§一元线性回归模型的参数估计
第一课时 一元线性回归模型及其参数的最小二乘估计

解析 由题意得-x=3+4+4 5+6=4.5, -y=25+30+4 40+45=35. ∵回归直线方程^y=b^x+a^中b^=7,∴35=7×4.5+a^,解得a^=3.5, ∴^y=7x+3.5. ∴当 x=10 时,^y=7×10+3.5=73.5(万元). 答案 73.5
(2)列出下表,并用科学计算器进行有关计算.
i
1
2
3
4
5
xi
2
4
5
6
8
yi
30
40
60
50
70
xiyi
60
160
300
300
560
x2i
4
16
25
36
64
-x=5,-y=50,i=∑5 1x2i =145,i=∑5 1xiyi=1 380
5
∑xiyi-5-x
-
y
于是可得,b^=i=15
∑xi2-5-x 2
【训练2】 某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四 次实验,得到的数据如下:
零件的个数x(个) 加工的时间y(h)
23 2.5 3
45 4 4.5
(1)已知零件个数与加工时间线性相关,求出y关于x的线性回归方程; (2)试预测加工10个零件需要多少时间?
4
解 (1)由表中数据,得∑xiyi=2×2.5+3×3+4×4+5×4.5=52.5, i=1
【迁移2】 (变条件,变设问)本例中近似方程不变,每小时生产有缺点的零件件数是 7,估计机器的转速. 解 因为 y=5710x-67,所以当 y=7 时,7=5710x-67,解得 x≈11,即估计机器的转速约为 11 转/秒.
第1课时 一元线性回归模型及参数的最小二乘估计

C.劳动生产率提高1 000元时,工人工资平均提高130元 D.当月工资为250元时,劳动生产率为2 000元
解析 因为经验回归直线的斜率为80,所以x每增加1,y平均增加80, 即劳动生产率提高1 000元时,工人工资平均提高80元.
1234
x6
8
10
12
y23
5
6
(2)请根据上表提供的数据,用最小二乘法求出 y 关于 x 的经验回归方程y^
=b^ x+a^ ;
解 x =6+8+410+12=9, y =2+3+4 5+6=4,
4
x2i =62+82+102+122=344,
i=1
4
xiyi=6×2+8×3+10×5+14-10×8×2=24,
i=1
则b^ =8204=0.3, a^ = y -b^ x =2-0.3×8=-0.4, 故所求经验回归方程为y^ =0.3x-0.4.
(2)判断变量x与y之间是正相关还是负相关; 解 由于变量y的值随x值的增加而增加(b=0.3>0),故x与y之间是正相关.
随堂演练
一、一元线性回归模型与函数模型
知识梳理
一元线性回归模型:我们称
Y=bx+a+e, Ee=0,De=σ2
为Y关于x的_一__元__线_性__回__归__
模型,其中,Y称为 因变量 或 响应变量 ,x称为 自变量 或 解释变量 ;
a和b为模型的未知参数,a称为 截距参数,b称为 斜率 参数;e是Y与bx+a
i=1
b^ =15384-4-4×4×9×924=2104=0.7,a^ = y -b^ x =4-0.7×9=-2.3,
故经验回归方程为 y^ =0.7x-2.3.
§2.2 一元线性回归模型的参数估计

β 0 = Y β1 X
例2.2.1:在上述家庭可支配收入-消费支出例中,对 :在上述家庭可支配收入-消费支出例中, 于所抽出的一组样本数, 于所抽出的一组样本数,参数估计的计算可通过下面的 进行。 表2.2.1进行。 进行
表 2.2.1 数 计 计 参 估 的 算表
Xi
Yi
xi
1
的样本方差: 2 = σ 2 x 2 / n ( x x )2 ∑ i ∑ i β0 Sβ
0
β1 =
∑x y ∑x
i 2 i
i
5769300 = = 0.777 7425000
β 0 = Y β 0 X = 1567 0.777 × 2150 = 103.172
因此,由该样本估计的回归方程为:
Yi = 103.172 + 0.777 X i
三、最小二乘估计量的性质
(1)线性性,即它是否是另一随机变量的线性 )线性性, 函数; 函数; (2)无偏性,即它的均值或期望值是否等于总 )无偏性, 体的真实值; 体的真实值; (3)有效性,即它是否在所有线性无偏估计量 )有效性, 中具有最小方差。 中具有最小方差。
中,最小二乘估计量 β 0 、 β1 具有最小方差。
(2)证明最小方差性
β 1* 是其他估计方法得到的关于β1 的线性无偏估计量: 假设
β 1* = ∑ ci Yi
其中,ci=ki+di,di为不全为零的常数 则容易证明
var(β 1* ) ≥ var(β 1 )
同理,可证明β0 的最小二乘估计量 β 0 具有最的小方差
-973 1314090 1822500 947508 640000 352836 -929 975870 1102500 863784 1210000 407044 -445 334050 562500 198381 1960000 1258884 -412 185580 202500 170074 2890000 1334025 -159 23910 22500 25408 4000000 1982464 28 4140 22500 762 5290000 2544025 402 180720 202500 161283 6760000 3876961 511 382950 562500 260712 8410000 4318084 1018 1068480 1102500 1035510 10240000 6682225 963 1299510 1822500 926599 12250000 6400900 5769300 7425000 4590020 53650000 29157448
一元线性回归模型的参数估计法的误差分析

一元线性回归模型的参数估计法的误差分析
一元线性回归模型是当前最为常用的统计学模型之一,被广泛应用于商业分析、金融投资预测、互联网用户行为分析等不同的领域。
而参数估计是这些模型最基础也是最关键的一步,因此误差分析在此过程中也十分重要。
一元线性回归模型的参数估计误差通常主要由两部分组成:拟合误差和估计误差。
拟合误差指的是拟合的参数和真实参数的偏离度,表现为模型在训练数据上表现出来的表型;而估计误差则指的是训练数据和测试数据之间的表型差异,表现为模型在未知数据上表现的表型。
就拟合误差而言,大多数的参数估计方法都试图拟合数据,期望在训练数据上
得到最小的拟合误差,并且拟合模型的参数有可能不可以推广到未知数据上表现。
在模型参数估计这一过程中,光考虑拟合误差是不够的,必须要考虑到模型参数在未知数据上的表现,这也就要求我们在估计参数之前先进行泛化性能分析,以免使模型过拟合于给定数据,从而导致估计参数的推广能力变差。
同时,要有效的控制参数估计的误差,还要注意几项重要的考量:一是训练数
据的质量和数量;二是参数估计算法本身的问题,比如该算法是否属于正则化算法,假若使用的算法是正则化算法,则应当考虑使用正则化参数以控制模型的复杂度;另外,确定参数估计的衡量标准,比如前面提到的拟合误差和估计误差,或者准确率、召回等标准也要纳入考虑范围。
总而言之,一元线性回归模型的参数估计误差分析对于一个模型性能优劣有着
至关重要的作用。
在进行参数估计之前,需要考虑到拟合误差和估计误差,以及几个重要的因素,如训练数据的质量、数量、参数估计的衡量标准等。
此外,在估计参数的过程中,为了控制参数估计的误差,模型设置正则化参数也是必要的。
一元线性回归模型及参数估计

但是,随机误差项的方差的估计量是不同的。
解或然方程
sm2
L*
= n
2sm2
+1
2sm4
S(Yi
bˆ0
bˆ1Xi)2
=0
即可得到sm2的最大或然估计量为:
sˆm2
1 =nS(Yi
bˆ0
bˆ1Xi)2
s P (Y i)=
1 e2s 1m 2(Y ibˆ0bˆ1X i)2 2
i= 1,2,… ,n
因为Yi 是相互独立的,所以 Y 的所有样本观测值的联合概率, 也即或然函数(likelihood function)为:
L(bˆ0,bˆ1,sm2) = P(Y1,Y2,,Yn)
=
1
e 1 2sm2
S(Yi
,当
Q对
b$ 、 0
b$ 的一阶偏导数为 1
0 时, Q 达到最小。即
Q
bˆ 0 Q
bˆ1
=0 =0
(
( bˆ
bˆ
0
0 +
+ bˆ1 X bˆ1 X i
i
Yi ) Yi ) X
= i
0 =
0
SYi SYi X i
= nbˆ0 + bˆ1SX i
=
bˆ0 SX i
+
bˆ1S
X
2 i
解得:
bˆ0 = Y bˆ1X
bˆ1
=
nSYi Xi SYiSXi nSXi2 (SXi )2
由于
bˆ 0
、bˆ 的估计结果是从最小二乘原理得到的,故称为 1
2.2 一元线性回归模型的参数估计

于是,Y的概率函数为
P(Yi ) = 1
− 1 2σ
2
ˆ ˆ (Yi − β 0 − β1 X i ) 2
σ 2π
e
(i=1,2,…n)
4/29/2012
14
因为Yi是相互独立的,所以的所有样本观测值的联 合概率,也即或然函数(likelihood function) 或然函数(likelihood function)为: 或然函数
§2.2 一元线性回归模型的参数估计
一、一元线性回归模型的基本假设 二、参数的普通最小二乘估计(OLS) 参数的普通最小二乘估计(OLS) 参数估计的最大或然法(ML) 三、参数估计的最大或然法(ML) * 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干扰项方差的估计
4/29/2012
1
640000 352836 1210000 407044 1960000 1258884 2890000 1334025 4000000 1982464 5290000 2544025 6760000 3876961 8410000 4318084 10240000 6682225 12250000 6400900 53650000 29157448
4/29/2012
-973 1314090 1822500 947508 -929 975870 1102500 863784 -445 334050 562500 198381 -412 185580 202500 170074 -159 23910 22500 25408 28 4140 22500 762 402 180720 202500 161283 511 382950 562500 260712 1018 1068480 1102500 1035510 963 1299510 1822500 926599 5769300 7425000 4590020
一元线性回归模型的参数估计实验报告
一元线性回归模型的参数估计实验报告一、实验目的通过实验了解一元线性回归模型,理解线性回归模型的原理,掌握回归系数的计算方法和用途,并运用Excel对一组数据进行一元线性回归分析,并解释拟合结果。
二、实验原理1.一元线性回归模型一元线性回归模型是指只有一个自变量和一个因变量之间存在线性关系,数学为:`Y = β0 + β1X + ε`其中,Y表示因变量的数值,X表示自变量的数值,β0和β1分别是系数,ε表示误差项。
系数是待求的,误差项是不可观测和无法准确计算的。
2.回归系数的计算方法回归系数通常使用最小二乘法进行计算,最小二乘法是一种通过最小化误差平方和来拟合数据的方法。
具体计算方法如下:(1)计算X的平均值和Y的平均值;(2)计算X和Y的样本标准差;(3)计算X和Y的协方差以及相关系数;(4)计算回归系数β1和截距β0;三、实验步骤1.导入实验数据将实验数据导入Excel,并进行清理。
2.绘制散点图在Excel中绘制散点图,判断是否存在线性关系。
3.计算相关系数通过Excel的相关系数函数计算出X和Y的相关系数。
通过Excel的回归分析函数计算出回归方程。
5.分析结果分析回归方程的拟合程度以及回归系数的意义。
四、实验结果1.数据准备通过Excel的回归分析函数,计算出回归系数为β0=1.1145,β1=2.5085,回归方程为`Y=1.1145+2.5085X`,如下图所示:(1)拟合程度:相关系数为0.870492,说明自变量和因变量之间存在一定的线性关系,回归方程的拟合程度较好。
(2)回归系数的意义:截距为1.1145,表示当自变量为0时,因变量的值为1.1145;回归系数为2.5085,表示自变量增加1个单位,因变量会增加2.5085个单位。
一元线性回归模型的参数估计
(2.2.4) (2.2.5)
或
ˆ ˆ ΣYi = nβ 0 + β1ΣX i 2 ˆ ˆ ΣYi X i = β 0 ΣX i + β1ΣX i
但是,随机误差项的方差的估计量是不同的。 是不同的
解或然方程
∂ * n 1 ˆ ˆ L =− 2 + Σ(Yi − β 0 − β 1 X i ) 2 = 0 2 4 ∂σ µ 2σ µ 2σ µ
2 σ µ 的最大或然估计量为: 即可得到
1 ˆ ˆ ˆ2 σ µ = Σ(Yi − β 0 − β 1 X i ) 2 = n
于是, Yi 的概率函数为
P (Yi ) = 1
− 1 2σ µ
2
ˆ ˆ (Yi − β 0 − β1 X i ) 2
σ 2π
e
i=1,2,…,n
因为 Yi 是相互独立的, 所以 Y 的所有样本观测值的联合概率, 也即或然函数 或然函数(likelihood function)为: 或然函数
ˆ ˆ 2 L( β 0 , β1 ,σ µ ) = P(Y1 , Y2 ,⋅ ⋅ ⋅, Yn )
解得模型的参数估计量为:
ˆ ΣX i2 ΣYi − ΣX i ΣYi X i β 0 = nΣX i2 − (ΣX i ) 2 ˆ β 1 = nΣYi X i − ΣYi ΣX i nΣYi 2 − (ΣX i ) 2
可见,在满足一系列基本假设的情况下, 可见,在满足一系列基本假设的情况下,模型结构参 数的 最大或然估计量 与 普通最小二乘估计量 是相同 的。
一元线性回归模型的参数估计
散点图
某居民小区家庭收入(X)与消费支出(Y)
Y
1500
的散点图
1300
1100
900
Yˆ = aˆ + bˆX
700
500
X
600
1100
1600
2100
最小二乘准则
Y
.(Xi,Yi)
. Yˆ = aˆ + bˆX (X j ,Yˆj )
ei
. . (Xi,Yˆi)
0
. ej
(Xj,Yj)
X
min
参数估计计算表
Yi
xi
yi
3637 3919 4185 4331 4616 4998 5359 6030
37075
-1517.4 -961.4 -640.4 -375.4 53.6 479.6 1058.6 1902.6 ——
-997.4 -715.4 -449.4 -303.4 -18.4 363.6 724.6 1395.6 ——
X = X i = 46403 = 5800.375
n
8
Y = Yi = 37075 = 4634.375
n
8
根据表 2 合计栏的数据及以上关于 X 和Y 的计
算结果可得:
bˆ1 =
xi yi = 6198658.9 0.7083 xi2 8751239.9
bˆ0 = Y - bˆ1 X 525.8662
2.对回归系数(斜率)进行统计假设检验,信度为 0.05。
3.估计可决系数并进行统计假设检验,信度为 0.05。
4.若下一年度居民货币收入为 25.5 亿元,预测购买消费品
支出的金额及预测区间,信度为 0.05。
计量经济学【一元线性回归模型——参数估计】
ˆ0计量ˆ1 和
可以分别表示为被解释变量观测Y值i
的线
性组合(线性函数);
ˆ证1 明
如( X下i : X )(Yi (Xi X )2
Y
)
(Xi X) (Xi X )2
(Yi
Y
)
ki (Yi Y )
其中ki :
(Xi X) (Xi X )2
ki
对ki于引0 进的 ki (X容i 易X证) 明有k如i X下i 的1 特性k:i2
2
,
,
,
,
,
,
,
,
i
1,
2,
n
假设3:随机误差项在不同样本点之间是独立的,不
存
Cov(i , j ) 0,,,,,,,i j,,,,i, j 1, 2, n
在序列相关,即:
一、一元线性回归模型的基本假设
假设 4:随机误差项与解释变量之间不相关, 即:
Cov( Xi , i ) 0,,,,,,,,,,,i 1, 2, n
:待估
E(Y
总样体本回回归归函函数数形形式式::Yˆi
| Xi)
ˆ0
0 ˆ1X i
1X i
其 计
中 估
方
ˆ0 , ˆ1 法ˆ0,, ˆ1求
是ˆ00,,ˆ11 出
的估计值,我们需要找到一种参数 , 并0 ,且1 这 种 参 数 估 计 方 法 保 证 了 估
计值 数
与总体真值
尽可能地接近;这种参
i
根据微 小,
积
分中
ˆ0 , ˆ1
求
极
值
的
原
理
,
要
使 i
ei2
待定系数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于最大或然法,当从模型总体随机抽取n组 样本观测值后,最合理的参数估计量应该使得从 模型中抽取该n组样本观测值的概率最大。
在满足基本假设条件下,对一元线性回归模型:
Yi 0 1 X i i
随机抽取n组样本观测值(Xi, Yi)(i=1,2,…n)。 假如模型的参数估计量已经求得,为 那么Yi服从如下的正态分布:
§2.2 一元线性回归模型的参数估计
一、一元线性回归模型的基本假设 二、参数的普通最小二乘估计(OLS) 三、参数估计的最大或然法(ML) 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干
扰项方差的估计
单方程计量经济学模型分为两大类: 线性模型和非线性模型
•线性模型中,变量之间的关系呈线性关系 •非线性模型中,变量之间的关系呈非线性关系
一元线性回归模型:只有一个解释变量
Yi 0 1 X i i
i=1,2,…,n
Y为被解释变量,X为解释变量,0与1为待估 参数, 为随机干扰项
回归分析的主要目的是要通过样本回归函 数(模型)SRF尽可能准确地估计总体回归函 数(模型)PRF。
估计方法有多种,其种最广泛使用的是普通 最小二乘法(ordinary least squares, OLS)。
二、参数的普通最小二乘估计(OLS)
给定一组样本观测值(Xi, Yi)(i=1,2,…n)要 求样本回归函数尽可能好地拟合这组值.
普通最小二乘法(Ordinary least squares, OLS) 给出的判断标准是:二者之差的平方和
n
n
Q (Yi Yˆi )2 (Yi (ˆ0 ˆ1 X i )) 2
表2.2.1进行。
表 2.2.1 参数估计的计算表
Xi
Yi
xi
yi
xi yi
x i 2 3 4 5 6 7 8 9 10 求和 平均
800 1100 1400 1700 2000 2300 2600 2900 3200 3500 21500 2150
594 638 1122 1155 1408 1595 1969 2078 2585 2530 15674 1567
Cov(i, j)=0 i≠j i,j= 1,2, …,n 假设3、随机误差项与解释变量X之间不相关:
Cov(Xi, i)=0 i=1,2, …,n 假设4、服从零均值、同方差、零协方差的正态分布
i~N(0, 2 )
i=1,2, …,n
注意:
1、如果假设1、2满足,则假设3也满足; 2、如果假设4满足,则假设2也满足。
称为OLS估计量的离差形式(deviation form)。
由于参数的估计结果是通过最小二乘法得到的, 故称为普通最小二乘估计量(ordinary least squares estimators)。
顺便指出 ,记 yˆi Yˆi Y
则有
yˆi (ˆ0 ˆ1 X i ) (ˆ0 ˆ1 X e )
Yi ~ N (ˆ0 ˆ1 X i , 2 )
于是,Y的概率函数为
P(Yi )
1
e
1 2
2
(Yi
ˆ0
ˆ1
X
i
)
2
2
(i=1,2,…n)
因为Yi是相互独立的,所以的所有样本观测值的联 合概率,也即或然函数(likelihood function)为:
L(ˆ0 , ˆ1, 2 ) P(Y1,Y2 , ,Yn )
为保证参数估计量具有良好的性质,通常对 模型提出若干基本假设。
注:实际这些假设与所采用的估计方法紧密 相关。
一、线性回归模型的基本假设
假设1、解释变量X是确定性变量,不是随机变量;
假设2、随机误差项具有零均值、同方差和不序列相 关性:
E(i)=0
i=1,2, …,n
Var (i)=2 i=1,2, …,n
以上假设也称为线性回归模型的经典假设 或高斯(Gauss)假设,满足该假设的线性回归 模型,也称为经典线性回归模型(Classical Linear Regression Model, CLRM)。
另外,在进行模型回归时,还有两个暗含的 假设:
假设5:随着样本容量的无限增加,解释变 量X的样本方差趋于一有限常数。即
-1350 -1050 -750 -450 -150
(X i X )2 / n Q, n
假设6:回归模型是正确设定的
假设5旨在排除时间序列数据出现持续上升或下降的变 量作为解释变量,因为这类数据不仅使大样本统计推断变 得无效,而且往往产生所谓的伪回归问题(spurious regression problem)。
假设6也被称为模型没有设定偏误(specification error)
ˆ1 ( X i
X
)
1 n
ei
可得
yˆi ˆ1xi
(**)
(**)式也称为样本回归函数的离差形式。
注意:
在计量经济学中,往往以小写字母表示对均值 的离差。
三、参数估计的最大或然法(ML)
最大或然法(Maximum Likelihood,简称ML), 也称最大似然法,是不同于最小二乘法的另一种 参数估计方法,是从最大或然原理出发发展起来 的其它估计方法的基础。
1
e
1 2
2
(Yi
ˆ0
ˆ1
X
i
)
2
(2
)
n 2
n
将该或然函数极大化,即可求得到模型 参数的极大或然估计量。
由于或然函数的极大化与或然函数的对数的极 大化是等价的,所以,取对数或然函数如下:
L* ln( L)
n ln(
2 )
1
2
2
(Yi
ˆ 0
ˆ1 X i ) 2
解得模型的参数估计量为:
ˆ
0
ˆ1
X
2 i
Yi
X i Yi
nX
2 i
(X
i
)2
nYi X i YiX
nX
2 i
(X i
)2
X
i
i
可见,在满足一系列基本假设的情况下,
模型结构参数的最大或然估计量与普通最小 二乘估计量是相同的。
例2.2.1:在上述家庭可支配收入-消费支出例中,对
于所抽出的一组样本数,参数估计的计算可通过下面的
1
1
最小。
方程组(*)称为正规方程组(normal equations)。
记
xi2 (X i X )2
X
2 i
1 n
Xi 2
xi yi
( X i X )(Yi Y )
X iYi
1 n
X i Yi
上述参数估计量可以写成:
ˆ1
xi yi
x
2 i
ˆ0 Y ˆ1 X