【分析】(1)根据实数的运算,可得答案;(2)根据平方差公式,可得答案.【解答】解:(1)原式=﹣8+9﹣2=﹣1;(2)原式=[(y+2x)+(x+2y)][(y+2x)﹣(x+2y)]=3(x+y)(x﹣y).【点评】本题考查了因式分解,利用平方差公式是解题关键.17.(6分)(2017•山西)已知:如图,在▱ABCD中,延长AB至点E,延长CD 至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.【分析】由平行四边形的性质得出AB∥CD,AB=CD,证出AE=CF,∠E=∠F,∠OAE=∠OCF,由ASA证明△AOE≌△COF,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠E=∠F,∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.18.(7分)(2017•山西)如图,在平面直角坐标系中,正方形OABC的顶点O 与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.【分析】(1)根据正方形的性质,以及函数上点的坐标特征可求点D的坐标为(1,2),根据待定系数法可求反比例函数表达式,进一步得到E、F两点的坐标;(2)过点F作FG⊥AB,与AB的延长线交于点G,根据两点间的距离公式可求AE=1,FG=3,再根据三角形面积公式可求△AEF的面积.【解答】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得x=1,∴点D的坐标为(1,2),∵函数y=的图象经过点D,∴2=,解得k=2,∴函数y=的表达式为y=,∴E(2,1),F(﹣1,﹣2);(2)过点F作FG⊥AB,与BA的延长线交于点G,∵E(2,1),F(﹣1,﹣2),∴AE=1,FG=2﹣(﹣1)=3,∴△AEF的面积为:AE•FG=×1×3=.【点评】本题主要考查了待定系数法求函数解析式,以及正方形的性质,解题的关键是求得D(1,2),E(2,1),F(﹣1,﹣2).19.(7分)(2017•山西)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年。
2017届云南中考数学题型专项(一)计算求解题(含答案)

题型专项(一) 计算求解题本专题是对计算求解题的巩固和深化,在云南的考题中主要包括实数的运算,分式的化简求值,解方程(组)和不等式(组),主要考查学生的计算能力,难度不大,但需要熟练掌握绝对值、特殊角的三角函数、零指数幂、负指数幂、二次根式的化简、分式的约分和通分、因式分解、整式的计算等相关知识,并密切注意运算顺序.类型1 实数的运算1.(2016·玉溪模拟)计算:(2 016-π)0-|1-2|+2cos45°.解:原式=1-(2-1)+2×22 =1-2+1+ 2=2.2.(2016·邵阳)计算:(-2)2+2cos60°-(10-π)0.解:原式=4+2×12-1 =4+1-1=4.3.计算:(-1)2 017+38-2 0170-(-12)-2. 解:原式=-1+2-1-4=-4.4.(2016·宜宾)计算:(13)-2-(-1)2 016-25+(π-1)0. 解:原式=9-1-5+1=4.5.(2016·曲靖模拟改编)计算:(-12)-3-tan45°-16+(π-3.14)0. 解:原式=-8-1-4+1=-12.6.(2016·云南模拟)计算:(13)-1-2÷16+(3.14-π)0×sin30°. 解:原式=3-2÷4+1×12=3-12+12 =3. 7.(2016·广安)计算: (13)-1-27+tan60°+|3-23|. 解:原式=3-33+3-3+2 3=0.8.(2016·云大附中模拟)计算:-2sin30°+(-13)-1-3tan30°+(1-2)0+12. 解:原式=-2×12+(-3)-3×33+1+2 3 =-1-3-3+1+2 3=3-3.类型2 分式的化简求值9.(2016·云南模拟)先化简,再求值:x -32x -4÷x 2-9x -2,其中x =-5. 解:原式=x -32(x -2)·x -2(x +3)(x -3)=12(x +3). 将x =-5代入,得原式=-14. 10.(2016·泸州改编)先化简,再求值:(a +1-3a -1)·2a -2a +2,其中a =2. 解:原式=(a +1)(a -1)-3a -1·2(a -1)a +2=a 2-4a -1·2(a -1)a +2=(a +2)(a -2)a -1·2(a -1)a +2 =2a -4.当a =2时,原式=2×2-4=0.11.(2016·红河模拟)化简求值:[x +2x (x -1)-1x -1]·x x -1,其中x =2+1. 解:原式=[x +2x (x -1)-x x (x -1)]·x x -1=2x (x -1)·x x -1 =2(x -1)2. 将x =2+1代入,得原式=2(2+1-1)2=2(2)2=22=1. 12.(2015·昆明二模)先化简,再求值:(a a -b -1)÷b a 2-b2,其中a =3+1,b =3-1. 解:原式=a -(a -b )a -b ·(a +b )(a -b )b=b a -b ·(a +b )(a -b )b=a +b.当a =3+1,b =3-1时,原式=3+1+3-1=2 3.13.(2016·昆明盘龙区一模)先化简,再求值:x 2-1x 2-x ÷(2+x 2+1x),其中x =2sin45°-1. 解:原式=(x +1)(x -1)x (x -1)÷2x +x 2+1x=(x +1)(x -1)x (x -1)·x (x +1)2 =1x +1. 当x =2sin45°-1=2×22-1=2-1时, 原式=12-1+1=22. 14.(2016·云南考试说明)已知x -3y =0,求2x +y x 2-2xy +y2·(x -y)的值. 解:原式=2x +y (x -y )2·(x -y) =2x +y x -y. 由题有:x =3y ,所以原式=6y +y 3y -y =72.15.(2016·西宁)化简:2x x +1-2x +4x 2-1÷x +2x 2-2x +1,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值.解:原式=2x x +1-2(x +2)(x +1)(x -1)·(x -1)2x +2=2x x +1-2x -2x +1 =2x -2x +2x +1 =2x +1.∵不等式x ≤2的非负整数解是0,1,2,∴答案不唯一,如:把x =0代入2x +1=2.(注意x =1时会使得原分式中分母为零,所以x 不能取1)16.(2016·昆明盘龙区二模)先化简,再求值:(a 2-b 2a 2-2ab +b 2+a b -a )÷b 2a 2-ab,其中a ,b 满足a +1+|b -3|=0. 解:原式=[(a +b )(a -b )(a -b )2-a a -b ]·a (a -b )b2 =(a +b a -b -a a -b )·a (a -b )b2 =b a -b ·a (a -b )b 2 =a b. 又∵a +1+|b -3|=0,∴a =-1,b = 3.∴原式=-13=-33. 类型3 方程(组)的解法17.(2016·武汉)解方程:5x +2=3(x +2).解:去括号,得5x +2=3x +6.移项、合并同类项,得2x =4.系数化为1,得x =2. 18.(2015·中山)解方程:x 2-3x +2=0.解:(x -1)(x -2)=0.∴x 1=1,x 2=2.19.(2015·宁德)解方程:1-2x -3=1x -3. 解:去分母,得x -3-2=1.解得x =6.检验,当x =6时,x -3≠0.∴原方程的解为x =6.20.(2015·黔西南)解方程:2x x -1+11-x=3. 解:去分母,得2x -1=3(x -1).去括号、移项、合并同类项,得-x =-2.系数化为1,得x =2.检验,当x =2时,x -1≠0.∴x =2是原分式方程的解.21.(2015·重庆)解二元一次方程组:⎩⎪⎨⎪⎧x -2y =1,①x +3y =6.② 解:②-①,得5y =5,y =1.将y =1代入①,得x -2=1,x =3.∴原方程组的解为⎩⎪⎨⎪⎧x =3,y =1. 22.(2015·荆州)解方程组:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7.②解:②×3,得3x +9y =21.③③-①,得11y =22,y =2.把y =2代入②,得x +6=7,x =1.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 23.(2016·山西)解方程:2(x -3)2=x 2-9.解:原方程可化为2(x -3)2=(x +3)(x -3).2(x -3)2-(x +3)(x -3)=0.(x -3)[2(x -3)-(x +3)]=0.(x -3)(x -9)=0.∴x -3=0或x -9=0.∴x 1=3,x 2=9.类型4 不等式(组)的解法24.(2016·丽水)解不等式:3x -5<2(2+3x).解:去括号,得3x -5<4+6x.移项、合并同类项,得-3x<9.系数化为1,得x >-3.25.(2016·淮安)解不等式组:⎩⎪⎨⎪⎧2x +1<x +5,①4x>3x +2.② 解:解不等式①,得x<4.解不等式②,得x>2.∴不等式组的解集为2<x <4.26.(2016·苏州)解不等式2x -1>3x -12,并把它的解集在数轴上表示出来. 解:4x -2>3x -1.x>1.这个不等式的解集在数轴上表示如图:27.(2016·广州)解不等式组:⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x +4,②并在数轴上表示解集.解:解不等式①,得x<52. 解不等式②,得x ≥-1.解集在数轴上表示为:28.(2016·南京)解不等式组:⎩⎪⎨⎪⎧3x +1≤2(x +1),①-x<5x +12,②并写出它的整数解. 解:解不等式①,得x ≤1.解不等式②,得x>-2.所以不等式组的解集是-2<x ≤1.该不等式组的整数解是-1,0,1.。
中考数学计算题100道

中考数学计算题100道练习1. 解方程组:{x 3−y 2=15x +3y =82. 解下列方程组:(1){4a +b =153b −4a =13(2){2(x −y)3−x +y 4=−16(x +y)−4(2x −y)=163. 解下列方程组(1){3x +5y =112x −y =3 (2){x 2−y+13=13(x +2)=−2y +124. 解下列方程组:(1){4x −3y =11y =13−2x; (2){x 4+y 3=33x −2(y −1)=11.5. 解下列方程(组)(1) 2−x x−3+3=23−x (2){2x −y =57x −3y =206. 解下列方程:(1)1−2x−56=3−x 4;(2)1.7−2x 0.3=1−0.5+2x 0.6.7. 解下列方程12[x −12(x −1)]=23(x −1)8. 2x−112−3x−24=19.解方程:(1)5(x+8)=6(2x−7)+5(2)0.1x−0.20.02−x+10.5=310.(1)化简:(x+y)(x−y)−(2x−y)(x+3y);(2)解方程:(3x+1)(3x−1)−(3x+1)2=−8.11.解方程:(1)(x−1)2=4;(2)xx+1=2x3x+3+1.12.解方程:(1)x2=3x.(2)3x2−8x−2=0.13.x2−2(√2x−2)=2.14.解方程:(1)(x−3)(x−1)=3.(2)2x2−3x−1=0.15.解方程:(1)x2−121=0(2)2(x−1)2=33816.解方程(1)x2−2x−6=0;(2)(2x−3)2=3(2x−3).17.解方程:(1)3(x−2)2=x(x−2);(2)3x2−6x+1=0(用配方法).18. 用适当的方法解下列方程:(1)x 2−12x −4=0(2)x(3−2x)= 4 x −619. 计算:(1)|−2|+(sin36°−12)0−√4+tan45°;(2)用配方法解方程:4x 2−12x −1=0.20. 解分式方程x x−1−1=3x 2−121. 解分式方程:2x 2−4=1−x x−2.22. 解下列方程:(1)x x−1−2x−1x 2−1=1(2)2−x x −1+11−x =123.解方程(1)23+x3x−1=19x−3(2)xx2−4+2x+2=1x−224.解方程(1)x2x−5+55−2x=1(2)8x2−1+1=x+3x−125.解下列分式方程:(1)1x−2+3=1−x2−x;(2)x+1x−1−4x2−1=1.26.解方程1x−3+1=4−xx−3.27.解下列方程:(1)3x−1−1=11−x;(2)xx+1−2x2−1=1.28.解方程:5−xx−4=1−34−x.29.解方程:16x2−4−x+2x−2=−1.30.(1)计算:(√7−1)0−(−12)−2+√3tan30∘;(2)解方程:x+1x−1+41−x2=1.31.解方程:2(x+1)x−1−x−1x+1=1.32.解分式方程:(1)1x−4=1−x−34−x.(2)810.9x−661.1x=4033.解方程:(1)3x+2=43x−1(2)xx+1−2x2−1=134.解分式方程:1x +3x−3=23x−x235.(1)分解因式:3a3−27a;(2)解方程:2x =3x−2.36.解分式方程:(1)3x−2+2=x2−x.(2)2x−1=4x2−1.37.计算:(1)(a−2b)2+(a−2b)(a+2b)(2)解分式方程3x−2=3+x2−x38.解方程:x−12−x −2=3x−2.39.解答下列各题(1)解方程:x24−x2=1x+2−1.(2)先化简,再求值:a−33a2−6a ÷(a+2−5a−2),其中a2+3a−1=0.40.解方程:3x+1=x2x+2+141.(1)分解因式:(a−b)(x−y)−(b−a)(x+y)(2)分解因式:5m(2x−y)2−5mn2(3)解方程:2x+1−2x1−x2=1x−142.解方程:x2+1x2−2(x+1x)−1=0.43.解方程xx−2+6x+2=144. 解分式方程(1)3x+2=2x−3 (2)8x 2−4−x x−2=−145. 求不等式组{2x −1≤13x −3<4x 的整数解.46. 解不等式组:{3(x +1)>x −1x+92>2x47. 解不等式组{2x +3≤x +112x+53−1>2−x .48. 解不等式组:{2x −1>x +13(x −2)−x ≤449. 解下列方程:(1)解方程:x 2+4x −2=0;(2)解不等式组:{x −3(x −2)≥24x −2<5x +1.50. (1)计算:(π−2)0+√8−4×(−12)2(2)解不等式组:{3(x −2)≤4x −55x−24<1+12x51. 解不等式:1−x 2>−1.52. 解下列不等式,并把解集在数轴上表示出来:(1)5x−13−2x >3; (2)x−12−x+43>−2.53. 解不等式组{2x −1⩽x +2x−23<x 2+1,并把解在数轴上表示出来.54.解不等式组:{x+1>05−4(x−1)<155.解不等式4(x−1)+3≤2x+5,并把它的解集在数轴上表示出来.56.解不等式组{2x≥−4①12x+1<32②,并把不等式组的解集表示在数轴上.57.因式分解:(1)24ax2−6ay2;(2)(2a−b)2+8ab 58.因式分解(1)2x2−4x59. 分解因式:8ab −8b 2−2a 2 60. (1)分解因式:2x 2−18(2)解不等式组{5m −3≥2(m +3)13m +1>12m61. 因式分解:(1)16m (m −n )2+56(n −m )3;(2)(2a +3b )(a −2b )−(3a +2b )(2b −a ).62. 因式分解:(1)4a 2−9 (2)x 3−2x 2y +xy 263.分解因式:(1)6m2n−15n2m+30m2n2;(2)x(x−y)2−y(x−y).64.因式分解:(1)x(x−12)+4(3x−1).(2)m3n−4m2n+4mn65.因式分解:(x2−5)2+8(x2−5)+1666.分解因式:(1)x3−3x2−28x(2)12x2−x−2067.化简:(1)(x+y)2−(x−2y)(x+y)(2)(2x+1x2−4x+4−1x−2)÷x+3x2−4(1)√12−|−3|−3tan30∘+(−1+√2)0 (2) (x +1)(x −1)−(x −2)269. 计算:(1)√643+|√2−1|−π0+(12)−1;(2)(2x −1)2−(3x +1)(3x −1)+5x(x −1).70. (1)计算: |−3|−4cos60°+(2019−2020)0.(2)先化简,再求值:(x +2)2−x (x −2),其中x =2.71. 化简:(√3+√2)2019⋅(√3−√2)2020.72. 解下列各题:(1)计算:(x +2)2+(2x +1)(2x −1)−4x(x +1)(2)分解因式:−y 3+4xy 2−4x 2y73. 先化简,再求值:[a (a 2b 2−ab )−b (a 2−a 3b )]÷2a 2b ,其中a =−12,b =13.74. 计算:(1)(−2)2×|−3|−(√6)0 (2)(x +1)2−(x 2−x)75. 计算(1)|−1|+(3−π)0+(−2)3−(13)−2(2)(x 4)3+(x 3)4−2x 4⋅x 876. 计算:(1)(2x 2)3−x 2·x 4;(2)−22+(12)−2−2−1×(−12)0.77. 计算:①(−2020)0+√−83+tan45∘;②(a +b)(a −b)+b(b −2).78.(1)计算:x(x−9y)−(x−8y)(x−y)(2)计算:(−12a5b3+6a2b−3ab)÷(−3ab)−(−2a2b)2.)−279.计算:|√3−2|+(π−2019)0+2cos30∘−(−13)−1+|1−2cos45°|80.√2×(−1)2017−(1281.计算:cos245∘−2sin60∘−|√3−2|.)−2−(2019+π)0−|2−√5|82.计算:(−12)0;83.(1)计算:−24−√12+|1−4sin60°|+(π−23(2)解方程:2x2−4x−1=0.)−2−|√3−2|84.计算√27−3tan 30∘+(−12)−3.85.计算:√3×(−√6)+|−2√2|+(123−√(−5)2+(π−3.14)0+|1−√2|.86.计算:√273−√1+9;(2)√(−2)2+|√2−1|−(√2−1) 87.计算(1)√16+√−2788. 计算:(12)−1+(−2019)0−√9+√27389. 计算:(−2)−1−12√8−(5−π)0+4cos45∘90. 计算:(12)−1−(√2−1)0+|1−√3|+√1291. (1)计算(−12)−1+√16−(π−3.14)0−|√2−2|(2)化简:(2m m+2−m m−2)÷m m 2−4.92. 计算下列各题.(1)√4+(π−3.14)0−|−√3|+(13)−1 (2)√−83+(√3)2+√(−3)2+|1−√2|93. 计算:|1−√2|−√6×√3+(2−√2)0.94. 计算:(√12+√3)×√6−4√32÷√395. 计算:12×(√3−1)2√2−1−(√22)−1.96. 已知a =2+√3,求1−2a+a 2a−1−√a 2−2a+1a 2−a 的值.97. √(1−√3)2−√24×√122−√398. 计算:(1)√32−√8+√12×√3 (2)|√3−2|+(√3)−1−(√2−1)099. 计算:(1)2√45+3√15+√(2−√5)2; √2√6−2√3(√6−√2).100.先化简,再求值:1−a−2a ÷a 2−4a 2+a ,请从−2,−1,0,1,2中选择一个合适的数,求此分式的值.答案和解析1.【答案】解:{x 3−y 2=1①5x +3y =8②,①×6,得2x −3y =6③②+③,得7x =14,解得x =2,把x =2代入②,得10+3y =8,解得y =−23,∴原方程组的解为{x =2y =−23.【解析】本题主要考查二元一次方程组的解法,可利用加减消元法求解,将①×6得③,再利用②+③解得x 值,再将x 值代入②求解y 值,即可得解.2.【答案】解:(1){4a +b =15 ①3b −4a =13 ②, ①+②得,4b =28,解得:b =7,把b =7代入①得:4a +7=15,解得:a =2, 则方程组的解为{a =2b =7; (2)将原方程组变形得{5x −11y =−12①x −5y =−8②, ②×5−①得:−14y =−28,解得:y =2,把y =2代入②得:x =2, 则方程组的解为{x =2y =2.【解析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.3.【答案】 解:(1){3x +5y =11①2x −y =3②, ①+②×5,得:13x =26,解得:x =2,将x =2代入②,得:4−y =3,解得:y =1,所以方程组的解为{x =2y =1; (2)将方程组整理成一般式为{3x −2y =8①3x +2y =6②, ①+②,得:6x =14,解得:x =73,将x =73代入①,得:7−2y =8,解得:y =−12,所以方程组的解为{x =73y =−12.【解析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.4.【答案】解:(1)原方程可化为{4x −3y =11①2x +y =13②, ②×2−①得:5y =15,解得:y =3,把y =3代入②得:x =5,所以方程组的解为{x =5y =3; (2)整理原方程组得{3x +4y =36①3x −2y =9②, ①−②得:6y =27,解得:y =92,把y =92代入②得:x =6,所以方程组的解为{x =6y =92.【解析】本题主要考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.5.【答案】解:(1)去分母得:2−x +3(x −3)=−2,解得:x =2.5,经检验x =2.5为原分式方程的解;(2){2x −y =5①7x −3y =20②, ②−①×3得:x =5,把x =5代入①得:y =5,则方程组的解为{x =5y =5.【解析】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)方程组利用加减消元法求出方程组的解即可.6.【答案】解:(1)去分母,得12−4x +10=9−3x ,移项、合并同类项,得−x =−13;系数化为1,得x =13;(2)去分母得:3.4−4x =0.6−0.5−2x ,移项合并得:2x =3.3,解得:x =1.65.【解析】本考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x 系数化为1,求出解;方程整理后,去分母,去括号,移项合并,把x 系数化为1,即可求出解.7.【答案】12[x −12(x −1)]=23(x −1)解:12x −14(x −1)]=23(x −1)6x −3(x −1)]=8(x −1)6x −3x +3=8x −86x −3x −8x =−8−3−5x =−11x =115【解析】此题考查了解一元一次方程,去括号,去分母,再去括号,移项合并,把未知数系数化为1,求出解.8.【答案】解:去分母,得2x −1−3(3x −2)=12,去括号,得2x −1−9x +6=12,移项,得2x −9x =12+1−6,合并同类项,得−7x =7,系数化成1,得x =−1.【解析】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.先去分母,再去括号,最后移项,合并同类项,化系数为1,从而得到方程的解.9.【答案】解:(1)原方程去括号得5x +40=12x −42+5,移项可得:12x −5x =40+42−5,合并同类项可得:7x =77,解得:x =11.(2)原方程去分母得5x −10−2(x +1)=3,去括号得5x −10−2x −2=3,移项合并可得:3x =15,解得:x=5.【解析】本题考查的是解一元一次方程有关知识.(1)首先对该方程去括号变形,然后再进行合并,最后再解答即可;(2)首先对该方程去分母变形,然后再解答即可.10.【答案】解:(1)原式=x2−y2−(2x2+5xy−3y2)=−x2−5xy+2y2;(2)去括号,得9x2−1−(9x2+6x+1)=−8,9x2−1−9x2−6x−1=−8,合并,得−6x−2=−8,解得x=1.【解析】(1)先根据平方差公式和多项式乘多项式法则计算,再合并同类项即可求解;(1)先根据平方差公式和完全平方公式计算,再合并同类项得到−6x−2=−8,再解一元一次方程即可求解.本题考查了平方差公式,多项式乘多项式,完全平方公式,解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.11.【答案】解:(1)(x−1)2=4,两边直接开平方得:x−1=±2,∴x−1=2或x−1=−2,解得:x1=3,x2=−1;(2)xx+1=2x3x+3+1方程两边都乘3(x+1),得:3x=2x+3(x+1),解得:x=−32,经检验x=−32是方程的解,∴原方程的解为x=−32.【解析】本题主要考查了一元二次方程的解法和分式方程的解法,解分式方程的关键是去分母,将分式方程转化为整式方程,注意解分式方程要检验.(1)先两边直接开平方,然后转化为两个一元一次方程,解之即可;(2)先在方程两边同时乘以3(x+1),去掉分母,然后解整式方程,最后检验即可.12.【答案】解:(1)x2=3xx2−3x=0x(x−3)=0x 1=0 ,x 2=3(2)3x 2−8x −2=0∵△=64−4×3×(−2)=88∴x =8±√886=4±√223 x 1=4+√223 ,x =4−√223【解析】本题考查一元二次方程的解法,熟练应用各种解法是解题的关键.(1)先把方程化为一元二次方程的一般形式,用因式分解法解方程即可;(2)用公式法解方程,先求出△的值,然后运用一元二次方程的求根公式求出方程的根即可.13.【答案】解:∵x 2−2(√2x −2)=2,∴x 2−2√2x +4=2,∴x 2−2√2x +2=0,∴(x −√2)2=0,解得:x 1=x 2=√2.【解析】本题主要考查的是直接开平方法解一元二次方程的有关知识,先将给出的方程进行变形为(x −√2)2=0,然后直接开平方求解即可.14.【答案】解:(1)原式化简得x 2−4x =0,因式分解得x(x −4)=0,即x =0或x −4=0,解得x 1=0,x 2=4;(2)2x 2−3x −1=0,∵a =2,b =−3,c =−1,则b 2−4ac =9+8=17>0,则x = 3±√174 , 则x 1= 3+√174 ,x 2= 3−√174 .【解析】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.(1)先化简,提取公因式x 可得x(x −4)=0,然后解两个一元一次方程即可;(2)直接运用公式法来解方程.15.【答案】解:(1)x 2=121,x =±11,x 1=11,x 2=−11;(2)(x −1)2=169,x −1=±13,x 1=14, x 2=−12.【解析】略16.【答案】解:(1)x 2−2x −6=0,x 2−2x =6,x 2−2x +1=7,(x −1)2=7,x −1=±√7,∴x 1=1+√7,x 2=1−√7;(2)(2x −3)2=3(2x −3).(2x −3)2−3(2x −3)=0,(2x −3)(2x −3−3)=0,∴2x −3=0或2x −6=0,∴x 1=32,x 2=3.【解析】本题主要考查了一元二次方程的解法,解一元二次方程常用的方法有:直接开平方法,因式分解法,配方法,公式法,解答时应根据方程的特征选择恰当的方法.(1)根据方程的特征可用直接开平方法解答,解答时先将常数项移项到方程的右边将方程变为x 2−2x =6,然后方程两边同时加上1分解可得(x −1)2=7,再用直接开平方法解答即可;(2)先移项,然后分解因式可得(2x −3)(2x −6)=0,可得2x −3=0或2x −6=0,然后解之即可.17.【答案】解:(1)原方程可变形为(x −2)(3x −6−x )=0,∴x −2=0或2x −6=0,解得:x 1=2,x 2=3(2)∵3(x 2−2x +1−1)+1=0,∴3(x −1)2−3+1=0,∴3(x −1)2=2,∴x −1=±√63, ∴x 1=1+√63,x 2=1−√63【解析】本题考查的是解一元二次方程有关知识.(1)首先对该方程进行因式分解,然后再进行解答即可;(2)首先对该方程进行配方,然后再解答.18.【答案】解:(1)∵a =1,b =−12,c =−4,∴Δ=144+16=160,∴x =12±4√102, x 1=6+2√10,x 2=6−2√10;(2)x(3−2x)+2(3−2x)= 0,(x +2)(3−2x)= 0,x 1=−2,x 2=32.【解析】本题考查利用公式法和因式分解法求一元二次方程的解.(1)按公式法,先求出判别式的值,再代入公式求解;(2)将方程右边移项到左边,提取公因式后,利用因式分解法求解.19.【答案】解:(1)原式=2+1−2+1=2(2)原方程化为x 2−3x =14x 2−3x +(32)2=104 (x −32)2=±√102∴原方程的根x 1=3+√102,x 2=3−√102.【解析】本题主要考查了实数的运算和解一元二次方程,关键是熟练掌握特殊角的三角函数值和配方法解方程的方法.(1)利用零指数幂公式、绝对值和算术平方根、特殊角的三角函数值计算,最后计算加减可得结果;(2)利用配方法进行解方程即可.20.【答案】解:x x−1−1=3(x−1)(x+1),x(x +1)−(x −1)(x +1)=3,解得,x =2,经检验:当x =2时,(x −1)(x +1)≠0,∴x =2是原分式方程的解.【解析】本题考查了解分式方程,解分式方程的基本思想是转化,把分式方程转化为整式方程求解,解分式方程一定注意要验根;先把分式方程去分母,注意没有分母的项也要乘以公分母(x −1)(x +1),求出整式方程的解得到x 的值,经检验即可得到分式方程的解.21.【答案】解:等号两边同乘(x +2)(x −2)得:2=x 2−4−x 2−2x ,2x =−6,解得:x =−3,检验,当x =−3时,(x +2)(x −2)≠0,所以x =−3是原方程的解.【解析】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.22.【答案】解:(1)方程两边同时乘以x 2−1得:x (x +1)−2x +1=x 2−1, 解得:x =2,经检验,x =2是原方程的解;(2)方程两边同时乘以x −1得:2−x −1=x −1,解得:x =1,经检验,x =1是增根,∴原方程无解.【解析】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,注意解分式方程一定要验根.(1)方程两边同时乘以x 2−1去分母,转化为整式方程x (x +1)−2x +1=x 2−1,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)方程两边同时乘以x −1去分母,转化为整式方程2−x −1=x −1,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.23.【答案】解:(1)23+x3x−1=19x−3,两边同乘以3(3x−1)得,2(3x−1)+3x=1,去括号得,6x−2+3x=1,移项合并得,9x=3,系数化为1得,x=13,检验:当x=13时,3(3x−1)=0,∴x=13时原方程的增根,原方程无解;(2)xx2−4+2x+2=1x−2方程两边同乘以(x+2)(x−2)得,x+2(x−2)=x+2,去括号得,x+2x−4=x+2,移项合并得,2x=6,系数化为1得,x=3,当x=3时,(x+2)(x−2)≠0,所以原方程的解为x=3.【解析】本题主要考查了解分式方程,熟练掌握解分式方程的方法是解题的关键,两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.(1)方程两边同乘以3(3x−1)转化为整式方程2(3x−1)+3x=1,解出x并检验即可;(2)方程两边同乘以(x+2)(x−2)转化为整式方程x+2(x−2)=x+2,解出x并检验即可.24.【答案】解:(1)去分母,得x−5=2x−5,移项,得x−2x=−5+5,解得x=0,检验:把x=0代入2x−5≠0,所以x=0是原方程的解;(2)去分母,得8+x2−1=(x+3)(x+1),去括号,得8+x2−1=x2+4x+3,解得x=1,把x=1代入(x+1)(x−1)=0,所以x=1是原方程的增根,所以原方程无解.【解析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到结论.25.【答案】解:(1)原方程可变形为1+3(x−2)=x−1,整理可得:2x=4,解得:x=2,经检验:x=2是原方程的增根,所以原方程无解;(2)原方程可变形为(x+1)2−4=x2−1,整理可得:2x=2,解得:x=1,经检验:x=1是原方程的增根,所以原方程无解;【解析】本题考查的是解分式方程有关知识.(1)首先对该方程变形,然后再进行解答即可;(2)首先对该方程变形,然后再进行解答即可.26.【答案】解:去分母得1+x−3=4−x解得x=3.经检验x=3是原方程的增根.∴原方程无解【解析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验是原方程的增根,所以原方程无解.27.【答案】解:(1)方程两边同时乘以(x−1)得3−x+1=−1,解得x=5,经检验x=5是分式方程的解;(2)方程两边同时乘以(x2−1)得x(x−1)−2=x2−1解得x=−1,经检验x=−1是方程的增根,∴原分式方程无解.【解析】本题考查解分式方程,关键是熟练分式方程的解法步骤.(1)先将分式方程转化为整式方程,解得x的值进行检验即可得出方程的解;(2)先将分式方程转化为整式方程,解得x的值进行检验即可得出方程的解.28.【答案】解:方程两边同时乘以最简公分母(x−4),得5−x=x−4+3,整理,得−2x=−6,解得x=3,检验:当x=3时,x−4≠0,所以原分式方程的根是x=3.【解析】本题考查的知识点是解分式方程,在解分式方程去分母时,两边同时乘以最简公分母,每一项都要乘,不能漏乘某一项,本题易出现如下错解:方程两边同时乘以最简公分母(x−4),得5−x=1+3,解得x=1,检验:当x=1时,x−4≠0,所以原分式方程的根是x=1,错误的原因是去分母时,常数项漏乘最简公分母,故一定要注意不能漏乘.29.【答案】解:16x2−4−x+2x−2=−1,16−(x+2)2=4−x2,16−x2−4x−4−4+x2=0,16−4x−8=0,x=2,经检验,x=2为增根,此方程无解.【解析】本题综合考查了解分式方程的解法.注意,分式方程需要验根.先去分母,然后移项、合并同类项,最后化未知数系数为1.30.【答案】解:(1)原式=1−4+√3×√33=1−4+1=−2;(2)x+1x−1+41−x2=1整理得:x+1x−1−4x2−1=1,去分母得:(x+1)2−4=x2−1,去括号得:x2+2x+1−4=x2−1,移项得:2x=−1−1+4,合并同类项得:2x=2,系数化为1得:x=1,经检验:x=1时,x−1=0,∴此方程无解.【解析】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.31.【答案】解:去分母,得2(x+1)2−(x−1)2=x2−1,化简,得6x=−2,解得x=−13.经检验,x=−13是原方程的根.所以原方程的根为x=−13.【解析】本题考查了解分式方程,根据解分式方程的步骤,去分母,去括号,化简x系数为1,即可求得答案.(注意,一定要验根)32.【答案】解:(1)去分母得:1=x−4+x−3,解得:x=4,检验:当x=4时,x−4=0,所以x=4是原方程的增根,原方程无解;(2)原方程整理得:90x −60x=40,去分母得:40x=30,解得:x=34,检验:当x=34时,0.99x≠0,所以x=34是原方程的根.【解析】本题主要考查的是解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.(1)方程两边都乘以x−4,分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)先化简方程,然后方程两边都乘以x,分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.33.【答案】解:(1)方程两边乘(x+2)(3x−1),得3(3x−1)=4(x+2)解得x=115检验:当x=115时,(x+2)(3x−1)≠0是原分式方程的解,∴原分式方程的解为x=115;(2)方程两边乘(x+1)(x−1),得x(x−1)−2=(x+1)(x−1)解得x=−1检验:当x=−1时,(x+1)(x−1)=0∴x=−1不是原分式方程的解,∴原分式方程无解【解析】本题考查了分式方程的解法.解题关键是把分式方程转化为整式方程,掌握解分式方程的一般步骤,特别最后需要验根.(1)先找出最简公分母,去分母,把分式方程化为整式方程,解出整式方程后,再验根即可.(2)先把各分母分解因式,找出最简公分母,去分母,把分式方程化为整式方程,解出整式方程后,再验根即可.注意在去分母时不能漏乘不含分母的项“1”.34.【答案】解:原方程可化为1x +3x−3=−2x(x−3)方程两边同乘x(x−3),得x−3+3x=−2,4x=1,x=14,检验:当x=14时,x(x−3)≠0,∴x=14是原分式方程的解.【解析】本题考查了解分式方程,掌握解分式方程的步骤是解题的关键,属于基础题.方程的两边同时乘以x(x−3)化为x−3+3x=−2,解之即可,注意分式方程要检验.35.【答案】(1)解:原式=3a(a2−9)=3a(a+3)(a−3);(2)解:方程两边同乘x(x−2),得2(x−2)=3x2x−4=3x2x−3x=4−x=4x=−4检验:当x=−4时,x(x−2)≠0,∴原方程的解为x=−4.【解析】此题考查了解分式方程,以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.(1)原式提取3a,再利用平方差公式分解即可;(2)分式方程两边同乘x(x−2),转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.36.【答案】解:(1)方程两边乘x−2,得3+2x−4=−x,−x−2x=−4+3,−3x=−1x=13,检验:x=13时,x−2≠0.∴原方程的根是x=1;3(2)方程两边乘(x+1)(x−1),得2(x+1)=4,2x+2=4,2x=2,解得x=1.检验:当x=1时,(x+1)(x−1)=0,x=1是增根.∴原方程无解.【解析】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;解分式方程一定注意要验根.(1)观察可得最简公分母是x−2,方程两边乘最简公分母,可以把分式方程转化为整式方程,求解即可;(2)观察可得最简公分母是(x+1)(x−1),方程两边乘最简公分母,可以把分式方程转化为整式方程,求解.37.【答案】解:(1)原式=a2−4ab+4b2+a2−4b2=2a2−4ab; (2)两边同乘以x−2得,3=3(x−2)−x,3=3x−6−x,2x=9,x=4.5,检验:当x=4.5时,x−2≠0,∴x=4.5是原方程的解,∴原分式方程的解为x=4.5.【解析】(1)此题考查了整式的混合运算,完全平方公式,平方差公式,掌握整式的混合运算法则是关键,先去括号再合并,即可得到答案.(2)此题考查了解分式方程,掌握解分式方程的步骤是关键,分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验后即可得到分式方程的解.38.【答案】解:x−1−2(2−x)=−3,x−1−4+2x=−3,3x=2,x=2,3时,2−x≠0,检验:当x=23∴x=2是原分式方程的解.3【解析】此题考查了分式方程的求解方法,此题难度不大,注意转化思想的应用,注意解分式方程一定要验根.本题的最简公分母是2−x,方程两边都乘以最简公分母转化为整式方程求解,最后要代入最简公分母验根.39.【答案】解:(1)方程两边都乘(2−x)(2+x),得x2=2−x−4+x2,解得:x=−2,检验:当x=−2时,(2−x)(2+x)=0,∴x=−2是增根,原方程无解;(2)原式=a−33a(a−2)÷(a+3)(a−3)a−2=a−33a(a−2)⋅a−2(a+3)(a−3)=13a(a+3),由a2+3a−1=0,得到a2+3a=a(a+3)=1,则原式=13.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.此题考查了分式的化简求值,以及解分式方程,熟练掌握运算法则是解本题的关键.40.【答案】解:去分母得:6=x+2x+2,移项合并得:3x=4,解得:x=43,经检验x=43是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.41.【答案】解:(1)原式=(a−b)(x−y)+(a−b)(x+y)=(a−b)(x−y+x+y)=2x(a−b);(2)原式=5m[(2x−y)2−n2]=5m(2x−y+n)(2x−y−n);(3)方程两边都乘以(x+1)(x−1),得:2(x−1)+2x=x+1,解得:x=1,,检验:当x=1时,(x+1)(x−1)=0,则x=1是原分式方程的增根,所以分式方程无解.【解析】本题考查因式分解及其解分式方程,掌握运算法则是解题关键.(1)直接提取公因式(a−b)进行分解即可;(2)首先提取公因式5m,然后运用平方差公式进行分解即可;(3)首先方程两边都乘以(x+1)(x−1),得到整式方程2(x−1)+2x=x+1,解这个方程并检验即可.42.【答案】解:原方程可化为(x+1x )2−2−2(x+1x)−1=0即:(x+1x )2−2(x+1x)−3=0设x+1x=y,则y2−2y−3=0,即(y−3)(y+1)=0.解得y =3或y =−1.当y =3时,x +1x =3,即x 2−3x +1=0解得∴x 1=3+√52,x 2=3−√52; 当y =−1时,x +1x =−1无实数根.经检验,x 1=3+√52,x 2=3−√52都是原方程的根. ∴原方程的根为x 1=3+√52,x 2=3−√52.【解析】本题考查了换元法解分式方程,换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.整理可知,方程的两个分式具备平方关系,设x +1x =y ,则原方程化为y 2−2y −3=0.用换元法解一元二次方程先求y ,再求x.注意检验. 43.【答案】解:x x−2+6x+2=1x (x +2)+6(x −2)=x 2−4x 2+2x +6x −12=x 2−48x =8x =1,经检验,x =1是分式方程的解.【解析】本题考查了解分式方程,先将分式方程化为整式方程,求得整式方程的解,然后进行检验即可.44.【答案】解:(1)3x+2=2x−3,3(x −3)=2(x +2)3x −9=2x +43x −2x =4+9x =13,检验:当x =13时,(x +2)(x −3)≠0,所以x =13是原方程的解;(2)2x 2−4+x x−2=12+x (x +2)=x 2−4 2+x 2+2x =x 2−42x =−6x =−3 检验:当x =−3时,(x +2)(x −2)≠0,所以x =−3是原方程的解.【解析】本题考查了解分式方程.注意验根.先去分母、去括号、合并同类项、称项、系数为1即可求出.45.【答案】解:解不等式2x −1≤1得x ≤1,解不等式3x −3<4x 得x > −3,则不等式组的解集是−3<x ≤1,则符合条件的整数解有−2、−1、0、1【解析】本题主要考查一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法是解决问题的关键.先求出每一个不等式的解集。
2017年抚顺中考数学练习试题及答案

2017年抚顺中考数学练习试题及答案学生想在中考取得好成绩就要多做中考数学练习真题,并加以复习,这样能更快提升自己的成绩。
以下是小编精心整理的2017年抚顺中考数学练习真题及答案,希望能帮到大家!2017年抚顺中考数学练习真题一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣4的倒数是( )A.﹣4B.4C.﹣D.2.若(x+2)(x﹣1)=x2+mx+n,则m+n=( )A.1B.﹣2C.﹣1D.23.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为( )A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米4.是一个由4个相同的正方体组成的立体图形,它的主视图是( )A. B. C. D.5.分式方程﹣ =0的根是( )A.﹣1B.1C.3D.06.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是( )A.5x+4(x+2)=44B.5x+4(x﹣2)=44C.9(x+2)=44D.9(x+2)﹣4×2=447.下列数据3,2,3,4,5,2,2的中位数是( )A.5B.4C.3D.28.,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于( )A.26°B.64°C.52°D.128°9.,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )A. B. C. D.10.,已知点A(﹣8,0),B(2,0),点C在直线y=﹣上,则使△ABC是直角三角形的点C的个数为( )A.1B.2C.3D.4二、填空题(本大题共4小题,每小题5分,共20分)11.不等式组的解集是.12.分解因式:x3﹣2x2+x= .13.,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=.14.,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是.三、解答题(本大题共2小题,每小题8分,满分16分)15.计算:|﹣3|+ tan30°﹣﹣0.16.先化简,再求值:( ﹣x﹣1)÷ ,选一个你喜欢的数代入求值.四、解答题(本小题共2小题,每小题8分,共16分)17.,在平面直角坐标系中,直角△ABC的三个顶点分别是:A(﹣3,1),B(0,3),C(0,1)(1)将△ABC以点O为旋转中心顺时针旋转90°,画出旋转后对应的△A1B1C1;(2)分别连结AB1,BA1后,求四边形ABA1B1的面积.18.观察下列关于自然数的等式:(1)32﹣4×12=5 (1)(2)52﹣4×22=9 (2)(3)72﹣4×32=13 (3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2= ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.五、解答题(本大题共2小题,每小题10分,共20分)19.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+ )海里的C处,为了防止某国海巡警干扰,就请求我A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.20.已知,,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y= (n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式;kx+b≤ 的解集.六、解答题(本题满分12分)21.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:组号分组频数一6≤m<7 2二7≤m<8 7三8≤m<9 a四9≤m≤10 2(1)求a的值;(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).七、解答题(本题满分12分)22.,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC 边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF= ,求⊙O的半径r及sinB.八、解答题(本题满分14分)23.,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C 三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)b= ,c= ,点B的坐标为;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.2017年抚顺中考数学练习真题答案一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣4的倒数是( )A.﹣4B.4C.﹣D.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣4的倒数是﹣,故选:C.2.若(x+2)(x﹣1)=x2+mx+n,则m+n=( )A.1B.﹣2C.﹣1D.2【考点】多项式乘多项式.【分析】依据多项式乘以多项式的法则,进行计算,然后对照各项的系数即可求出m,n的值.【解答】解:∵原式=x2+x﹣2=x2+mx+n,∴m=1,n=﹣2.∴m+n=1﹣2=﹣1.故选:C.3.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为( )A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5500万=5.5×107.故选:B.4.是一个由4个相同的正方体组成的立体图形,它的主视图是( )A. B. C. D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,第三层左边有一个正方形.故选A.5.分式方程﹣ =0的根是( )A.﹣1B.1C.3D.0【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x﹣x+3=0,解得:x=﹣1,经检验x=﹣1是分式方程的解,故选A6.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是( )A.5x+4(x+2)=44B.5x+4(x﹣2)=44C.9(x+2)=44D.9(x+2)﹣4×2=44【考点】由实际问题抽象出一元一次方程.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,5x+(9﹣5)(x+2)=5x+4(x+2)=44,故选A.7.下列数据3,2,3,4,5,2,2的中位数是( )A.5B.4C.3D.2【考点】中位数.【分析】求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:题目中数据共有7个,把数据按从小到大的顺序排列为2,2,2,3,3,4,5,故中位数是按从小到大排列后第4个数是3,故这组数据的中位数是3.故选C.8.,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于( )A.26°B.64°C.52°D.128°【考点】平行线的性质.【分析】根据平行线及角平分线的性质解答.【解答】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180°﹣52°=128°;∵EG平分∠BEF,∴∠BEG=64°;∴∠EGF=∠BEG=64°(内错角相等).故选:B.9.,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )A. B. C. D.【考点】动点问题的函数图象.【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH= BC=2,分类讨论:当0≤x≤2时,1,易得PD=BD=x,根据三角形面积公式得到y= x2;当2【解答】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH= BC=2,当0≤x≤2时,1,∵∠B=45°,∴PD=BD=x,∴y= •x•x= x2;当2∵∠C=45°,∴PD=CD=4﹣x,∴y= •(4﹣x)•x=﹣ x2+2x,故选B10.,已知点A(﹣8,0),B(2,0),点C在直线y=﹣上,则使△ABC是直角三角形的点C的个数为( )A.1B.2C.3D.4【考点】一次函数图象上点的坐标特征;勾股定理的逆定理.【分析】根据∠A为直角,∠B为直角与∠C为直角三种情况进行分析.【解答】解:,①当∠A为直角时,过点A作垂线与直线的交点W(﹣8,10),②当∠B为直角时,过点B作垂线与直线的交点S(2,2.5),③若∠C为直角则点C在以线段AB为直径、AB中点E(﹣3,0)为圆心的圆与直线y=﹣的交点上.过点E作x轴的垂线与直线的交点为F(﹣3, ),则EF=∵直线y=﹣与x轴的交点M为( ,0),∴EM= ,FM= =∵E到直线y=﹣的距离d= =5∴以线段AB为直径、E(﹣3,0)为圆心的圆与直线y=﹣恰好有一个交点.所以直线y=﹣上有一点C满足∠C=90°.综上所述,使△ABC是直角三角形的点C的个数为3,故选:C.二、填空题(本大题共4小题,每小题5分,共20分)11.不等式组的解集是x<1 .【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x< ,解②得x<1,则不等式组的解集是x<1.故答案是:x<1.12.分解因式:x3﹣2x2+x= x(x﹣1)2 .【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用完全平方公式分解因式即可.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.13.,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=75°.【考点】多边形内角与外角.【分析】,作辅助线,首先证得= ⊙O的周长,进而求得∠A3OA10= =150°,运用圆周角定理问题即可解决.【解答】解:设该正十二边形的中心为O,,连接A10O和A3O,由题意知,= ⊙O的周长,∴∠A3OA10= =150°,∴∠A3A7A10=75°,故答案为:75°.14.,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是①②③.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学计算题专项训练
一、集训一(代数计算)
(1)计算:20 1 80-( - 1) 2018WS - |- 3 血(2)计算:(丄)「2-( n-衙)0+|眉-2|+4si n60 . 2
⑶计算:V3X(^6) +|-2呵+ (丄)-3⑷计算:(73 — 2018)°+—tan45]-』)-1+后
2 2
⑹计算:|1-矶|+ (⑴-1.414) °+©sin45 - ( tan30 )
⑺计算:(—1)2018- 9 +(cos60 °’ +( .2018-一2017 )0+83^—0.125)3
-1 八0 —
(8) (1)计算:-V21-2cos45° (㊁)+ (tan80 - ^jj) +VE
(9) 计算:-21+ (帧-n 0- V3 - 2|- 2cos30°
—1 1
(11)计算:Y12+60- —| +-2-COS30
<3丿(12) £18 —— 4 — 2 cos45°— (3 -兀)°
(10)计算: (二-3.14)°。
丄+ .2017 -2si n4 5+(T)
(5)计算: 0-一;
二、先化简,再求值
1
1、 先化简,再求值: 4x• 2x -1 1 -2x ,其中x 二
2、 先化简,再求值:(x —2y)2 —(x — y)(x y)-2y 2 ,其中 x=1,y=-1
3•先化简,再求值:2a(a 2b) -(a 2b)2,其中a =-1, b 「3.
2
4. 已知 2a+3a -6=0.求代数式 3a (2a+1)-( 2a+1) (2a- 1)的值.
5.
先化简,再求值: 畤 (1 •丄),其中x = ..2_1.
x -1 X —1
7. 化简(」 —)-竺,然后选一个合适的数代入求值。
X +1 x 2 -1
1 -x
X 2+2S - 2
g-戈
8.
化简:(厂
-2)十 门 -2x ,再代入一个合适的 x
求值.
6.先化简,后求值:
疋*4乂 - 4
x+i
-'.,再任选一个你喜欢的数
x+l
x 代入求值.
V — 2x + l [
x =2sin60
°先化简RTF ,再求它的值.
(1) 化简A;
"2x-1 <x
(2) 若x 满足不等式组」x 4,且x 为整数时,求A 的值
|1 — <
3 3
11、化简求值
2
(1一^^)
a
亘」,其中 a =、,2-1. a +1 a
(4) —― -■ (a 2 -
), a - -1 2a - 4
a - 2
a - 1 2a -1
(5) — 亠(a -
,并任选一个你喜欢的数 a 代入求值.
a
a
9•先化简,再求值:
(x- 2) (x+3)
x= - 2.
(1)
1 x — 2X + 1 x -2. Y x 2— 4
,其中 x =— 5. ⑵(a - 1+
.) a+1
+ (a 2+1),其中
10.已知
11.已知 A =(x -3厂
(x 2)(x 2 -6x 9)
-4
-1
(3)
⑹汨然后选取一个使原式有意义的x
的值代入求值
2
x -1 、. x -16
二 )厂 x -4x 4 x 2
4x
15、化简并求值: 丄-丄 口-a 2 b 2 ,其中 a=3-2、.2, ^3.2-3.
2a a —b . 2a
(7)
12、化简求值:
2
m - 2m 1 , ‘ m -1 2
(m _1_-
m -1
m 1
),其中 m= 3
13、先化简,再求代数式
x 2-2x 1 1
x 2-1 x-1
的值,其中 x=ta n60°
-ta n45° 14、化简:
x-3
2x+4
丄 X
-严 9x K-x ,其中 乂=_ 6•
x —3 x —2x 2 —x
22、先化简,再求值:
1 1 2
(-2
2
) — ,其中
x=2 (tan45 °-cos30 °
x -2x x -4x 4 x -2x
16、计算:
广a +1
~2
2 -a
丄,2 2_3
a 2
-1 a 3
•其中a = 2
12、先化简,再求值:
21、先化简,再求值:
2
x -空亠 2x x 2
-4 x 2
1
(x 2)
,其中
x —
17、先化简,再求值:
18、先化简:再求值:
2
1 a — 4a + 4 a — 1 宁 a 2— a
其中a = 2 + 2
19、先化简,再求值: a — 1 a 2 + 2a . 1
a + 2 a 2 — 2a + 1 a 2—
1,
其中 a 为整数且—3 v a v 2.
23、 2a 2 a -1
(a ・1)_f •其中
a 2
—2a+1
1 x =- 2
24、 先化简再求值:
a -1
a 2 -4
.
~2
a -2a 1
,其中a 满足a 2 - a =0 .
-1
25、 先化简: a"-a2-4a 4
,并从0, — 1 , 2中选一个合适的数作为
a 的值代入
求值。
26、先化简,再求值: x 2
- 2x 1
27、化简: x 2
-1
,其中x=2
2 2 益 莘■其中 x=2,y=-1 28、先化简,再求值:
X 2 _4
x 2 -4x 4 2
x -x x ,其中 x=-3.
x -1
29
•化简(丄 亘,然后选一个合适的数代入求值。
X +1 x 2 -1 1 -x
三、集训三(求解方程)
"2x + 3y + z = 6
2.解分式方程*x_y+2z = _1
x+2y—z=5
3 2
3.解万程:x = R
x 3
6. 解万程:x?7 - 1-x = 2.
7.解方程:
1 2
----- +-------
x 1 X -1
4
x2-1
8. 解方程:
x 5
1 -
2x -5 5 —2x
1 x — 1
9.解方程:------- - ----- - -3 10.
X—2 2—x 解方程:
3 x 1
------------ —------------ =—
2x—4 x—2 2
11.若方程—无解,求m的值12.
x —2 2 —x 解方程:2x2+3x+1=0
2
1.解方程x - 4X+仁0 .
5.解方程:x2+4x —2=0 4.已知|a—
1|+
0, 求方裡一+bx=1的解.
X
(X +2A1,
4.解不等式组x 1 -
2.
2
并把它的解集在数轴上表示出来.
I - x<0
6.解不等式组* _ 3,
16 3 2
并把它的解集在数轴上表示出来.
2x -1 x
7.解不等式组1
x-3 x -1
I 2
3x 1 :x-3
9.解不等式组 1 2x,,并写出整数解.
四、集训四(解不等式)
(5 +
2x>3
「解不等式组
并写出不等式组的整数解.
2. 解不等式组
[x —2c6(x + 3)
5( x -1)_ 6 Z 4( x +1 )
3.解不等式组:仁::3:x,
5. 解不等式组
8. 解不等式组
2(1-x) < 5,
并把解集在数轴上表示出
来。
五、集训五(综合演练)
1、(1)计算:| 2 2sin30° _(_.,3)2(tan45。
)」;
(2)先化简,再求值:2(a • ..,3)(a 一...3) — a(a 一6) • 6,其中a = . 2 一1.
2 3门1
丨一(x + 4) <2,
2、解方程:0
3、解不等式组2
x -2 x
x -3(x -1) 5
4、(1) (-1)」-3ta n300(1 -2)012 ;(2) 1 J )
2 a a+2 a2+2a
5、(1) | -3 J3 | - 2cos30^ s/12 - 2^+(3- n )°( 2) (—2018)°+ 1_ 典—2sin60
⑶先化简,再求值• (1 一- 4,其中x=3.⑷解分式方程:
x+3 x+3
4)已知x2—2x= 1,求(x—1)(3x + 1) —(x + 1)2的值.
1 a+1 a+1 t~
6•先化简,再求值:•厂一a7二TTR,其中
a“ 2.
7•先化简,再求值:(x_2
一尢厂乂,其中X「2-3 .
4
6x— 2
1 1
2—2,其中x =1 , y - -2 •x _ y x y x 2xy y。