新人教版义务教育课程标准实验教科书四年级下册数学《三角形的内角和》教学设计方案
人教版数学四年级下册三角形的内角和优秀教案(精推3篇)

人教版数学四年级下册三角形的内角和优秀教案(精推3篇)〖人教版数学四年级下册三角形的内角和优秀教案第【1】篇〗《三角形内角和》教学设计教材分析:《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是学生在学习了上册《平行与垂直》中的《角的认识》和本册本单元《三角形的特性》以及《三角形三边关系》、《三角形的分类》等知识之后进行的,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习、掌握“三角形的内角和是 180°”这一规律具有重要意义。
首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。
三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是 180 度。
二是把三个内角折叠在一起,发现也能组成一个平角。
每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。
另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于 90 度,钝角三角形里的两个锐角和小于90 度。
本节课的教学重点是让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
而教学难点则放在对不同探究方法的指导和学生对规律的灵活运用。
学情分析:四年级的学生已初步具备了动手操作的意识和能力,并能够在探究问题的过程中,运用已有的知识和经验,通过交流、比较、评价等寻找解决问题的途径和策略。
“三角形的内角和是 180°”这一结论,大多数学生在四年级上册“角的度量”也有接触,但不一定清楚道理,所以本课的重点不在于了解,而在于验证,让学生在课堂上经历研究问题的全过程。
学生在本课学习前已经认识了三角形的基本特征及分类,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题的策略多样化。
最新《三角形的内角和》教学设计

最新《三角形的内角和》教学设计最新《三角形的内角和》教学设计6篇最新《三角形的内角和》教学设计篇1教学内容:四年级下册第78~79页的例4和“练一练”,练习十二第10~13题。
教学目标:1.使学生通过观察、操作、比较、归纳等活动,发现三角形的内角和等于1800,并能应用这一知识求三角形中一个未知角的度数。
2.使学生经历探索和发现三角形内角和等于1800的过程,进一步增强自主探索的意识,积累类比、归纳等活动经验,发展空间观念。
3.使学生在参与学习活动的过程中,形成互助合作的学习氛围,培养大胆猜想、敢于质疑、勇于实践的科学精神。
教学重点:让学生经历“三角形内角和等于180°”这一知识的形成、发展和应用的全过程。
教学难点:探究和验证“三角形内角和等于180°”。
教学准备:学生准备三角板一副、量角器;教师准备多媒体课件、信封里装三角形纸片若干。
教学过程:一、创设情境,产生疑问1.理解内角和含义。
2.故事激趣提问:三兄弟围绕什么问题在争吵?你有什么看法?二、自主学习,合作探究1.提出猜想。
(1)计算三角板的内角和。
(2)提出猜想。
提问:通过刚才的计算,你能得出什么结论?有同学怀疑吗?指出:“三角形的内角和等于1800”只是根据这两个特殊三角形得到的一个猜想。
引导:需用更多的三角形验证。
2.进行验证。
(1)验证教师提供的三角形。
测量:任意三角形的内角和。
①小组合作:用量角器量出信封里不同三角形的内角和。
②交流测量结果。
③提问:根据测量结果,你能得出什么结论?拼一拼:把一个三角形的三个角拼在一起。
①思考:除了量,还可以用什么方法验证呢?②同桌合作:尝试把三个内角拼成一个平角。
③反馈不同的拼法。
④提问:既然三角形的三个内角能拼成一个平角,你能得出什么结论?有怀疑吗?解释误差问题。
(2)验证学生自己画的三角形。
学生任意画一个三角形,用自己喜欢的方法去验证。
交流:自己画的三角形验证出来内角和是1800吗?有谁验证出来不是1800的吗?提问:你又能得到什么结论?还有怀疑吗?3.得出结论。
(完整版)人教版四年级下《三角形的内角和》教学设计

课题:《三角形的内角和》————胡集镇中心小学王利贤【教学内容】《义务教育课程标准实验教科书数学》(人教版)小学数学四年级下册《三角形》中《三角形的内角和》(书第85页)。
【教材分析】三角形是日常生活中常见的一种平面图形,学生已经在之前的课中了解了三角的特性和三角形的分类等知识,本节课的教学是让学生通过量一量、算一算、拼一拼等活动,理解并掌握三角形的内角和是180°,渗透转化思想,为今后学习图形知识打下基础。
【学情分析】学生在本课学习前已经认识了三角形的基本特征及分类,并且在四年级上册已经知道了两块三角板上每一个角的度数,由于三角形与日常生活联系紧密,图形直观,所以教学相对而言操作性很强。
而学生的数学知识、能力和思考问题的角度存在一定的差异,因此比较容易出现解决问题的策略多样化,这样也对教学的开展提供了很好了研讨环境。
【教学目标】1、知识技能目标:(1)理解和掌握三角形的内角和是180°;(2)运用三角形的内角和知识解决实际问题和拓展性问题;2、能力技能目标:(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
(2)知道三角形两个角的度数,能求出第三个角的度数。
(3)发展学生动手操作、观察比较和抽象概括的能力。
3、情感与态度目标:让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。
【教学重难点】教学重点:理解掌握三角形的内角和是180°。
教学难点:运用三角形的内角和知识解决实际问题。
【教具、学具准备】教具:教学课件、硬纸片制作的各种三角形、三角尺。
学具:直角三角形、锐角三角形和钝角三角形各一个,量角器、两个三角板。
【教学过程】(一)情景引入新知师:(课件出示三角形图片)引出三角形。
复习锐角三角形,直角三角形,钝角三角形。
师:大家才学了几节课就知道这么多有关三角形的知识啦,真了不起!老师这还有个问题想来考考孩子们?(大屏幕展示一个三角形)那你们知道什么叫做三角形的内角?什么又叫做三角形的内角和吗?生:三角形的内角就是三角形中每相邻两条边所夹的角,也就是三角形内的三个角;三角形的内角和就是三角形三个内角的度数之和。
义务教育课程标准实验教科书数学(人教版)四年级下册《三角形的内角和》教学设计

义务教育课程标准实验教科书数学(人教版)四年级下册《三角形的内角和》教学设计教学内容《义务教育课程标准实验教科书数学》(人教版)四年级下册第85页。
学情与教材分析教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。
首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形的内角和等于多少。
大多数学生会想到用测量角的方法,此时就可以安排小组活动。
最后发现,大小、形状不同的三角形,每一个三角形的内角和都在180°左右。
三角形的内角和是否正好等于180°呢?教材中安排了一个活动:把三角形三个内角剪下来,再拼在一起,组成一个平角,因此三角形内角和是180度。
这个活动要让学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。
学生在本课学习前已经认识了三角形的基本特征及分类,并且在教材里已经知道了两块三角尺上的每一个角的度数,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题的策略。
教学目标1、通过一系列的实验、操作活动,让学生推理归纳出三角形的内角和是180°2、会运用三角形的内角和性质,求三角形中未知角的度数。
3、使学生在探究活动中获得积极的情感体验,培养学生自主、探究的学习习惯。
教学重点与难点1、理解三角形的内角和性质。
2、会运用三角形内角和性质求未知角的度数。
教具与学具课件、量角器、剪刀、小组活动记录表、各种三角形纸片。
教学过程一、复习铺垫激趣引课1、复习旧知师:同学们,老师今天给大家带来了几个老朋友,他们是谁呢?(师出示一些三角形)。
生:是锐角三角形、钝角三角形、直角三角形。
师:你比较喜欢哪种三角形?(生说)。
师:我也很喜欢很喜欢直角三角形。
师:老师还有一个梦想,希望能拥有一个有两个直角的三角形。
大家说我的这个愿望能实现吗?(生摇头说不能)师:这是为什么呢?2、引出课题师:其实这和“三角形的内角和”有关系。
2024年人教版数学四年级下册三角形的内角和教学设计精选3篇

人教版数学四年级下册三角形的内角和教学设计精选3篇〖人教版数学四年级下册三角形的内角和教学设计第【1】篇〗教学目标:1、通过量、剪、拼、摆等直观操作的方法,让学生探索并发现三角形内角和等于180度。
2、在活动交流中培养学生合作学习的意识和能力,让学生经历猜测探索总结的数学学习过程,在实验活动中体验探索的过程和方法。
3、通过运用三角形内角和的性质解决一些简单的问题,使学生体会数学与现实生活的联系,体会到数学的价值,增加学生学数学的信心和兴趣。
教学重点:探索发现三角形内角和等于180并能应用。
教学难点:三角形内角和是180的探索和验证。
教学过程:一、创设情境,提出问题师:大家喜欢猜谜语吗?生:喜欢。
师:下面请大家猜一个谜语(大屏幕出示形状似座山,稳定性能坚。
三竿首尾连,学问不简单。
(打一几何图形))生:三角形。
师:三角形中都有哪些学问?生:三角形有三条边,三个角,具有稳定性。
生:三角形按角分,可以分成锐角三角形、直角三角形、钝角三角形。
生:三角形按边分,可以分成等腰三角形,不等边三角形,其中等腰三角形又包含了两条边相等的三角形和等边三角形。
生:一个三角形中最多只能有一个直角,最多只能有一个钝角,最少有两个锐角。
生:三角形的内有和是180。
生:(一脸疑惑)师:(板书:三角形的内角和是180),你有什么疑惑?生:什么是内角?生:每个三角形的内角和都是180吗?(根据学生的问题,在三角形的内角和是180后面加上一个?)二、自主探索,实践验证1、理解内角师:什么是内角?生:我认为三角形的内角就是指三角形的三个角。
师:三角形的每个角都是三角形的内角,每个三角形都有三个内角。
2、理解内角和。
师:那三角形的内角和又是指什么?生:我认为三角形的内角和就是把三角形的三个内角的度数加起来的和。
师:为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它1、2、3,这三个角的度数和,就是这个三角形的内角和。
3、实践验证师:每个三角形的内角和都是180吗?用什么方法来验证呢?生:量一量每个角的度数,然后加起来看看是不是180。
小学四年级下册数学《三角形的内角和》教案(5篇)

小学四年级下册数学《三角形的内角和》教案(5篇)《三角形的内角和〉教学设计篇一课题三角形的内角和手记教学目标1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
重点难点重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。
难点:探索、验证三角形内角和是180°的过程。
过程资源体验目标“学”与“教”创设问题情境课件出示:两个三角板遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。
这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?生: 45°、90°、45°。
生: 30°、90°、60°。
师:仔细观察,算一算这两个三角形的内角和是多少度?生:90°+45°+45°=180°。
生:90°+60°+30°=180°。
师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。
师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。
构建模型每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)课件学生自己剪的一个任意三角形大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。
四年级数学教案《三角形的内角和》

四年级数学教案《三角形的内角和》•相关推荐四年级数学教案《三角形的内角和》(精选10篇)教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编帮大家整理的四年级数学教案《三角形的内角和》,欢迎大家借鉴与参考,希望对大家有所帮助。
四年级数学教案《三角形的内角和》篇1教学目标⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:检验三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180度。
教学环节:问题情境与教师活动:学生活动媒体应用设计意图目标达成导入新课一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角?我们通常所说的角就是三角形的内角。
为了便于称呼,我们习惯用∠A、∠B、∠c来表示。
什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。
用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。
3、今天这节课啊我们就一起来研究三角形的内角和。
(揭题:三角形的内角和)由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的体现出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。
是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、巩固知识。
2024年人教版数学四年级下册三角形的内角和教学设计3篇

人教版数学四年级下册三角形的内角和教学设计3篇〖人教版数学四年级下册三角形的内角和教学设计第【1】篇〗【教学内容】义务教育课程标准实验教科书数学四年级下册第二单元的第三课时《三角形的内角和》【学情分析】三角形的内角和是180°是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。
学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。
对于三角形的内角和是多少度,学生是不陌生的,因为他们有认识角、用量角器量三角板上三个角的度数以及三角形的分类的基础,学生有提前预习的习惯,很多学生能回答出三角形的内角和是180度,但他们却不知道怎样才能得出这一结论。
另外经过三年的学习,学生已经具备了初步动手操作的能力、主动探究的能力和小组合作的能力。
【教学目标】1.知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。
2.能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。
3.情感目标:培养学生的大胆质疑、积极探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。
【我的思考】本课的设计理念是“问题导引,自主学习”,根据学情确定了本课的自主学习思路是“提出猜想---验证猜想---得出结论---运用结论”。
为了让学生能够在课堂上提出“三角形的内角和是180度”的猜想,对学生进行前测,使学生在课前的实践活动中有所发现。
在探讨如何验证猜想时,给出一个平角作为学生思维的支撑,启发学生想出多种验证方法,留给学生充分操作和交流的时间是本课的又一关键。
在运用结论解决问题时,我将充分尊重学生,采取学生自评,生生互评的评价方式,让学生成为课堂的主人。
【教学重点】理解并掌握三角形的内角和是180°【教学难点】验证所有三角形的内角之和都是180°。
【教学准备】多媒体课件、各种三角形、长方形等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级《三角形的内角和》教学设计方案
【设计理念】
新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。
这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。
【教材内容】
新人教版义务教育课程标准实验教科书四年级下册数学第67页例6。
【教材分析】
三角形的内角和是三角形的一个重要特征。
本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。
教材很重视知识的探索与发现,安排两次实验操作活动。
教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。
概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。
【学情分析】
1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。
2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。
【教学目标】
1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。
2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。
3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。
【教学重点】
探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。
【教学难点】
验证“三角形的内角和是180°”。
【教(学)具准备】
多媒体课件;锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。
【教学步骤】
一、复习旧知引出课题
二、提出问题引发猜想
1、提出问题:看到这个课题,你有什么问题想问的?
预设:(1)三角形的内角指的是哪些角?(2)三角形的内角和是什么意思?(3)三角形的内角一共是多少度?
2、引发猜想
猜一猜:三角形的内角和是多少度?你是怎么猜的?
【设计意图:提出一个问题比解决一个问题更重要。
课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。
由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。
】
三、操作验证形成结论
1、交流验证方法:
(1)用什么方法证明三角形的内角和是180度呢?
预设:①量算法②剪拼法③折拼法等
(2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?
2、动手验证
3、全班汇报交流
4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。
但动手操作会存在一定的误差,我们的结论也可能存在偏差。
5、方法拓展
推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。
6、形成结论:任意三角形的内角和是180 °。
【设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。
在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。
】
四、应用结论解决问题
1、巩固新知:想一想,算一算。
2、解决问题:等腰三角形风筝的顶角是多少度?
3、辨析训练,完善结论。
五、课堂总结,归纳研究方法
今天这节课你学到了哪些知识?你是怎样得到这些知识的?。