激光医学基础 (2)

合集下载

超短脉冲激光及其相关应用的一些基本知识

超短脉冲激光及其相关应用的一些基本知识

超短脉冲激光及其相关应用的一些基本知识一、本文概述超短脉冲激光,作为现代光学领域的璀璨明珠,以其独特的性质和应用价值,正逐渐引起人们的广泛关注和深入研究。

本文旨在全面介绍超短脉冲激光的基本概念、产生机制、特性以及其在各个领域中的应用,帮助读者更好地理解和应用这一前沿技术。

我们将首先概述超短脉冲激光的定义和特点,包括其脉冲宽度、峰值功率、光谱特性等基本属性。

接着,我们将探讨超短脉冲激光的产生方法,包括调Q技术、锁模技术、光参量放大等,并简要介绍各种方法的原理和应用场景。

在了解了超短脉冲激光的基本特性后,我们将重点介绍其在各个领域中的应用。

这些应用包括但不限于:光学精密测量、超快现象研究、材料加工、生物医学等。

我们将结合具体案例,详细阐述超短脉冲激光在这些领域中的独特优势和实际应用效果。

我们将对超短脉冲激光的发展前景进行展望,分析其在未来科学研究和技术应用中的潜在价值和挑战。

通过本文的阅读,读者将能够全面而深入地了解超短脉冲激光及其相关应用的基本知识,为其在未来的科研和工作中提供有益的参考和启示。

二、超短脉冲激光的基本原理超短脉冲激光,也被称为超快激光,其脉冲宽度通常在纳秒(ns)甚至更短的皮秒(ps)、飞秒(fs)量级。

这种激光技术的基本原理主要涉及到激光产生和控制的物理过程。

我们需要理解激光是如何产生的。

激光产生的关键在于实现粒子数反转,即高能级粒子数大于低能级粒子数。

当高能级粒子数足够多时,受激辐射将占据主导地位,从而产生激光。

超短脉冲激光的产生则需要在此基础上,进一步控制激光的振荡过程,以实现脉冲宽度的缩短。

超短脉冲激光的产生通常利用调Q技术或锁模技术。

调Q技术通过改变谐振腔的Q值(品质因数),使得激光能量在短时间内迅速积累并释放,从而得到高能量的超短脉冲。

而锁模技术则是通过特定的光学元件和控制系统,使得谐振腔内的多个振荡模式同步,形成单一的高强度超短脉冲。

超短脉冲激光的特性使其在许多领域具有广泛的应用。

激光的基础知识

激光的基础知识

激光的基础知识相信激光这名词对大家来说一点也不陌生。

在日常生活中,我们常常接触到激光,例如在课堂上我们所用的激光指示器,与及在计算机或音响组合中用来读取光盘资料的光驱等等。

在工业上,激光常用于切割或微细加工。

在军事上,激光被用来拦截导弹。

科学家也利用激光非常准确地测量了地球和月球的距离,涉及的误差只有几厘米。

激光的用途那么广泛,究竟它有哪些特点,又是如何产生的呢?以下我们将会阐释激光的基本特点和基本原理。

激光的特性高亮度、高方向性、高单色性和高相干性是激光的四大特性。

(1)激光的高亮度:一般规律认为,光源在单位面积上向某一方向的单位立体角内发射的功率,就称为光源在该方向上的亮度。

激光在亮度上的提高主要是靠光线在发射方向上的高度集中。

激光的发射角极小(一般用毫弧度表示),它几乎是高度平等准直的光束,能实现定向集中发射。

因此,激光有高亮度性。

固体激光器的亮度更可高达1011W/cn2Sr 。

不仅如此,一束激光经过聚焦后,由于其高亮度性的特点,能产生强烈的热效应,其焦点范围内的温度可达数千度或数万度,能熔化甚至于气化对激光有吸收能力的生物组织或非生物材料。

如工业上精密器件的焊接、灯孔、切割;医学上切割组织(光刀)、气化表浅肿瘤以及显微光谱分析等这些新技术都是利用激光的高亮度性所产生的高温效应。

激光功率密度的单位为mw/cm2或W/cm2,能量密度为焦尔/厘米2。

(2)激光的高方向性:激光的高方向性使其能在有效地传递较长距离的同时,还能保证聚焦得到极高的功率密度,激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有0.001弧度,接近平行。

1962年人类第一次使用激光照射月球,地球离月球的距离约38万公里,这两点都是激光加工的重要条件。

(3)激光的高单色性:光的颜色由光的波长(或频率)决定。

一定的波长对应一定的颜色。

太阳光的波长分布范围约在0.76微米至0.4微米之间,对应的颜色从红色到紫色共7种颜色,所以太阳光谈不上单色性。

8.第八章激光在医学中的应用

8.第八章激光在医学中的应用

第8章 激光在医学中的应用激光医学是激光技术和医学相结合的一门新兴的边缘学科。

1960年,Maiman 发明第一台红宝石激光器,1961年,Campbell 首先将红宝石激光用于眼科的治疗,从此开始了激光在医学临床的应用。

1963年,Goldman 将其应用于皮肤科学。

同时,值得关注的是二氧化碳激光器的作为光学手术刀的出现,逐渐在医学临床的各学科确立了自己的地位。

1970年,Nath 发明了光导纤维,到1973年通过内镜技术成功地将激光导入动物的胃肠道,自此实现了无创导入技术的飞速发展。

1976年,Hofstetter 首先将激光用于泌尿外科。

随着血卟啉及其衍生物在1960年被发现,Diamond 在1972年首先将这种物质用于光动力学治疗。

在医学领域中,激光的应用范围非常广泛,不仅在临床上激光作为一种技术手段,被各临床学科用于疾病的诊断和治疗,而且在基础医学中的细胞水平的操作和生物学领域中激光技术也占有重要地位。

另外,还可以利用激光显微加工技术制造医用微型仪器。

再者,利用全息的生物体信息的记录及医疗信息光通信等与信息工程有关的领域,从广义来讲,也属于激光在医学中的应用。

本章主要对医学临床,重点是激光对诊断和治疗领域中的应用进行论述。

由于诊断和治疗在本质上都是利用激光与生物体的相互作用,因此,有必要首先对这些基础进行介绍。

在8.1节中归纳介绍了生物体的光学特性、激光对生物体的作用、激光在生物体中的应用特点等内容;然后在8.2节中通过典型的治疗应用实例,介绍了激光在外科、皮肤科、整形外科、眼科、泌尿外科、耳鼻喉科等领域中的治疗和光动力学治疗等;在8.3节中重点围绕诊断中的应用,介绍了生物体光谱测量、激光计算机断层摄影(光学CT )、激光显微镜等。

在8.4节中,对激光在医学中的应用的激光装置与激光转播路线的开发动向进行介绍。

最后8.5节对激光医学的前景作了展望。

8.1 激光与生物体的相互作用8.1.1 生物体的光学特性假设生物体中入射的单色平行光强度为0I ,若生物体是均匀的吸收物质,根据1.5节证明的(1-89)式,入射深度为x 处的光强度I 可用下述关系式表示()x a I I 00exp -=(8-1) 其中0a 为吸收系数(参见图8.1)。

激光在医学中应用的原理

激光在医学中应用的原理

激光在医学中应用的原理1. 激光概述•激光(laser)是一种使用一束窄而高强度光束来实现照射、加工和治疗的技术。

激光的光束具有高集光性、单色性、相干性和可调谐性等特点。

•激光在医学领域中有广泛的应用,包括手术、治疗、诊断和研究等方面。

2. 激光在医学中的应用原理•激光治疗原理:激光通过选择性吸收,将能量传递给靶组织,使其发生温度升高,从而达到病变组织的破坏和治疗的效果。

不同激光波长对应不同的组织吸收特征,选择合适的激光波长可以实现针对性治疗。

•激光手术原理:激光通过光能的聚焦和瞬时热效应,在极短时间内将目标组织加热到夫琅禾费温度以上,实现其切除、剥脱、汽化或焊接等目的。

•激光诊断原理:激光在与组织相互作用中,其散射、反射、透射和吸收等特性能提供关于组织结构、成分和功能的信息。

•激光研究原理:激光可以用于获得细胞和分子的信息,帮助了解生物基础和疾病机制。

3. 激光在手术中的应用•激光在眼科手术中广泛应用,如激光角膜屈光手术、激光治疗黄斑病变等。

•激光在皮肤科手术中有重要应用,如激光去斑、激光去痣等。

•激光在泌尿系统手术中取得了显著进展,如激光碎石术和激光切割术等。

•激光在整形外科手术中应用广泛,如激光去除毛发、激光焊接断骨等。

4. 激光在治疗中的应用•激光在肿瘤治疗中被广泛应用,如激光消融治疗、激光光动力疗法等。

•激光在牙科治疗中有重要应用,如激光洁牙、激光牙髓治疗等。

•激光在皮肤疾病治疗中具有独特的优势,如激光去痘、激光治疗血管疾病等。

5. 激光在诊断中的应用•激光在医学诊断中具有独特的优势,如激光扫描术、激光显微镜等。

•激光在生物医学成像中发挥了重要作用,如激光共聚焦显微镜、激光光学相干断层扫描等。

6. 激光在研究中的应用•激光在细胞和分子研究中具有重要作用,如激光流式细胞仪、激光捕获显微切割等。

•激光在光遗传学研究中发挥了独特的作用,如激光诱导电压脉冲、激光触媒生物反应等。

综上所述,激光在医学中应用广泛,其原理基于激光的聚焦、选择性吸收和相互作用特性。

激光在医学中的应用

激光在医学中的应用
通过激光能量氧化牙齿表 面的色素,实现美白牙齿 的效果。
激光在肿瘤治疗中的应用
光动力疗法
利用光敏剂和激光的结合,选 择性杀伤肿瘤细胞,减少对正
常细胞的损害。
激光热疗
利用激光能量加热肿瘤组织,使 其坏死凋亡,适用于小型肿瘤的 治疗。
激光免疫疗法
通过激光激活免疫系统,提高机体 对肿瘤细胞的识别和清除能力。
激光在细胞疗法中的应用
激光可以用于激活细胞疗法,如激光激活干细胞、激 光激活免疫细胞等,能够实现疾病的精准治疗。
感谢您的观看
THANKS
02
激光在诊断方面的应用
激光荧光光谱技术在疾病诊断中的应用
总结词
无创、高灵敏度、高特异性
详细描述
激光荧光光谱技术是一种基于激光诱导荧光原理的技术,可用于疾病诊断。该技 术具有无创、高灵敏度、高特异性等优点,能够快速、准确地检测疾病标志物, 为疾病的早期诊断提供有力支持。
激光拉曼光谱技术在疾病诊断中的应用
详细描述
激光共焦显微镜是一种基于光学共焦原理的技术,可用于眼科疾病诊断。该技术具有高分辨率、高清晰度、高 灵敏度等优点,能够观察眼部组织结构和病变情况,为眼科疾病的早期诊断和病情监测提供重要支持。
03
激光在治疗方面的应用
激光在皮肤科治疗中的应用
01
02
03
激光脱毛
利用激光能量破坏毛囊, 从而实现永久脱毛。
高功率激光在医学领域的前沿应用
1 2 3
激光雷达在医学影像中的应用
高功率激光雷达可以生成高分辨率、高对比度 的医学影像,有助于疾病的早期发现和诊断。
激光用于心血管疾病的治疗
高功率激光可以用于治疗心血管疾病,如激光 打标技术用于治疗血管病变、激光照射疗法用 于治疗冠心病等。

激光美容基本理论

激光美容基本理论
例如氧合血红蛋白就有418nm、542nm和577nm,3个吸收峰。
一个理想的激光波长要符合以下3个点: 1、与靶色基的吸收峰尽可能匹配 2、来自其他色基的竞争性吸收尽可能要少 3、有足够的穿透深度
治疗色素增生性皮肤病的调Q红宝石激光(波长694nm)比较好地符合了 上述几点。在这一波长下来自氧合血红蛋白的竞争性吸收就很少,而 该波长既能较好地成为成熟黑素小体吸收,又有一定的穿透深度。
前者是指 光子被吸收后激活了生物分子,被激活的生物分子与周围 其他分子不断碰撞并使其获得振动能和转动能; 后者是指 偶极分子(主要是水分子)吸收了红外光光子后,光能直接 转化为该分子的振动能和转动能。这两种方式均可导致皮肤组织温度 升高,热效应产生。
(2)热弥散: 热效应产生的同时,热弥散即已经开始。通过
A
58
• 黑色素:显微爆破 • 血管内皮:凝固坏死/变性 • 毛囊组织:凝固性坏死/变性 • 胶原组织与纤维母细胞:皮肤年轻化
A
59
长、短波长所携带相同的光能量时 • 短波长、高频率、高能量 • 长波长、低频率、低能量 • 短波穿透较浅、长波穿透较深(在一定范
围内) • 短波光子携带的能量高,治疗较强烈 • 长波光子携带的能量高,治疗较强烈
20世纪90年代进入——脉冲激光年代(美容激光)
A
9
光盘存储器原理—激光刻蚀与读出
A
10
激光全息防伪人民币(建国50周年纪念币)
A
11
激光控制核聚变
A
12
天文台(激光导航星)
来自纳层 的反射光 (高度约 100km)
最大高度 约35km
来自空气 分子的 Rayleigh光
A
13
激光测距与激光雷达

激光原理及应用1-2

激光原理及应用1-2

图1.1.5 正常色散现象
• 二、介质色散
图1.1.6 碘蒸气三棱镜的反常色散现象
图1.1.7 碘蒸气三棱镜实验曲线
图1.1.8 介质折射率随频率变化趋势
图1.1.9 介质折射率变化曲线
• 三、受激吸收
图1.1.10 吸收光谱实验示意图
• 1.2 电磁场吸收和发射 的唯象理论 • 1.2.1 自发辐射
绪 论
• • • • • • • • • 一、激光的发展简史 二、激光的特点 1.单色性与时间相干性 2.方向性与空间相干性 3.高亮度 三、本课程的学习方法 1.抓住基础和重点 2.理解物理概念 3.理论联系实际
第1章 光和物质的近共振 相互作用
• 1.1 电磁波的吸收和发射 • 1.1.1 电介质极化 • 一、电介质对电场的影响 • 二、电介质的极化
• • • • • • • • • •
2.7 超辐射激光器 思考和练习题 第3章 连续激光器的工作特性 3.1 均匀加宽介质激光器速率方程 3.2 激光振荡阈值 3.3 均匀加宽介质激光器中的模竞争 3.4 非均匀加宽介质激光器的多纵模振荡 3.5 激光器输出特性 思考和练习题 第4章 光学谐振腔理论
图1.3.2 受激样品分子跃迁能级和对应谱线
图1.3.3 太阳光谱中夫琅和费分立吸收线
图1.3.4 原子(a)和分子(b)产生两种吸收光谱示意图
• 1.3.2 谱线加宽和线形函数 • 一、谱线加宽
• 二、线型函数
• 三、线宽
图1.3.5 洛仑兹线型函数示意图
• 1.3.3 谱线加宽对跃迁几率的影响
目 录
• • • • • • • • 绪 论 一、激光的发展简史 二、激光的特点 三、本课程的学习方法 第1章 光和物质的近共振相互作用 1.1 电磁波的吸收和发射 1.2 电磁场吸收和发射的唯象理论 1.3 光谱线加宽

激光的理论基础

激光的理论基础

激光的理论基础
激光是一种特殊的光,按其特征可以分为多个类别。

它具有相同频率和向量方向的电
磁辐射,可以把复杂的电场双极转换为光场双极,其振荡频率在可视光到红外光之间,占
据辐射场中的特定频率范围,而光束具有较高的能量强度和一致性。

激光技术,是根据半
导体激光器的发展,此技术可以主要应用于可视光投射、仪器仪表、打印机以及生物医学
等领域。

激光的理论基础是光学和量子电动力学。

归纳起来概括可有四个基本要素:一是光调
制系统,将复杂的电场双极转换为光场双极,例如准直镜的一种折射或反射;二是能量放
大系统,由多个放大管或激光晶体组成,以把中微量的能量大量地放大输出;三是光学系统,由反射镜、透镜等元件组成,调整激光束的方向;四是量子电动力学,研究电态到光
态的转换,形成基本的激光源。

因此,各种光学和量子电动力学的理论与实验及各种光学
器件的应用,是激光的理论基础。

同时,激光有多个理论模型,基本上可以分为非平衡模型、直接激发模型、激光器模型、激光共振腔模型及衍射激光模型五种。

其中,非平衡模型和激光器模型是最常用的理
论模型。

它们分别涉及物理系统非平衡状态和物理激光器两个大的研究问题。

激光的理论基础,即模型理论基础和实验理论基础。

模型理论基础是指上述激光的理
论模型,实验理论基础是指实验研究、探讨激光的特性及其现象的理论基础。

结合上述理
论和实验,可以剖析激光的特性和表现,从而更有效地发挥激光的性能,应用到实践中去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档