材料的等离子弧焊接

合集下载

等离子弧焊接

等离子弧焊接

等离子弧焊接1. 简介等离子弧焊接是一种常用的焊接方法,利用等离子弧产生高温,将被焊接的材料熔化并连接在一起。

它具有焊接速度快、焊缝质量高、适用范围广等优点,在各个工业领域得到广泛应用。

2. 原理等离子弧焊接是利用电弧放电产生的高温等离子体来加热和熔化被焊接材料的方法。

通过电极和被焊件之间产生的电弧,使其产生的高温等离子体使被焊接材料熔化并连接在一起。

等离子弧焊接的原理包括以下几个方面:•电弧产生在等离子弧焊接过程中,通常使用直流电供电,通过正极、负极两个电极产生电弧放电。

正极电极通常为钨极,负极电极可以是钨、钼等高熔点金属。

•等离子体产生电弧放电产生的高温会使空气中的原子和分子离子化形成等离子体。

等离子体具有高温、高热量、高电导等特性。

•材料熔化和连接等离子体的高温可使被焊接材料迅速熔化。

通过控制电弧形成的热量和等离子体的速度,可使熔融材料与被焊件接触并融合在一起。

3. 设备和材料•等离子弧焊接设备–电源–控制系统–焊枪–气体供应系统•焊接材料–被焊件–焊条(焊丝)4. 焊接过程等离子弧焊接主要包括以下几个步骤:1.准备焊接材料–清洁被焊件表面,确保无杂质和油污。

–准备好所需的焊条或焊丝。

2.设置焊接参数–根据被焊件的材料和厚度,设置合适的电流和电压。

–设置气体流量和喷嘴的形状。

3.开始焊接–确保焊接区域没有杂散光线和易燃物。

–启动电源,使电极与被焊件接触,产生电弧。

4.控制焊接速度和角度–控制焊接速度,保证焊缝的均匀性。

–调整焊接角度,以获得所需的焊缝形状。

5.完成焊接–在焊接完成后,关闭电源。

–对焊缝进行清理和检查。

5. 应用领域等离子弧焊接在各个领域都有广泛应用,包括但不限于以下几个方面:•金属制造等离子弧焊接可用于焊接各种金属材料,如钢铁、铝合金、不锈钢等。

在汽车制造、造船、航空航天等领域具有重要地位。

•管道焊接等离子弧焊接可用于焊接各种管道,如石油管道、天然气管道、水管等。

它具有速度快、焊缝质量高等优点。

(完整版)等离子焊接理论、操作与故障处理

(完整版)等离子焊接理论、操作与故障处理

一、等离子弧焊接方法及工艺特点1.等离子焊接原理等离子态是除固态、液态、气态之外的第四种物质存在形态。

等离子焊接是从钨级氩弧焊的基础上发展起来的一种高能焊接方法。

钨级氩弧焊是自由电弧,而等离子电弧是压缩电弧。

等离子弧是离子气被电离产生高温离子化气体,并经过水冷喷嘴,受到压缩,从而导致电弧的截面积变小,电流密度增大,电弧温度增高。

等离子电弧能量密度可达105-106W/cm2,比自由电弧(约105W/cm2以下)高,其温度可达18000-24000K,也高于自由电弧(5000-8000K)很多。

因此,等离子电弧挺度比自由电弧好,指向性好,喷射有力,熔透能力强,可比自由电弧一次焊透更厚的金属。

因此,等离子电弧焊接与电子束(能量密度105W/mm2)、激光束(能量密度105W/mm2)焊接一同被称为高能密度焊接。

等离子焊接示意图如下图:等离子焊接原理示意图2.等离子电弧的种类等离子电弧主要分为三种类型:◆非转移型等离子电弧主要用于非金属材料的焊接。

◆转移型等离子电弧主要用于金属材料的焊接。

◆联合型等离子电弧主要用于微束等离子的焊接。

3.等离子基本焊接方法按焊缝成型原理,等离子焊接有两种基本的焊接方法:熔透型和小孔型等离子焊接。

◆熔透型等离子焊接在焊接过程中离子气较小,弧柱的压缩程度较弱,只熔透工件,但不产生小孔效应的等离子焊接方法。

其焊缝成型原理与氩弧焊类似,主要用于薄板焊接及厚板多层焊。

◆小孔型等离子焊接利用小孔效应实现等离子弧焊接的方法称为小孔型等离子焊接。

由于等离子具有能量集中﹑电弧力强的特点,在适当的参数条件下,等离子弧可以直接穿透被焊工件,形成一个贯穿工件厚度方向的小孔,小孔周围的液体金属在电弧力﹑液态金属表面张力以及重力下保持平衡,随着等离子弧在焊接方向移动,熔化金属沿着等离子弧周围熔池壁向熔池后方流动,并逐渐凝固形成焊逢,小孔也跟着等离子弧向前移动,如下图所示。

小孔效应示意图小孔效应的优点在于可以单道焊接厚板,一次焊透双面成型。

等离子弧焊接使用要点 (一)

等离子弧焊接使用要点 (一)

等离子弧焊接使用要点(一)一、等离子弧焊(割)炬喷嘴孔径不宜过大等离子弧是一种压缩电弧,其压缩作用来自于喷嘴的机械作用、热收缩和磁收缩等。

通常焊(割)炬的喷嘴孔径应根据电流和离子气流量来确定。

在一定条件下,喷嘴的孔径越大,对等离子弧的压缩作用越小。

如果喷嘴孔径过大,就会丧失压缩作用,等离子弧也就建立不起来。

通常喷嘴的孔道比l/d应大于3,如图所示。

等离子弧喷嘴的孔道比1—钨棒2—喷嘴3—等离子弧及扩散角二、等离子弧焊时不应存在双弧正常的转移型等离子弧应该稳定“燃烧”在钨极和工件之间,当另有电弧“燃烧”于钨极—喷嘴—工件之间时,即形成双弧,如图所示。

此时主弧电流将降低,正常的焊接或切割过程被破坏,严重时将导致喷嘴烧毁或离子弧过程中断。

等离子弧焊喷嘴内的“双弧”三、等离子弧焊接和切割电源不能通用等离子弧焊接和切割电源一般都采用陡降外特性直流电源。

但切割用电源输出的空载电压一般大于150V,压缩空气等离子弧切割电源空载电压可高达600V。

等离子弧焊接电源输出的空载电压一般在80V左右,两者不能通用(下图)。

等离子弧焊接与切割的电源外特性a)焊接电源外特性b)切割电源外特性四、不导电的工件不能建立转移电弧产生于钨极和工件之间的等离子弧称为转移电弧,转移电弧是由非转移电弧(产生于钨极和喷嘴间的电弧)过渡转移产生的。

当工件不导电(或不通电)时,转移电弧不能产生。

因此非金属加工只能利用非转移电弧形成的等离子弧,如图所示。

转移电弧与非转移电弧1—转移电弧电源2—非转移电弧电源3—金属4—非金属5—非转移电弧五、微束等离子弧焊不宜采用单电源供电大电流等离子弧都采用转移电弧,在转移电弧产生后非转移电弧随即切断,因此转移电弧和非转移电弧可合用一个电源。

微束等离子弧焊是采用联合型弧,由于焊接过程中需要同时保持非转移电弧和转移电弧,故要采用两个独立电源,如图所示。

等离子弧焊的供电形式a)大电流等离子弧焊b)微束等离子弧焊6—转移电弧1—焊接电源2—维弧电源R—限流电阻S—转换开关六、大电流工作不宜采用小锥角电极为了便于引弧和增加电弧的稳定性,电极端部可磨成20°~60°的夹角。

等离子焊接特点

等离子焊接特点

等离子焊接特点等离子焊接是一种常用的金属焊接方法,具有许多特点和优势。

在本文中,我们将详细介绍等离子焊接的特点,并从不同角度展开描述。

1. 高能量密度:等离子焊接是利用等离子弧产生的高温和高能量进行焊接的。

等离子弧的温度可达到几万摄氏度,能量密度非常高,因此可以迅速加热并熔化焊接材料,实现高效的焊接。

2. 操作灵活性:等离子焊接适用于各种金属材料的焊接,包括钢、铝、铜、镍等,具有广泛的适用性。

同时,等离子焊接可以实现手工焊接、自动化焊接以及机器人焊接等多种操作方式,灵活性高。

3. 焊接速度快:由于等离子焊接的高能量密度和高温特点,使得焊接过程快速进行。

相比传统的焊接方法,等离子焊接可以大大提高焊接速度,提高生产效率。

4. 焊接质量高:等离子焊接可以实现高质量的焊缝,焊接强度高、密封性好。

等离子焊接的高能量输入使得焊接区域的熔池深度较大,焊缝形成良好,焊接强度高,可以满足高强度焊接的要求。

5. 热影响区小:等离子焊接的热影响区相对较小,热输入较少,对焊接材料和周围热敏感区域的影响减小。

这对于一些热敏感的材料和工件来说尤为重要,可以降低变形和变质的风险。

6. 焊接变形小:等离子焊接过程中,由于焊接时间较短,热输入相对较少,因此焊接变形较小。

这对于一些对焊接变形要求较高的工件来说是非常有利的。

7. 焊接深度大:等离子焊接的能量密度高,焊接深度大。

这使得等离子焊接适用于一些对焊缝深度要求较高的应用,例如焊接厚板、厚壁管等。

8. 焊接适用性广:等离子焊接可以适用于不同形状的工件进行焊接,包括平板、管道、角钢等。

无论是平面焊接、对接焊接还是角焊接,等离子焊接都可以胜任。

9. 焊接环境要求低:等离子焊接不需要使用保护气体,焊接过程中产生的等离子弧可以自身提供保护。

这降低了焊接过程中对环境的要求,减少了焊接成本。

10. 焊接效果可控性好:等离子焊接可以通过调节焊接电流、电压、速度等参数来控制焊接效果。

这使得等离子焊接具有较好的可控性,可以满足不同焊接需求。

等离子弧焊接的特点

等离子弧焊接的特点

等离子弧焊接的特点
等离子弧焊接是一种常用的金属焊接方法,具有许多特点。

首先,等离子弧焊接可以适用于各种金属材料的焊接,包括钢、不锈钢、铝等。

这意味着无论是焊接薄板材还是厚板材,等离子弧焊接都可以胜任,具有广泛的应用范围。

其次,等离子弧焊接具有高能量密度和热浸入深度的特点。

等离子弧发射出的高温等离子体能够迅速加热工件表面,使金属迅速熔化并形成焊缝。

由于等离子弧的高能量密度,焊接过程中的热浸入深度较大,可以获得较深且较窄的焊缝,焊接强度高。

另外,等离子弧焊接具有稳定的弧焰和良好的电弧调节性能。

等离子弧具有高频和恒流等特点,能够在较宽的电弧电流范围下工作。

这种稳定的弧焰可以保证焊接过程中的电弧稳定,消除电弧飞溅和焊接质量不稳定的问题。

此外,等离子弧焊接还具有较少的气体污染和较小的变形。

等离子弧焊接使用惰性气体作为保护气体,如氩气,不会与金属发生任何反应,因此对金属的污染较少。

同时,等离子弧焊接的焊接速度快,热输入量较少,可以减小焊接时的变形。

另外,等离子弧焊接还具有操作简便和焊接质量可靠的特点。

相对于其他金属焊接方法,等离子弧焊接不需要庞大的设备和复杂的操作过程,操作简单方便。

而且,等离子弧焊接焊接质量可靠,焊接接头强度高,焊缝质量好,能够满足各种工程项目的需求。

综上所述,等离子弧焊接具有适用广泛、高能量密度、热浸入深度大、稳定的弧焰、较少的气体污染、较小的变形、操作简便和焊接质量可靠等特点。

这些特点使得等离子弧焊接成为了许多金属焊接工程的首选方法。

等离子电焊机工作原理

等离子电焊机工作原理

等离子电焊机工作原理
等离子电焊机是一种利用高温等离子体实现金属焊接的设备。

其工作原理主要包括以下几个方面:
1. 电流产生:等离子电焊机通过外接电源提供直流电流或交流电流。

直流电流通常用于焊接不锈钢、铝合金等材料,而交流电流则常用于焊接碳钢等材料。

2. 弧击发:电流进入电焊机后,将通过电子元件进行整流、滤波等处理,然后被送至电焊枪头。

在电焊枪头的电极间会产生电弧,并随着接触面积增大而逐渐形成等离子弧。

3. 等离子状态:在电弧中,高温和高能量的电流将气体或蒸汽分子激发,使其电离形成等离子体。

等离子体的温度可达数千摄氏度,它同时也是焊接时所产生的主要热源。

4. 金属焊接:当等离子弧接触到金属工件时,其高温使金属迅速熔化,并形成熔池。

在电焊机中,焊丝或焊条会源源不断地被供给,并通过电弧的熔池热量将其熔化,然后与工件熔池融合,形成均匀的焊接缝。

5. 气体保护:等离子电焊机还通过在焊接过程中送入保护性气体,如氩气或二氧化碳,来防止熔池被空气中的氧气污染。

这种保护气体可以有效地防止氧化和其他杂质的形成,保证焊缝的质量。

通过上述工作原理,等离子电焊机能够高效地进行焊接工作,并广泛应用于制造业、建筑业以及汽车等领域。

等离子电弧

等离子电弧

等离子电弧简介等离子电弧(Plasma Arc)是一种高温、离子化的气体电弧,常用于加热、切割、焊接和材料表面改性等工业和科研领域。

等离子电弧的产生需要高温和高电压,通过电弧放电,气体被电离形成等离子体。

等离子体是一种高度激活的气体,其中的原子和分子失去了一部分或全部的电子,形成离子和自由电子。

等离子体的特性使其有许多独特的性质,可以应用于许多行业。

等离子电弧的产生等离子电弧的产生可以通过两种常见的方法实现:直流电弧和交流电弧。

直流电弧直流电弧是使用直流电源产生的电弧。

直流电源将正极连接到工件上,负极连接到电极上。

工件和电极之间的间隙充满了气体,当两极之间施加足够的电压时,气体被电离并形成等离子体。

直流电弧常用于焊接和切割金属材料。

由于直流电弧的热量集中在电极上,电极往往会耗损较快,需要定期更换。

交流电弧交流电弧是使用交流电源产生的电弧。

交流电源提供的电压周期性变化,可以使电弧自行维持。

交流电弧使用两种电极:工作电极和反工作电极。

两种电极的位置定期地交换,以保持电弧的稳定。

交流电弧常用于高压的切割和焊接应用。

交流电弧的优点是可以在不同的材料上工作,并且电极的耗损较低。

等离子电弧的应用等离子电弧有广泛的应用领域,以下是其中的几个主要应用:焊接等离子电弧可以用于金属焊接。

电弧产生的高温可以使金属材料熔化,并在冷却后形成强固的焊缝。

等离子焊接常用于高要求的焊接任务,如航空航天和汽车工业。

切割等离子电弧可用于金属的切割。

电弧产生的高温可以将金属材料加热到熔点,然后使用气体流将熔化的金属吹散。

等离子切割可用于切割各种厚度和类型的金属。

表面改性等离子电弧可用于改良材料的表面性质。

通过在材料表面产生等离子体,可以使表面发生化学和物理变化,如增强附着力、改善耐蚀性和提高涂层性能等。

污染净化等离子电弧可以用于处理废气和废水中的污染物。

等离子体的高能量可以将污染物分解为无害的物质,并排出系统。

这种方法被广泛应用于环境保护领域。

等离子弧焊类型、原理、优缺点、适用范围及等离子焊接设备操作规程

等离子弧焊类型、原理、优缺点、适用范围及等离子焊接设备操作规程

等离子弧焊类型、原理、优缺点、适用范围及等离子焊接设备操作规程1、等离子弧产生及类型:⑴、等离子弧产生:①、等离子弧焊是利用高温的等离子弧来焊接用气焊和普通电弧焊所难以焊接的难熔金属的一种熔焊方法。

②、离子弧焊利用气体在电弧中电离后,再经过热收缩效应、机械收缩效应、磁收缩效应而产生的一种超高温热源进行焊接,温度可达20000℃左右。

③、等离子弧的发生装置如图11-1所示。

在钨极(-极)和焊件(+极)之间加上一个较高的电压,经过高频振荡器的激发,使气体电离形成电弧。

此电弧在通过具有特殊孔型的喷嘴时,经过机械压缩、热收缩和磁场的收缩效应,弧柱被压缩到很细的范围内。

这时的电弧能量高度集中,其能量密度可达10°~10°W/cm²,温度也达到极高程度,其弧柱中心温度可达16000~33000℃;弧柱内的气体得到了高度的电离,因此,等离子弧不仅被广泛用于焊接、喷涂、堆焊,而且可用于金属和非金属切割。

⑵、等离子弧类型及电源连接方式:①、非转移型弧。

钨极接电源负极,喷嘴接电源正极,等离子弧体产生于钨极和喷嘴内表面之间(见图11-2a),工件本身不通电、而是被间接加热熔化,其热量的有效利用率不高,故不宜用于较厚材料的焊接和切割。

②、转移型弧。

钨极接电源负极,焊件接电源正极,首先在钨极和喷嘴之间引燃小电弧后,随即接通钨极与焊件之间的电路,再切断喷嘴与钨极之间的电路,同时钨极与喷嘴间的电弧熄灭,电弧转移到钨极与焊件间直接燃烧,这类电弧称为转移型弧(见图11-2b)。

这种等离子弧可以直接加热工件,提高了热量有效利用率,故可用于中等厚度以上工件的焊接与切割。

③、联合型弧。

转移型弧和非转移型弧同时存在的等离子弧称为联合型弧(见图11-2c)。

联合型弧的两个电弧分别由两个电源供电主电源加在钨极和焊件间产生等离子弧,是主要焊接热源。

另一个电源加在钨极和喷嘴间产生小电弧,称为维持电弧。

联合弧主要用于微弧等离子焊接和粉末材料的喷焊。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料的等离子弧焊接
索引:穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm 以下钛合金、板厚2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。

这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。

厚度大于上述范围时可采用V 形坡口多层焊。

关键词: 高温合金, 铝及铝合金, 钛及钛合金, 银与铂, 等离子弧焊接
穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm 以下钛合金、板厚
2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。

这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。

厚度大于上述范围时可采用V形坡口多层焊。

1.高温合金的等离子弧焊接
用等离子弧焊焊接固溶强化和Al、Ti含量较低的时效强化高温合金时,可以填充焊丝也可以不加焊丝,均可以获得良好质量的焊缝。

一般厚板采用小孔型等离子弧焊,薄板采用熔透型等离子弧焊,箔材用微束等离子弧焊。

焊接电源采用陡降外特性的直流正极性,高频引弧,焊枪的加工和装配要求精度较高,并有很高的同心度。

等离子气流和焊接电流均要求能递增和衰减控制。

焊接时,采用氩和氩中加适量氢气作为保护气体和等离子气体,加入氢气可以使电弧功率增加,提高焊接速度。

氢气加入量一般在5%左右,要求不大于15%。

焊接时是否采用填充焊丝根据需要确定。

选用填充焊丝的牌号与钨极惰性气体保护焊的选用原则相同。

高温合金等离子弧焊的工艺参数与焊接奥氏体不锈钢的基本相同,应注意控制焊接热输入。

镍基高温合金小孔法自动等离子弧焊的工艺参数见表1-1。

在焊接过程中应控制焊接速度,速度过快会产生气孔,还应注意电极与压缩喷嘴的同心度。

高温合金等离子弧焊接接头力学性能较高,接头强度系数一般大于90%。

下表列出了高温合金小孔法自动等离子弧焊接的工艺参数。

等离子弧是以钨极作为电极,等离子弧为热源的熔焊方法。

焊接铝合金时,采用直流反接或交流。

铝及铝合金交流等离子弧焊接多采用矩形波交流焊接电源,用氩气作为等离子气和保护气体。

对于纯铝、防锈铝,采用等离子弧焊,焊接性良好;硬铝的等离子弧焊接性尚可。

为了获得高质量的焊缝应注意以下几点。

a.焊前要加强对焊件、焊丝的清理,防止氢溶人产生气孔,还应加强对焊缝和焊丝的保护。

b.交流等离子弧焊的许用等离子气流量较小,流量稍大,等离子弧的吹力过大,铝的液态金属被向上吹起,形成凸凹不平或不连续的凸峰状焊缝。

为了加强钨极的冷却效果,可以适当加大喷嘴孔径或选用多孔型喷嘴。

c.当板厚大于6mm时,要求焊前预热100--200℃。

板厚较大时用氦作等离子气或保护气,可增加熔深或提高效率。

d.需用的垫板和压板最好用导热性不好的材料制造(如不锈钢)。

垫板上加工出深度lmm、宽度20~40mm的凹槽,以使待焊铝板坡口近处不与垫板接触,防止散热过快。

e. 板厚不大于lOmm时,在对接的坡口上海间隔150mm点固焊一点;板厚大于l0mm时,每间隔300mm点固焊一点。

点固焊采用与正常焊接相同的电流。

f. 进行多道焊时,焊完前一道焊道后应用钢丝或铜丝刷清理焊道表面至露出纯净的铝表面为止。

表1-2列出纯铝自动交流等离子弧焊接的工艺参数。

表1-3列出铝合金直流等离子弧焊接的工艺参数。

表1-2
等离子弧焊能量密度高、线能量大、效率高。

厚度2.5~15mm的钛及钛合金板材采用“小孔型”方法可一次焊透,并可有效地防止产生气孔,“熔透型”方法适于各种板厚,但一次焊透的厚度较小,3mm 以上一般需开坡口。

钛的弹性模量仅相当于铁的1/2,因此在应力相同的条件下,钛及钛合金焊接接头将发生比较显著的变形。

等离子弧的能量密度介于钨极氩弧和电子束之间,用等离子弧焊接钛及钛合金时,热影响区较窄,焊接变形也较易控制。

目前微束等离子弧焊已经成功地应用于薄板的焊接。

采用3~10A的焊接电流可以焊接厚度为0.08~0.6mm 的板材。

由于液态钛的密度较小,表面张力较大,利用等离子弧的小孔效应可以单道焊接厚度较大的钛和钛合金,保证不致发生熔池坍塌,焊缝成形良好。

通常单道钨极氩弧焊时工件最大厚度不超过3mm,并且因为钨极距离熔池较近,可能发生钨极熔蚀,使焊缝渗入钨夹杂物。

等离子弧焊接时,不开坡口就可焊透厚度达15mm的接头,不可能出现焊缝渗钨现象。

钛板等离子弧焊接的工艺参数见表1-4。

TC4钛合金等离子弧焊和TIG焊接接头的力
学性能见表1-5。

表1-4
表1-5
焊接航天工程中应用的TC4钛合金高压气瓶的研究结果表明,等离子弧焊接头强度与氩弧焊相当,强度系数均为90%,但塑性指标比氩弧焊接头高,可达到母材的75%。

根据30万吨合成氨成套设备的生产经验,用等离子弧焊接厚度10mm的TAl工业纯钛板材,生产率可比钨极氩弧焊提高5~6倍,对操作的熟练程度要求也较低。

纯钛等离子弧焊的气体保护方式与钨极氩弧焊相似,可采用氩弧焊拖罩,但随着板厚的增加、焊速的提高,拖罩要加长,使处于350℃
以上的金属得到良好保护。

背面垫板上的沟槽尺寸一般宽度和深度各为2.0~3.0mm,同时背面保护气体的流量也要增加。

厚度15mm以上的钛板焊接时,开6~8mm钝边的V形或U形坡口,用“小孔型”等离子弧焊封底,然后用“熔透型”等离子弧填满坡口。

用等离子弧封底可以减少焊道层数,减少填丝量和焊接角变形,提高生产率。

“熔透型”多用于厚度3mm以下薄件的焊接,比钨极氩弧焊容易保证焊接质量。

银与铂都属于贵金属,价格昂贵。

银与铂可制成板材、带材、线材等常用于微电子,仪器仪表、医药等特殊产品或军工产品。

银与铂电子器件的微束等离子弧接的工艺要点如下:
a.焊前将银与铂的接头处清理干净;
b.将两种金属预热到400~500℃,
c. 采用微束脉冲等离子弧,维弧电流为24A;
d.保护气体流量为6L/min,离子气流量为0.5L/min。

银与铂电子器件微束等离子弧焊接的工艺参数见表1-6。

表1-6。

相关文档
最新文档