《义务教育数学课程标准》(2011版)解读——小学数学上课讲义
解读《义务教育小学数学课程标准》664(2011年版

解读《义务教育小学数学课程标准》(2011年版)尊敬的各位老师:大家好,我是总局数学兼职教研员九三局小的教师孙茜,首先感谢教育局搭建了这次与大家共同学习与交流的平台,还要感谢我校李燕校长对这次讲座的理论支持。
下面由我来和大家共同来学习2011版的《数学课程标准》。
今天和大家交流的也只是我个人一些不成熟的认识,希望这次讲座使各位老师对《新课标》有进一步的认识和理解,让我们在学习中共同进步。
一、关于《课程标准》和大纲的再思考:“大纲”这个词似乎已经成为过去时了,在1998年以前,我们教学的依据还是教学大纲,1999年,我国完成了最后一个教学大纲的制定。
那么,大纲和课程标准两者之间到底有什么差别呢?原来的大纲特别关注两个问题,第一是教什么的问题,第二是掌握到什么程度的问题。
考试自然也是围绕这两件事情进行的。
原来的大纲必然地产生了中国数学教育的特色,就是“双基”(即基础知识和基本技能),要求指出知识扎实,基本技能熟练。
这一点我们国家做得非常好,2009年,上海5000余名中学生参加了以考查义务教育阶段学生学习能力为宗旨的国际学生评估项目测试中,在全球65个国家和地区中,上海在阅读、数学、科学三项指标中均名列第一,这一成绩让国外都很震惊。
不管怎么说,“双基”对中国数学教育的贡献是巨大的。
大纲的教育理念是“知识为本”,以知识为本的教育在本质上是结果性的教育。
我们教给学生了一些结果,我们没教学生智慧。
智慧不是结果,是在过程之中的东西。
而表现在过程中的东西必须通过过程来教育。
所以我们要注重过程中的教育,我们要培养学生的智慧。
而《课程标准》的基本理念就是“以人为本”,更加重视学生能力的培养和素养的提高。
因为我们无法在学生读书的阶段就决定这个孩子未来从事什么职业,可能他将来从事的职业与数学没有直接的联系,但是我们要帮助他养成一个数学的素养,这对他一生都是有好处的。
所以,在这样的背景下,《大纲》变成了《标准》。
二者最大的区别是《标准》是以线性的要求规定了在学段内学生应该掌握的知识与能力的最低标准;而《大纲》是规定了在学年内学生应该掌握的知识和能力的一般标准。
《义务教育数学课程标准》(2011版)解读

与2001年版相比,数学课程标准从基 本理念、课程目标、课程内容到实施建议 都更加准确、规范、明了和全面。 下面我们就2011修订版与2001版课标 相比较所体现出的变化具体的进行解读。
一、总体框架结构的变化 2001年版分四个部分:前言、课程目标、 内容标准和课程实施建议。 2011年版:前言、课程目标、课程内容 和实施建议,并有附录。把其中的“内容标 准”改为“课程内容”。前言部分由原来的 基本理念和设计思路,改为课程基本性质、 课程基本理念和课程设计思路三部分。
《义务教育数学课程标准》(2011年版) 解读——小学数学
关于修订工作的几点说明
2001年,在国务院的直接领导下,教育部 启动了基础教育课程改革,颁布了义务教 育20个学科课程标准(实验稿)。 按照改革工作的总体部署,2003年开始组 织课程标准修订工作,2011年3月,基本 完成了修订任务。 2011年12月28日教育部正式颁布《全日制 义务教育数学课程标准(修改稿)》。
1.提纲挈领,领悟课标。 (1)理解课标理念 (2)明确“四基”要求 (3)正确处理“四个关系” (4)掌握四个领域内容调整 (5)提高“四个问题”能力( (6)领悟10个核心关键词的内涵和外延
2.依据课标,找出差距。 (1)改变教学中的“十多十少“现象 ●课程理念知道多,理解落实比较少; ●关注教学情景多,创设有效情景少; ●关注教学形式多,关注教学实效少; ●操作实践活动多,有效探究活动少; ●师生互动废话多,启发引导语言少; ●课堂无效活动多,学生必要练习少; ●教学设计拼凑多,个性创新设计少; ●现代媒体运用多,优化整合运用少; ●关注表面知识多,领悟思想方法少; ●学生参与活动多,积累活动经验少。 (2)克服课堂教学中的“四个满堂” ●满堂问●满堂动●满堂放●满堂夸 (3)避免教学中的“四个虚假“ ●虚假地自主学习 ●虚假地合作交流 ●虚假地自主探究 ●虚假地情感、态度、价值观的渗透
2011年版义务教育小学数学课程标准解读

2011年版义务教育小学数学课程标准解读与2001年版相比,《数学课程标准(2011年版)》从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。
具体变化如下:一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。
2011年版把其中的“内容标准”改为“课程内容”。
前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
2011年版:数学是研究数量关系和空间形式的科学。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念的变化“三句”变“两句”、“6条”改“5条”。
2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。
2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术2011年版:数学课程——课程内容——教学活动——学习评价——信息技术四、课程理念中新增加了一些提法要处理好四个关系;数学课程基本理念(两句话);数学教学活动的本质要求;培养良好的数学学习习惯;注重启发式;正确看待教师的主导作用;处理好评价中的几个关系;注意信息技术与课程内容的整合。
《2011版小学数学课程标准》解读PPT课件

-
15
教学中应注意的几个关系
(1) 面向全体学生与关注学 生个体差异的关系
(2) “预设”与“生成”的关系
● 应注意的几个关系
(3) 合情推理与演绎推理的 关系
(4) 使用现代信息技术与教 学手段多样化关系
-
16
四、实施《课程标准(2011年版)》的建议
评 价 建 议
恰当评价学生的基础知识与基本技能。 重视数学能力与情感态度的评价。 注重对学生数学学习过程的评价。 评价主体和方式要多样化。
重新阐述了数学课程的基本理念
明确提出“四基”是数学课程与教 学的基本目标
梳理了10个重要的核心概念
-
3
强一调了、数基学本的课意程理义的念和性与义质目务教标育数学
1、强调了数学的意义和义务教育数学课程 的性质
数学的意义:数学是研究数量关系和空间形式的科 学,数学的发展与人类社会的发展息息相关,数学 在社会日常生产和日常生活中的广泛应用。
数学课程的性质:义务教育阶段的数学课程是培养 公民素质的基础课程,具有基础性、普及性和发展 性
-
4
2、重新阐述了数学课程的基本理念
《标准(2011)版》提 出的要求:
人人能获得良 好的数学教育
不同的人在数 学上得到不同
的发展
-
5ห้องสมุดไป่ตู้
重新阐述了数学课程的基本理念
一 • 教与学的总体要求
二 • 关于课程内容
三 • 关于教学活动 四 • 关于评价 五 • 关于信息技术的应用
-
6
3、明确提出“四基”是数学课程与教学 的基本目标
基础知识
基本技能
四基
基本思想
基本活动经验
-
小学数学课程标准(2011年版)解读

二、第一部分,前言内容作了较大调整
在“前言”部分除修改了对数学的意义与 价值、数学教育的功能、数学课程的基本 理念以及数学课程设计思路的表述外,还 增加了“数学课程的性质”。
1.修改了 “数学”的定义
实验稿: 数学是人们对客观世界定性把握和定量刻
画、逐渐抽象概括、形成方法和理论,并 进行广泛应用的过程。 修订稿(标准P1): 数学是研究数量关系和空间形式的科学
(8)注意信息技术与课程内容的整合。
注意信息技术与课程内容的整合,注重实效。(标 准P3)
7.重新修订了课程设计思路:
(1)学段划分保持不变;(标准P4) 将九年的学习时间划分为三个学段: 第一学段(1-3年级) 第二学段(4-6年级) 第三学段(7-9年级)
(2)关于课程目标的调整(标准P4)
对课程目标动词及水平要求的设计基本保 持不变,增加了目标动词的同义词;
义务教育阶段数学课程目标分为总目标和 学段目标,从知识技能、数学思考、问题 解决、情感态度等四个方面加以阐述。
数学课程目标包括结果目标和过程目标。 结果目标使用“了解、理解、掌握、运用” 等行为动词表述,过程目标使用“经历、 体验、探索”等行为动词表。
2.修改了数学观
实验稿: 数学是人们生活、劳动和学习必不可少的工具。 数学为其他科学提供了语言、思想和方法; 数学是人类的一种文化,它的内容、思想、方法
和语言是现代文明的重要组成部分。 数学在提高人的推理能力、抽象能力、想象力和
创造力等方面有着独特的作用;
修订稿(标准P1): 数学更加广泛应用于社会生产和日常生活
实验稿:
“符号感”主要表现在:能从具体情境中抽象出 数量关系和变化规律,并用符号来表示;理解符 号所代表的数量关系和变化规律;会进行符号间 的转换;能选择适当的程序和方法解决用符号所 表达的问题。”
义务教育数学课程标准(2011版)解读PPT课件

潘俭 2013.10
2021/3/8
CHENLI
1
内容标准
• 第一学段(1~3 年级) • 第二学段(4~6 年级) • 第三学段(7~9 年级)
➢ 了解各学段的删减内容、调整内容和增加内容。
2021/3/8
CHENLI
2
第一学段(1~3 年级)
1. 删减内容 在“图形与几何”领域中,《课标(2011)》适当 降低了难度,如仍保留“恰当的选择长度单位 估 计长度”,但删掉了“自选单位估计图形的面积”. 在“统计与概率”领域,《课标(2011)》将实验 稿中涉及“不确定现象”的 4 条全部删掉,目的是 将统计概率内容在高学段适当集中.
2021/3/8
2021/3/8
CHENLI
7
第二学段(4~6 年级)
1. 删减内容 在“数与代数”领域,《课标(2011)》删减“口算百 以内一位数乘、除两位数”,是考虑到难度较大.
2. 调整内容 《课标(2011)》将“两点确定一条直线和两条直线 确定一个点”、“中位数、众数”内容移至第三学段.
2021/3/8
比乌斯带等内容;
➢ 删去了“镜面对称”,但仍然要求“认识并欣赏自然界和现实生活 中的轴对称图形”;
➢ 删去的还有“探索图形之间的变换关系(轴对称、平移、旋转 及其组合)”;
(3)“统计与概率”领域,《课标(2011)》: ➢ 删除了“计算极差、画频数折线图”.
2021/3/8
CHENLI
12
第三学段(7~9 年级)
CHENLI
8
第二学段(4~6 年级)
3. 增加内容 (1) 在“数与代数”领域,《课标(2011)》: ➢ 增加了“了解常见数量关系,总价=单价×数量、
版小学数学课程标准解读全资料

精品文档解读《义务教育小学数学课程标准》(2011年版)一【新旧课标比较】与旧课标相比,新课标从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。
具体变化如下:一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。
2011年版把其中的“内容标准”改为“课程内容”。
前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
2011年版:数学是研究数量关系和空间形式的科学。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念“三句”变“两句”,“6条”改“5条”2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。
2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术2011年版:数学课程——课程内容——教学活动——学习评价——信息技术四、理念中新增加了一些提法要处理好四个关系数学课程基本理念(两句话)数学教学活动的本质要求培养良好的数学学习习惯注重启发式精品文档.精品文档正确看待教师的主导作用处理好评价中的关系注意信息技术与课程内容的整合五、“双基”变“四基”2001年版:“双基”:基础知识、基本技能;2011年版“四基”:基础知识、基本技能、基本思想、基本活动经验。
《义务教育数学课程标准》(2011版)解读

提出了培养学生“四个问题”能 力(发现问题、提出问题、 分析问题和解决问题能力。)
四、关于课程目标 的变化 “双基”变“四基”
2023最新整理收集 do something
《义务教育数学课程标准》(2011年版) 解读——小学数学
关于修订工作的几点说明
2001年,在国务院的直接领导下,教育部 启动了基础教育课程改革,颁布了义务教 育20个学科课程标准(实验稿)。
按照改革工作的总体部署,2003年开始组 织课程标准修订工作,2011年3月,基本 完成了修订任务。
增加了大量的案例,并且用较大的篇幅阐述案例,让老师领会 课程标准的思想是什么,领会提出知识点想达到的目的是什么。
螺旋式上升,不一定是知识点本身,对一个问题从不同角度分 析这件事情本身,也是一个螺旋式上升。从小学一直到初中三 年级,可以有这样的问题,从小学一直到初中三年级,不断地 出现,但是,随着他们知识的增加,随着视野的增加,对问题 分析的深度不断增加。
式”改为“通过操作,了解圆的周长与直径的比为定值,掌握圆的
(3)统计与概率 统计内容的主要变化
第一学段与《标准》相比,最大的变化是鼓励学生运用自己的方式(包括文 字、图画、表格等)呈现整理数据的结果,不要求学生学习“正规”的统 计图(一格代表一个单位的条形统计图)以及平均数(这些内容放在了第 二学段)。
六、新的主要关键词(10个核心关键词)
2001版:数感、符号感、空间观念、统计 观念、应用意识、推理能力
2011版:数感、符号意识(修改)、运算能力 (增加)、模型思想(增加)、空间观念、几 何直观(增加)、推理能力、数据分析观念 (增加)、应用意识、创新意识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《义务教育数学课程标准》(2011年版)解读——小学数学与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。
具体变化如下:一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。
2011年版把其中的“内容标准”改为“课程内容”。
前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
2011年版:数学是研究数量关系和空间形式的科学。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念“三句”变“两句”,“6条”改“5条”2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
(修订后与过去的提法相比:有更深的意义和更广的内涵,落脚点是数学教育而不是数学内容,有更强的时代精神和要求(公平的、优质的、均衡的、和谐的教育。
)“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。
2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术2011年版:数学课程——课程内容——教学活动——学习评价——信息技术四、(1).理念中新增加了一些提法要处理好四个关系数学课程基本理念(两句话)数学教学活动的本质要求培养良好的数学学习习惯注重启发式正确看待教师的主导作用处理好评价中的关系注意信息技术与课程内容的整合(2)关于数学观的修改:原课标:●数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
●数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
●数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
课标修改稿:●数学是研究数量关系和空间形式的科学。
●数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具……●数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
●要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用树立正确的数学教学观:教学活动是师生积极参与、交往互动、共同发展的过程。
有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。
数学教学中最需要考虑的是什么?数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。
(3)关于课程目标的修改:在总体目标中突出了“培养学生创新精神和实践能力”的改革方向和目标价值取向。
课程目标提法上的一些变化:——明确了使学生获得数学的基础知识、基本技能、基本思想、基本活动经验(数学“四基)。
——提出了培养学生发现问题、提出问题、分析问题和解决问题能力。
——目标具体从“知识技能”“数学思考”“问题解决”“情感态度”四个方面阐述。
——学段目标的表述方式有所改变五、“双基”变“四基”2001年版:“双基”:基础知识、基本技能;2011年版“四基”:基础知识、基本技能、基本思想、基本活动经验。
并把“四基”与数学素养的培养进行整合:掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。
《国家数学课程标准》制定组组长、东北师大校长史宁中教授提出了“数学教学的四基”,引起了数学教育界的广泛关注。
以前强调的双基是指基础知识、基本技能,双基教学重视基础知识、基本技能的传授,讲究精讲多练,主张‘练中学’,相信‘熟能生巧’,追求基础知识的记忆和掌握、基本技能的操演和熟练,以使学生获得扎实的基础知识、熟练的基本技能和较高的学科能力为其主要的教学目标。
现在提出的四基不但包括了基础知识、基本技能、还增加了基本思想、基本活动经验。
史宁中教授指出:“‘基本思想’主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。
”关于基本思想方法,陈老师为我们分析了数学思想方法的四大育人功能:一是有利于完善学生的数学认知结构;二是可以提升学生的元认知水平;三是可以发展学生的思维能力;四是有利于培养学生解决问题的能力。
陈老师结合小学数学现有的课标教材重点给我们介绍了小学阶段涉及到的数学思想方法,比如分类、转化、归纳、数形结合、数学建模、猜想、符号化、方程与函数、极限等数学思想方法。
他系统地为我们解读了这些数学思想方法的意义、在小学数学教学中的作用和价值以及应用时的注意事项,陈老师的分析让我认识到在教学中关注数学思想方法的重要性,在教学中渗透数学思想方法的必要性。
“双基”变“四基”,为数学教师提出了更高的要求,要求数学教师必须为儿童的学习和个人发展提供了最基本的数学基础、数学准备和发展方向,促进儿童的健康成长,使人人获得良好的数学素养,不同的人在数学得到不同的发展。
“双基”变“四基”,任重而道远。
常用的小学数学思想方法:对应思想方法、假设思想方法、比较思想方法、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、代换思想方法、可逆思想方法、化归思维方法、变中抓不变的思想方法、数学模型思想方法、整体思想方法等等。
六、(1)四个领域名称的变化2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。
2011年版:数与代数、图形与几何、统计与概率、综合与实践。
(2)关于设计思路的修改:●学段划分保持不变;●对课程目标动词及水平要求的设计基本保持不变,增加了目标动词的同义词;●对四个学习领域的名称作适当调整;●对学习内容中的若干关键词作适当调整对其意义作更明确的阐释。
(3)主要的关键词的变化:●原课标:数感、符号感、空间观念、统计观念、应用意识、推理能力●修改后:数感、符号意识、运算能力、模型思想、空间观念、几何直观、推理能力、数据分析观念最近一次修改又加上了:应用意识、创新意识。
符号感为何改为符号意识?●符号感(Symbol Sense)●原课标:“符号感”主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
”●修改稿:“符号意识”主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。
建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
”●符号感与数感都用“感”,“感”的表述过多。
符号感主要的不是潜意识、直觉。
符号感最重要的内涵是运用符号进行数学思考和表达,进行数学活动。
“意识”有两个意思:第一,用符号可以进行运算,可以进行推理;第二,用符号进行的运算和推理得到的结果具有一般性。
所以这是一个“意识”问题,而不是“感”的问题。
数学的本质是概念和符号,并通过概念和符号进行运算和推理。
所以只能用“意识”。
七、课程内容的变化更加注意内容的系统性和逻辑性。
如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。
综合与实践领域的要求更加明确和具有可操作性。
结构上的变化:数与代数的变化:(在内容结构上没有变化。
)第一学段:①增加“能进行简单的整数四则混合运算(两步)”②使一些目标的表述更加准确。
例如将“能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断”,修改为“能运用数及数的运算解决生活中的简单问题,并能对结果的实际意义作出解释”。
第二学段:①增加的内容:● 增加“经历与他人交流各自算法的过程,并能表达自己的想法”。
● 增加“了解公倍数和最小公倍数;了解公因数和最大公因数”。
● 增加“在具体情境中,了解常见的数量关系:总价=单价×数量、路程=速度×时间,并能解决简单的实际问题”。
● 增加“结合简单的实际情境,了解等量关系,并能用字母表示”。
②调整的内容:● 将“理解等式的性质”,改为“了解等式的性质”● 将“会用等式的性质解简单的方程(如3x+2=5,2x-x=3)”,改为“能解简单的方程(如3x+2=5,2x-x=3)”。
③使一些目标的表述更加准确和完整。
例如将“会用方程表示简单情境中的等量关系”,改为“能用方程表示简单情境中的等量关系,了解方程的作用”。
图形与几何的变化:第一学段①删除的内容● 删除“能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形”,并将相关要求放在第二学段。
● 删除“能在方格纸上画出简单图形的轴对称图形”,并将相关要求放在第二学段。
● 删除“会看简单的路线图”,相关要求放入第二学段。
● 删除“体会并认识千米、公顷”,相关要求放入第二学段。
②降低要求对于“东北、西北、东南、西南”四个方向,不要求给定一个方向辨认其余方向,降低要求为知道这些方向。
③使一些目标的表述更加准确和完整。
例如将“辨认从正面、侧面、上面观察到的简单物体的形状”改为“能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体的形状”。
第二学段:①删掉“了解两点确定一条直线和两条相交直线确定一个点”。
②增加“知道扇形”。
③使一些目标的表述更加准确和完整。
例如将“探索并掌握圆的周长公式”改为“通过操作,了解圆的周长与直径的比为定值,掌握圆的周长公式”。
统计内容主要变化如下:●第一学段与《标准》相比,最大的变化是鼓励学生运用自己的方式(包括文字、图画、表格等)呈现整理数据的结果,不要求学生学习“正规”的统计图(一格代表一个单位的条形统计图)以及平均数(这些内容放在了第二学段)。
● 第二学段与《标准》相比,在统计量方面,只要求学生体会平均数的意义,不要求学生学习中位数、众数(这些内容放在了第三学段)。