2005年高考湖北省理科数学试题

合集下载

2005年高考数学试题(湖北等)的分析及评价

2005年高考数学试题(湖北等)的分析及评价

2005年高考数学试题(湖北等 )的分析及评价武汉市教育科学研究院 孔峰一、总体评价:2005年高考数学试题(湖北卷)严格依据教育部《数学科考试大纲》的各项要求,在遵循“有利于高校选拔人才、有助于中学实施素质教育、有助于高校扩大办学自主权”原则的基础上,融入了新课程新大纲的理念,试题立意新颖,选材不拘一格。

与2004年全国其他独立命题省市试卷相比,试卷的结构、采用的题型和配备的题量,题型的分值比例等方面保持相对稳定。

与2004年全国新课程卷及2004年湖北卷的结构及考查内容更吻合一些,且比2004年湖北卷对新课程新大纲的整体把握与理解更加成熟,整份试卷从数学知识、思想方法、学科能力出发,多层次多角度地考查了学生的数学素养和学习潜能,对考生能力、知识灵活运用及综合运用提出了比较高的要求,尤其值得注意的是,对新增加内容的知识的考查、知识的灵活运用考查,以及在运用新增加内容知识去处理实际问题的实践能力的考查均提出了较高的要求,因此我们考生在高考复习中需引起足够重视和研究,订做到与时俱进。

二、2005年高考数学试题的特点今年,我省高考数学命题在2004年平稳过渡的基础上,站在新课程评价理念的高度,稳中求新、稳中求活。

在继续深化能力立意、倡导通性通法、坚持数学应用、加大新增知识的考查力度等各个方面又作了进一步的实践、探索、深化与创新。

审视试卷,笔者感悟到白纸黑字间的灵性的跳动,令人回味,试题命题呈现出诸多亮点,对我们高考复习有很多有益的启示。

1、立足基础,突出能力,考查思维的灵活性无论在选择题、填空题,还是解答题中均有许多试题突出对基础知识的考查。

但其中一些基础试题在强调基础知识的同时,试题对能力的考查也十分突出,可以从多方面去思考,体现了思维的灵活性。

不同能力的学生处理方式不同,体现了不同的思维水平和数学思维品质。

例1 (高考理科第7题文科第10题)若sin α+cos α=tan α (0<α<2π),则α∈A.⎪⎭⎫⎝⎛6,0π B. ⎪⎭⎫⎝⎛4,6ππ C. ⎪⎭⎫⎝⎛3,4ππ D. ⎪⎭⎫⎝⎛2,3ππ 本题以方程的形式出现,似乎应该求出角α,但这只是一种表象,透过现象看本质,选择支是角α的范围,于是只需角α的一个三角不等式,由此联想大家熟知的基本结论:当α是锐角时,sin α+cos α>1.于是tan α>1,答案选C 。

2005年高考理科数学全国卷试题及答案

2005年高考理科数学全国卷试题及答案

2005年高考理科数学全国卷Ⅰ试题及答案(河南安徽山西海南)布谷鸟本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷1至2页3到10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑擦干净后,再选涂其它答案标号不能答在试题卷上3.本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的 参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn kkn n P P C k P --=)1()(一、选择题 (1)复数ii 2123--=(A )i (B )i - (C )i -22 (D )i +-22(2)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I(B )123I I S C S C S ⊆⋂()(C )123I I I C S C S C S ⋂⋂=Φ(D )123I I S C S C S ⊆⋃()(3)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(4)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是(A )),(2222- (B )),(22-(C )),(4242-(D )),(8181- (5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33 (C )34 (D )23 (6)已知双曲线)0( 1222>=-a yax 的一条准线与抛物线x y62-=的准线重合,则该双曲线的离心率为(A )23 (B )23 (C )26 (D )332(7)当20π<<x 时,函数xxx x f 2sin sin82cos 1)(2++=的最小值为(A )2(B )32 (C )4(D )34(8)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+-(9)设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞ (B )),0(+∞ (C ))3log,(a-∞ (D )),3(log+∞a(10)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2 (B )23 (C )223 (D )2(11)在ABC ∆中,已知C B A sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A②2sin sin 0≤+<B A③1cossin22=+B A ④C B A 222sin cos cos =+其中正确的是 (A )①③ (B )②④ (C )①④(D )②③ (12)过三棱柱任意两个顶点的直线共15条,其中异面直线有(A )18对(B )24对(C )30对(D )36对第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上2.答卷前将密封线内的项目填写清楚 3.本卷共10小题,共90分二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上(13)若正整数m 满足m m 102105121<<-,则m = )3010.02l g ≈(14)9)12(xx -的展开式中,常数项为 (用数字作答)(15)ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m =(16)在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号)三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 (17)(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+-c y x 于函数)(x f y =的图像不相切(18)(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小(19)(本大题满分12分)设等比数列{}n a 的公比为q ,前n 项和,2,1( 0 =>n S n(Ⅰ)求q 的取值范围; (Ⅱ)设1223++-=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小(20)(本大题满分12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种; 若一个坑内的种子都没发芽,则这个坑需要补种坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望(精确到01.0)(21)(本大题满分14分)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值(22)(本大题满分12分) (Ⅰ)设函数)10( )1(log )1(log)(22<<--+=x x x x x x f ,求)(x f 的最小值;(Ⅱ)设正数np p p p 2321,,,, 满足12321=++++np p p p ,证明n p p p p p p p p n n -≥++++222323222121loglogloglog2005年高考理科数学全国卷Ⅰ试题及答案(河南安徽山西海南)参考答案一、选择题:1.A 2.C 3.B 4.C 5.A 6.D 7.C 8.B 9.C 10.B 11.B 12.D二、填空题: 13.155 14.672 15.1 16.①③④ 三、解答题17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<-(Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此由题意得.,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为(Ⅲ)证明:∵ 33|||(sin(2))||2cos(2)|244y x x ππ''=-=-≤所以曲线)(x f y =的切线斜率的取值范围为[-2,2], 而直线025=+-c y x 的斜率为522>,所以直线025=+-c y x 于函数3()sin(2)4y f x x π==-的图像不相切18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力满分12分方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD ,∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD.(Ⅱ)解:过点B 作BE//CA ,且BE=CA , 则∠PBE 是AC 与PB 所成的角. 连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90°在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PBBE PBE.510arccos所成的角为与PB AC ∴(Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM. 在等腰三角形AMC 中,AN ·MC=AC AC CM⋅-22)2(,5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BNAN ABBNANANB故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21.(Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故又由题设知AD ⊥DC ,且AP 与与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510,cos ,2,5||,2||=>=<=⋅==PB AC PB AC PB AC 所以故由此得AC 与PB 所成的角为.510arccos(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN MC AN0),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.4||,||,.555AN BN AN BN ==⋅=-2cos(,).3||||AN BN AN BN AN BN ⋅∴==-⋅2arccos().3-故所求的二面角为19.(Ⅰ)).,0()0,1(+∞⋃-(Ⅱ)0,100,n S q q >-<<>又因为且或1,12,0,;2n n n n q q T S T S -<<->->>所以当或时即120,0,;2n n n n q q T S T S -<<≠-<<当且时即 1,2,0,.2n n n n q q T S T S =-=-==当或时即20.(Ⅰ)ξ的数学期望为:75.3002.030041.020287.010670.00=⨯+⨯+⨯+⨯=ξE21.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分(1)解:设椭圆方程为)0,(),0(12222c F b a by ax >>=+则直线AB 的方程为c x y -=,代入12222=+by ax ,化简得02)(22222222=-+-+ba c a cx a xb a .令A (11,y x ),B 22,(y x ),则.,22222222122221ba b a c a x x b a c a x x +-=+=+由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与a 共线,得 ,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴即232222c ba c a =+,所以36.32222a ba cb a =-=∴=,故离心率.36==ac e(II )证明:(1)知223b a =,所以椭圆12222=+by ax 可化为.33222b yx =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ①由(1)知.21,23,23222221c bc ac x x ===+22.本小题考查数学归纳法及导数应用知识,考查综合运用数学知识解决问题的能力满分12分(Ⅰ)解:对函数()f x 求导数:22()(log )[(1)log (1)]f x x x x x '''=+--2211log log (1)ln 2ln 2x x =--+-22log log (1)x x =-- 于是1()02f '=,当12x <时,22()log log (1)0f x x x '=--<,()f x 在区间1(0,)2是减函数,当12x >时,22()log log (1)0f x x x '=-->,()f x 在区间1(,1)2是增函数,所以21)(=x x f 在时取得最小值,1)21(-=f ,(II )用数学归纳法证明(ⅰ)当n=1时,由(Ⅰ)知命题成立(ⅱ)假设当n=k 时命题成立即若正数1232,,,,kp p p p 满足12321kp p p p ++++= ,则121222323222log log log log kkp p p p p p p p k ++++≥-当n=k+1时,若正数11232,,,,k p p p p + 满足112321k p p p p +++++= ,令1232kx p p p p =++++11p q x=,22p q x=, (22)k p q =则1232,,,,kq q q q 为正数,且12321kq q q q ++++= ,由归纳假定知121222323222log log log log kkq q q q q q q q k ++++≥-121222323222log log log log k kp p p p p p p p ++++1212223232222(log log log log log )k k x q q q q q q q q x =+++++2()l o g x k x x ≥-+ ①同理,由1212221kk k p p p x ++++++=- ,可得112222*********log log log k k k k k k p p p p p p +++++++++2(1)()(1)log (1)x k x x ≥--+-- ②综合①、②两式11121222323222log log log log k k p p p p p p p p ++++++22()log (1)()(1)log (1)x k x x x k x x ≥-++--+-- 22()log (1)log (1)k x x x x =-++-- 1(1k k ≥--=-+即当n=k+1时命题也成立根据(ⅰ)、(ⅱ)可知对一切正整数n 命题成立。

2005年高考理科数学湖北卷试题及答案

2005年高考理科数学湖北卷试题及答案

2005湖北卷试题及答案布谷鸟一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的上个选项中,中有一项是符合题目要求的)1.设P 、Q 为两个非空数集,定义集合P+Q={a+b|a ∈P ,b ∈Q}P={0,2,5},Q={1,2,6},则P+Q 中元素的个数是A .9B .8C .7D .6 2.对任意实数a ,b ,c ,给出下列命题:①“a=b ”是“ac=bc ”的充要条件;②“a+5是无理数”是“a 是无理数”的充要条件; ③“a>b ”是“a 2>b 2”的充分条件; ④“a<5”是“a<3”的必要条件 其中真命题的个数是A .1B .2C .3D .43.ii i ++-1)21)(1(=A .-2-iB .-2+iC .2-iD .2+i4. 函数|1|||ln --=x e y x 的图象大致是 ( )A B C D5.双曲线)0(122≠=-mn ny m x 的离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为A .163 B .83 C .316 D .38 6.在x y x y x y y x2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是 A .0 B .1 C .2 D .3 7.若)20(tan cos sin παααα<<=+,则∈αA .(0,6π) B .(6π,4π) C .(4π,3π) D .(3π,2π) 8.若1)11(lim 21=---→xbx a x ,则常数a ,b 的值为A .a=-2,b=4B .a=2,b=-4C .a=-2,b=-4D .a=2,b=4 9.若20π<<x ,则2x 与3sinx 的大小关系:A .2x>3sinxB .2x<3sinxC .2x=3sinxD .与x 的取值有关 10.如图,在三棱柱C B A ABC '''-中,点E 、F 、H 、K 分别为C A '、B C '、B A '、C B '' 的中点,G 为ΔABC 的重心从K 、H 、G 、B '中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为 A .K B .H C .G D .B '11.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,223,250;②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④305784111138165192219246270 关于上述样本的下列结论中,正确的是A .②、③都不能为系统抽样B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样12.以平行六面体D C B A ABCD ''''-的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率p 为A .385367B .385376C .385192D .38518二、填空题(本大题共4小题,每小题4分 ,共16分把答案填写在答题卡相应的位置上)13.已知向量a=(-2,2),b=(5,k |a+b|不超过5,则k 的取值范围是14.5)212(++xx 的展开式中整理后的常数项等于 15.设等比数列{n a }的公比为q ,前n 项和为n S ,若1+n S ,n S ,2+n S 成等差数列,则q 的值为16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元在满足需要的条件下,最少要花费 元三、解答题(本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 17.(本小题满分12分)已知向量a =(2x ,x+1),b = (1-x ,t)若函数)(x f =a ·b 在区间(-1,1)上是增函数,求t 的取值范围 18.(本小题满分12分)在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD=5,求sinA 的值19.(本小题满分12分)某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一量某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9求在一年内李明参加驾照考试次数ξ的分布列和ξ的期望,并求李明在一所内领到驾照的概率20.(本小题满分12分)如图,在四棱锥P —ABC 右,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,AB=3,BC=1,PA=2,E 为PD 的中点(Ⅰ)求直线AC 与PB 所成角的余弦值;(Ⅱ)在侧面PAB 内找一点N ,使NE ⊥面PAC , 并求出N 点到AB 和AP 的距离21.(本小题满分12分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由22.(本小题满分14分)已知不等式][log 21131212n n >+++ ,其中n 为大于2的整数,][log 2n 表示不超过n 2log {n a }的各项为正,且满足111,)0(--+≤>=n n n a n na a b b a ,,4,3,2=n(Ⅰ)证明:][log 222n b ba n +<, ,5,4,3=n ;(Ⅱ)猜测数列{n a }是否有极限?如果有,写出极限的值; (Ⅲ)试确定一个正整数N ,使得当n>N 时,对任意b>0,都有5<n a2005湖北卷试题及答案参考答案1.B 2.B 3.C 4.D 5.A 6.B 7.C 8.C 9.D 10.C 11.D 12.A 13.[-6,2] 14.2263 15.-2 16.500 17.解法一:依定义t tx x x x t x x x f +++-=++-=232)1()1()(则t x x x f ++-='23)(2,若)(x f 在(-1,1)上是增函数,则在(-1,1)上可设)(x f '≥0∴)(x f '≥0x x t 232-≥⇔在(-1,1)上恒成立考虑函数x x x g 23)(2-=,由于)(x g 的图象是对称轴为31=x ,开口向上的抛物线,故要使x x t 232-≥在(-1,1)上恒成立)1(-≥⇔g t ,即t ≥5而当t ≥5时,)(x f '在(-1,1)上满足)(x f '>0,即)(x f 在(-1,1)上是增函数故t 的取值范围是t ≥5解法二:依定义t tx x x x t x x x f +++-=++-=232)1()1()(,x x x f ++-='23)(2若)(x f 在(-1,1)上是增函数,则在(-1,1)上可设)(x f '≥0∵)(x f '的图象是开口向下的抛物线,∴当且仅当01)1(≥-='t f ,且05)1(≥-=-'t f 时,)(x f '在(-1,1)上满足)(x f '>0,即)(x f 在(-1,1)上是增函数故t 的取值范围是t ≥518.解法一:设E 为BC 的中点,连接DE ,则DE//AB ,且36221==AB DE ,设BE=x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 2222⋅-+=,x x 6636223852⨯⨯++=,解得1=x ,37-=x (舍去) 故BC=2,从而328cos 2222=⋅-+=B BC AB BC AB AC ,即3212=AC又630sin =B ,故6303212sin 2=A ,1470sin =A 解法二:以B 为坐标原点,BC 为x 轴正向建立直角坐标指法,且不妨设点A 位于第一象限由630sin =B ,则)354,34()sin 364,cos 364(==B B , 设=(x ,0),则)352,634(x += 由条件得)352()634(||22=++=x BD 从而x=2,314-=x (舍去)故354,32(-=CA 于是141439809498091698098||||cos =+⋅++-=⋅=CA BA A ∴1470cos 1sin 2=-=A A 解法三:过A 作AH ⊥BC 交BC 于H ,延长BD 到P 使BP=DP ,连接AP 、PC 过窗PN ⊥BC 交BC 的延长线于N ,则354,34cos ===AH B AB HB , 310)354()52(222222=-=-=-=AH BP PN BP BN , 而34==HB CN ,∴BC=BN=CN=2,32=HC ,32122=+=HC AH AC 故由正弦定理得6303212sin 2=A ,∴1470sin =A 19.解:ξ的取值分别为1,2,3,4ξ=1,表明李明第一次参加驾照考试就通过了,故P (ξ=1)=0.6ξ=2,表明李明在第一次考试未通过,第二次通过了,故P (ξ=2)=(1-0.6)×0.7=0.28ξ=3,表明李明在第一、二次考试未通过,第三次通过了,故P (ξ=3)=(1-0.6)×(1-0.7)×0.8=0.096ξ=4,表明李明在第一、二、三次考试都未通过,故P (ξ=4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024∴李明实际参加考试次数ξ的分布列为∴ξ的期望E ξ=1×0.6+2×0.28+3×0.096+4×0.024=1.544李明在一年内领到驾照的概第为1-(1-0.6)×(1-0.7)×(1-0.8)×(1-0.9)=0.9976 20.解法一:(Ⅰ)建立如图所示的空间直角坐标系,则A 、B 、C 、D 、P 、E 的坐标分别为A (0,0,0),B (3,0,0),C (3,1,0),D (0,1,0), P (0,0,2),E (0,21,2) 从而=(3,1,0),=(3,0,-2)设AC 与PB 的夹角为θ,则1473723cos ===θ, ∴AC 与PB 1473(Ⅱ)由于N 点在侧面PAB 内,故可设N 点坐标为(x ,0,z ), 则1,21,(z x ME --= 由NE ⊥面PAC 可得:⎪⎩⎪⎨⎧=⋅=⋅,0,0即⎪⎪⎩⎪⎪⎨⎧=⋅--=⋅--,0)0,1,3()1,21,(,0)2,0,0()1,21,(z x z x化简得⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=+-=-.1,63.0213,01z x x z即N 点的坐标为(63,0,1),从而N 点到AB 、AP 的距离分别为163解法二:(Ⅰ)设AC ∩BD=O ,连OE ,则OE//PB ,∴∠EOA 即为AC 与PB 所成的角或其补角在ΔAOE 中,AO=1,OE=21PB=27,AE=21PD=25,∴14173127245471cos =⨯⨯-+=EOA 即AC 与PB 14173 (Ⅱ)在面ABCD 内过D 作AC 的垂线交AB 于F ,则6=∠ADF连PF ,则在Rt ΔADF 中DF=33tan ,332cos ===ADF AD AF ADF AD设N 为PF 的中点,连NE ,则NE//DF ,∵DF ⊥AC ,DF ⊥PA ,∴DF ⊥面PAC 从而NE ⊥面PAC∴N 点到AB 的距离=21AP=1,N 点到AP 的距离=216321.(Ⅰ)解法一:依题意,可设直线AB 的方程为y=k (x-1)+3,代入λ=+223y x ,整理得:)3()3(2)3(222=--+--+λk x k k x k ①设A (11,y x ),B (22,y x ),则1x ,2x 是方程①的两个不同的根, ∴0])3(3)3([422>--+=∆k k λ,② 且3)3(2221+-=+k k k x x 由N (1,3)是线段AB 的中点,得21x x +=2,∴)3(2+=-k k k 解得k =-1,代入②得12>λ,即λ的取值范围是(12,+∞)于是直线AB 的方程为)1(3--=-x y ,即4=-+y x解法二:设A (11,y x ),B (22,y x ),则有)())((3.3,321212122222121=-++-⇒⎪⎩⎪⎨⎧=+=+y y x x x x y x y x λλ 依题意,212121,y y k x x AB +=∴≠∵N (1,3)是AB 的中点,∴21x x +=2,21y y +=6,从而1-=AB k又由N (1,3)在椭圆内,∴1231322=+⨯>λ, ∴λ的取值范围是(12,+∞)直线AB 的方程为)1(3--=-x y ,即4=-+y x(Ⅱ)解法一:∵CD 垂直平分AB ,∴直线CD 的方程为y-3=x-1,即x-y+2=0代入椭圆方程,整理得04442=-++λx x ③又设C (33,y x ),D (44,y x ),CD 的中点为M (00,y x ), 则3x ,4x 是方程③的两根, ∴3x +4x =-1,且232,200210=+==+=x y x x x ,即M (21-,23)于是由弦长公式可得||)1(||432=-⋅-+==x x kCD将直线AB 的方程04=-+y x 代入椭圆方程得16842=-+-λx x ⑤同理可得||1||212=-⋅+=x x k AB∵当12>λ时,)3(2-λ>)12(2-λ,∴|AB|<|CD|假设存在12>λ,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心 点M 到直线AB 的距离为2232|42321|2|4|00=-+-=-+=y x d于是,由④⑥⑦式及勾股定理可得2222|2|2321229|2|||||CD AB d MB MA =-=-+=+==λλ故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,|2CD|为半径的圆上(注:上述解法中最后一步可按如下解法获得: A 、B 、C 、D 共圆⇔ACD 为直角三角形,A 为直角⇔||||||2DN CN AN ⋅=,即)2||)(2||()2||(2d CD d CD AB -+=⑧ 由⑥式知,⑧式左边=212-λ,由④⑦知,⑧式右边==--=--+-2923)2232)3(2)(2232)3(2(λλλ2∴⑧式成立,即A 、B 、C 、D 四点共圆)解法二:由(Ⅱ)解法一知12>λ,∵CD 垂直平分AB ,∴直线CD 的方程为y-3=x-1,代入椭圆方程,整理得04442=-++λx x ③将直线AB 的方程04=-+y x 代入椭圆方程整理得16842=-+-λx x ⑤解③和⑤式可得21222,1-±=λx ,2314,3-±-=λx ,不妨设A (12211-+λ,12213--λ), C (231---λ,233--λ),D (231-+-λ,233-+λ)∴⎪⎪⎭⎫⎝⎛-+---+-+=23123,23123λλλλCA , ⎪⎪⎭⎫ ⎝⎛-------+=23123,23123λλλλ, 计算可得0=⋅,∴A 在以CD 为直径的圆上又B 为A 关于CD 的对称点, ∴A 、B 、C 、D 四点共圆(注:也可用勾股定理证明AC ⊥AD )22.(Ⅰ)证法一:∵当n ≥2时,110--+≤<n n n a n na a ,∴n a a n a n a n n n n 111111+=++≥---,即na a n n 1111≥--, 于是有211112≥-a a ,311123≥-a a ,…,na a n n 1111≥--, 所有不等式两边相加可得na a n 3121111+++≥- 由已知不等式知,当n ≥3时有[log 211121n a a n ≥-∵b a <1,∴bn b a n 2][log 211122=+> ∴][log 22n b a n +<证法二:设nn f 13121)(+++=,首先利用数学归纳法证不等式,5,4,3,)(1=+≤n bn f b a n (ⅰ)当n=3时,由b f b a a a a a a )3(11223313333112223+=++⋅≤+=+≤, 知不等式成立 (ⅱ)假设当n=k (k ≥3)时,不等式成立,即b k f b a k )(1+≤,则 ,)1(1)11)((1)()1()1()1(1)(1)1(1111)1()1(1b k f b b k k f b b b k f k k b k bb k f k k a k k a k a k a k k k k ++=+++=+++++=++⋅++≤+++=+++≤+ 即当n=k+1时,不等式也成立 由(ⅰ)(ⅱ)知,,5,4,3,)(1=+≤n b n f b a n 又由已知不等式得,5,4,3,][log 22][log 21122=+=+≤n n b b b n ba n (Ⅱ)有极限,且lim =∞→n n a (Ⅲ)∵][log 2][log 2222n n b b <+,令51][log 22<n , 则有1024210][log log 1022=>⇒>≥n n n ,故取N=1024,可使沁n>N 时,都有5<n a。

2005年高考数学试题(湖北等)的分析及评价

2005年高考数学试题(湖北等)的分析及评价

2005年高考数学试题(湖北等 )的分析及评价武汉市教育科学研究院 孔峰一、总体评价:2005年高考数学试题(湖北卷)严格依据教育部《数学科考试大纲》的各项要求,在遵循“有利于高校选拔人才、有助于中学实施素质教育、有助于高校扩大办学自主权”原则的基础上,融入了新课程新大纲的理念,试题立意新颖,选材不拘一格。

与2004年全国其他独立命题省市试卷相比,试卷的结构、采用的题型和配备的题量,题型的分值比例等方面保持相对稳定。

与2004年全国新课程卷及2004年湖北卷的结构及考查内容更吻合一些,且比2004年湖北卷对新课程新大纲的整体把握与理解更加成熟,整份试卷从数学知识、思想方法、学科能力出发,多层次多角度地考查了学生的数学素养和学习潜能,对考生能力、知识灵活运用及综合运用提出了比较高的要求,尤其值得注意的是,对新增加内容的知识的考查、知识的灵活运用考查,以及在运用新增加内容知识去处理实际问题的实践能力的考查均提出了较高的要求,因此我们考生在高考复习中需引起足够重视和研究,订做到与时俱进。

二、2005年高考数学试题的特点今年,我省高考数学命题在2004年平稳过渡的基础上,站在新课程评价理念的高度,稳中求新、稳中求活。

在继续深化能力立意、倡导通性通法、坚持数学应用、加大新增知识的考查力度等各个方面又作了进一步的实践、探索、深化与创新。

审视试卷,笔者感悟到白纸黑字间的灵性的跳动,令人回味,试题命题呈现出诸多亮点,对我们高考复习有很多有益的启示。

1、立足基础,突出能力,考查思维的灵活性无论在选择题、填空题,还是解答题中均有许多试题突出对基础知识的考查。

但其中一些基础试题在强调基础知识的同时,试题对能力的考查也十分突出,可以从多方面去思考,体现了思维的灵活性。

不同能力的学生处理方式不同,体现了不同的思维水平和数学思维品质。

例1 (高考理科第7题文科第10题)若sin α+cos α=tan α (0<α<2π),则α∈A.⎪⎭⎫⎝⎛6,0π B. ⎪⎭⎫⎝⎛4,6ππ C. ⎪⎭⎫⎝⎛3,4ππ D. ⎪⎭⎫⎝⎛2,3ππ 本题以方程的形式出现,似乎应该求出角α,但这只是一种表象,透过现象看本质,选择支是角α的范围,于是只需角α的一个三角不等式,由此联想大家熟知的基本结论:当α是锐角时,sin α+cos α>1.于是tan α>1,答案选C 。

2005年-2017年 湖北省高考卷(理科) 三角函数题

2005年-2017年  湖北省高考卷(理科) 三角函数题

9.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 213.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= . 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.2016 理12.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为(A )11 (B )9 (C )7 (D )5ABC 的内角A ,B ,C 的对边分别别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =(I )求C ; (II )若c ABC = ABC 的周长.2014理17.(11分) 某实验室一天的温度(单位:)随时间(单位:h )的变化近似满足函数关系;()10sin,[0,24)1212f t t t t ππ=-∈(Ⅰ)求实验室这一天的最大温差; (Ⅱ)若要求实验室温度不高于,则在哪段时间实验室需要降温?2013理4.(2013湖北,理4)将函数yx +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ).A .π12B .π6C .π3D .5π65.已知π0<<4θ,则双曲线C 1:2222=1cos sin x y θθ-与C 2:22222=1sin sin tan y x θθθ-的( ). A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等17.(2013湖北,理17)(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1.(1)求角A 的大小; (2)若△ABC的面积S =b =5,求sin B sin C 的值.11.设△ABC 的内角A ,B ,C ,所对的边分别是a ,b ,c.若()()+-++=a b c a b c ab ,则角C=______________。

2005年高考理科数学全国卷Ⅰ试题及答案(河北、河南、安徽、山西、海南等地区用)

2005年高考理科数学全国卷Ⅰ试题及答案(河北、河南、安徽、山西、海南等地区用)

2005年高考理科数学全国卷Ⅰ试题及答案(河北河南山西海南)源头学子小屋本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷1至2页第Ⅱ卷3到10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2如需改动,用橡皮擦干净后,再选涂其它答案标号不能答在试题卷上3.本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的 参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn kkn n P P C k P --=)1()(一、选择题 (1)复数ii 2123--=(A )i (B )i - (C )i -22 (D )i +-22(2)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I(B )123I I S C S C S ⊆⋂()(C )123I I I C S C S C S ⋂⋂=Φ(D )123I I S C S C S ⊆⋃()(3)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(4)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是(A )),(2222- (B )),(22-(C )),(4242-(D )),(8181- (5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33 (C )34 (D )23 x y62-=的准线重合,则该双曲线的离心率为(6)已知双曲线)0( 1222>=-a yax 的一条准线与抛物线(A )23 (B )23 (C )26 (D )332(7)当20π<<x 时,函数xxx x f 2sin sin82cos 1)(2++=的最小值为(A )2(B )32 (C )4(D )34(8)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为(A )1 (B )1- (C )251--(D )251+-(9)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞(B )),0(+∞(C ))3log,(a-∞ (D )),3(log+∞a(10)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2 (B )23 (C )223 (D )2(11)在ABC ∆中,已知C B A sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A ②2sin sin 0≤+<B A③1cossin22=+B A④C B A 222sin cos cos =+ 其中正确的是(A )①③(B )②④(C )①④(D )②③ (12)过三棱柱任意两个顶点的直线共15条,其中异面直线有(A )18对 (B )24对 (C )30对(D )36对第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上2.答卷前将密封线内的项目填写清楚3.本卷共10小题,共90分二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上(13)若正整数m 满足m m 102105121<<-,则m = )3010.02l g ≈(14)9)12(xx -的展开式中,常数项为 (用数字作答)(15)ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = (16)在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号)三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 (17)(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+-c y x 于函数)(x f y =的图像不相切(18)(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC(19)(本大题满分12分)设等比数列{}n a 的公比为q ,前n 项和,2,1( 0 =>n S n (Ⅰ)求q 的取值范围; (Ⅱ)设1223++-=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小(20)(本大题满分12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种; 若一个坑内的种子都没发芽,则这个坑需要补种假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望(精确到01.0)(21)(本大题满分14分)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值(22)(本大题满分12分) (Ⅰ)设函数)10( )1(log )1(log)(22<<--+=x x x x x x f ,求)(x f 的最小值;(Ⅱ)设正数np p p p 2321,,,, 满足12321=++++np p p p ,证明n p p p p p p p p n n -≥++++222323222121loglogloglog2005年高考理科数学全国卷Ⅰ试题及答案(河北河南山西海南)参考答案一、选择题:1.A 2.C 3.B 4.C 5.A 6.D7.C 8.B 9.C 10.B 11.B 12.D二、填空题: 13.155 14.672 15.1 16.①③④ 三、解答题17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<-(Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此由题意得.,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为(Ⅲ)证明:∵ 33|||(sin(2))||2cos(2)|244y x x ππ''=-=-≤所以曲线)(x f y =的切线斜率的取值范围为[-2,2], 而直线025=+-c y x 的斜率为522>,所以直线025=+-c y x 于函数3()sin(2)4y f x x π==-的图像不相切18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力12分方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD ,∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD.(Ⅱ)解:过点B 作BE//CA ,且BE=CA , 则∠PBE 是AC 与PB 所成的角. 连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90° 在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PBBE PBE.510arccos所成的角为与PB AC ∴(Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC ,在Rt △PCB 中,CM=MB ,所以CM=AM.在等腰三角形AMC 中,AN ·MC=AC AC CM⋅-22)2(,5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BNAN ABBNANANB故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为 A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21.(Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故又由题设知AD ⊥DC ,且AP 与与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510,cos ,2,5||,2||=>=<=⋅==PB AC PB AC PB AC 所以故由此得AC 与PB 所成的角为.510arccos(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN MC AN),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BNBN AN MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.4||,||,.555AN BN AN BN ==⋅=-2cos(,).3||||AN BN AN BN AN BN ⋅∴==-⋅2arccos().3-故所求的二面角为19.(Ⅰ)).,0()0,1(+∞⋃-(Ⅱ)0,100,n S q q >-<<>又因为且或1,12,0,;2n n n n q q T S T S -<<->->>所以当或时即120,0,;2n n n n q q T S T S -<<≠-<<当且时即 1,2,0,.2n n n n q q T S T S =-=-==当或时即ξ的数学期望为:75.3002.030041.020287.010670.00=⨯+⨯+⨯+⨯=ξE21.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分(1)解:设椭圆方程为)0,(),0(12222c F b a by ax >>=+则直线AB 的方程为c x y -=,代入12222=+by ax ,化简得02)(22222222=-+-+ba c a cx a xb a .令A (11,y x ),B 22,(y x ),则.,22222222122221ba b a c a x x ba c a x x +-=+=+由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与a 共线,得 ,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴即232222c ba c a =+,所以36.32222a ba cb a =-=∴=,故离心率.36==ac e(II )证明:(1)知223b a =,所以椭圆12222=+by ax 可化为.33222b yx =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ①由(1)知.21,23,23222221c bc ac x x ===+22 满分12分(Ⅰ)解:对函数()f x 求导数:22()(log )[(1)log (1)]f x x x x x '''=+--2211log log (1)ln 2ln 2x x =--+-22log log (1)x x =-- 于是1()02f '=,当12x <时,22()log log (1)0f x x x '=--<,()f x 在区间1(0,)2是减函数,当12x >时,22()log log (1)0f x x x '=-->,()f x 在区间1(,1)2是增函数,所以21)(=x x f 在时取得最小值,1)21(-=f ,(II )用数学归纳法证明(ⅰ)当n=1时,由(Ⅰ)知命题成立 (ⅱ)假设当n=k 时命题成立即若正数1232,,,,kp p p p 满足12321kp p p p ++++= ,则121222323222log log log log kkp p p p p p p p k ++++≥-当n=k+1时,若正数11232,,,,k p p p p + 满足112321k p p p p +++++= ,令1232kx p p p p =++++11p q x=,22p q x=, (22)k p q =则1232,,,,kq q q q 为正数,且12321kq q q q ++++= ,由归纳假定知121222323222log log log log kkq q q q q q q q k ++++≥-121222323222log log log log k kp p p p p p p p ++++1212223232222(log log log log log )k k x q q q q q q q q x =+++++2()l o g x k x x ≥-+ ①同理,由1212221kk k p p p x ++++++=- ,可得112222*********log log log k k k k k k p p p p p p +++++++++2(1)()(1)log (1)x k x x ≥--+-- ②综合①、②两式11121222323222log log log log k k p p p p p p p p ++++++22()log (1)()(1)log (1)x k x x x k x x ≥-++--+-- 22()log (1)log (1)k x x x x =-++-- 1(1k k ≥--=-+即当n=k+1时命题也成立根据(ⅰ)、(ⅱ)可知对一切正整数n 命题成立。

2005年高考理科数学全国卷Ⅰ试题及答案(河北、河南、安徽、山西、海南等地区用)

2005年高考理科数学全国卷Ⅰ试题及答案(河北、河南、安徽、山西、海南等地区用)

2005年高考理科数学全国卷Ⅰ试题及答案(河北河南安徽山西海南)源头学子小屋本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分1至2页第Ⅱ卷3到10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其它答案标号不能答在试题卷上3.本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的 参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(一、选择题 (1)复数ii 2123--=(A )i(B )i -(C )i -22(D )i +-22(2)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I(B )123I I S C S C S ⊆⋂()(C )123I I I C S C S C S ⋂⋂=Φ(D )123I I S C S C S ⊆⋃()(3)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(4)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是(A )),(2222- (B )),(22- (C )),(4242-(D )),(8181- (5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33(C )34(D )23(6)已知双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为(A )23(B )23(C )26 (D )332 (7)当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为(A )2(B )32(C )4(D )34(8)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+-(9)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞(B )),0(+∞(C ))3log ,(a -∞(D )),3(log +∞a(10)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2(B )23 (C )223 (D )2(11)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是 (A )①③ (B )②④ (C )①④ (D )②③ (12)过三棱柱任意两个顶点的直线共15条,其中异面直线有(A )18对 (B )24对 (C )30对(D )36对第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上 2.答卷前将密封线内的项目填写清楚 3.本卷共10小题,共90分二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上(13)若正整数m 满足m m 102105121<<-,则m = )3010.02≈(14)9)12(xx -的展开式中,常数项为 (用数字作答)(15)ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(m ++=,则实数m =(16)在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号)三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 (17)(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+-c y x 于函数)(x f y =的图像不相切(18)(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小(19)(本大题满分12分)设等比数列{}n a 的公比为q ,前n 项和,2,1( 0 =>n S n (Ⅰ)求q 的取值范围; (Ⅱ)设1223++-=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小(20)(本大题满分12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种; 若一个坑内的种子都没发芽,则这个坑需要补种坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望(精确到01.0)(21)(本大题满分14分) 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与)1,3(-=a 共线(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值(22)(本大题满分12分)(Ⅰ)设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; (Ⅱ)设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明n p p p p p p p p n n -≥++++222323222121log log log log2005年高考理科数学全国卷Ⅰ试题及答案(河北河南安徽山西海南)参考答案一、选择题:1.A 2.C 3.B 4.C 5.A 6.D7.C 8.B 9.C 10.B 11.B 12.D二、填空题: 13.155 14.672 15.1 16.①③④ 三、解答题17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<- (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得.,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为 (Ⅲ)证明:∵ 33|||(sin(2))||2cos(2)|244y x x ππ''=-=-≤ 所以曲线)(x f y =的切线斜率的取值范围为[-2,2], 而直线025=+-c y x 的斜率为522>, 所以直线025=+-c y x 于函数3()sin(2)4y f x x π==-的图像不相切 18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力满分12分 方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD ,∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD. (Ⅱ)解:过点B 作BE//CA ,且BE=CA ,则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90°在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PB BE PBE .510arccos所成的角为与PB AC ∴ (Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角 ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM.在等腰三角形AMC 中,AN ·MC=AC AC CM ⋅-22)2(, 5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BN AN AB BN AN ANB 故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21. (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP ⊥=⋅==所以故又由题设知AD ⊥DC ,且AP 与与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(-==.510,cos ,2,5||,2||=>=<=⋅==PB AC 所以故由此得AC 与PB 所成的角为.510arccos(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x z y x要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN MC AN 0),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.4|||.555AN BN AN BN ==⋅=-2cos(,).3||||AN BN AN BN AN BN ⋅∴==-⋅2arccos().3-故所求的二面角为19.(Ⅰ)).,0()0,1(+∞⋃-(Ⅱ)0,100,n S q q >-<<>又因为且或1,12,0,;2n n n n q q T S T S -<<->->>所以当或时即120,0,;2n n n n q q T S T S -<<≠-<<当且时即1,2,0,.2n n n n q q T S T S =-=-==当或时即ξ的数学期望为:75.3002.030041.020287.010670.00=⨯+⨯+⨯+⨯=ξE21.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+by a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ①由(1)知.21,23,23222221c b c a c x x ===+ 22.本小题考查数学归纳法及导数应用知识,考查综合运用数学知识解决问题的能力 满分12分(Ⅰ)解:对函数()f x 求导数:22()(log )[(1)log (1)]f x x x x x '''=+--2211log log (1)ln 2ln 2x x =--+- 22log log (1)x x =-- 于是1()02f '=,当12x <时,22()log log (1)0f x x x '=--<,()f x 在区间1(0,)2是减函数, 当12x >时,22()log log (1)0f x x x '=-->,()f x 在区间1(,1)2是增函数,所以21)(=x x f 在时取得最小值,1)21(-=f ,(II )用数学归纳法证明(ⅰ)当n=1时,由(Ⅰ)知命题成立 (ⅱ)假设当n=k 时命题成立即若正数1232,,,,k p p p p 满足12321k p p p p ++++= , 则121222323222log log log log k k p p p p p p p p k ++++≥-当n=k+1时,若正数11232,,,,k p p p p + 满足112321k p p p p +++++= , 令1232k x p p p p =++++11p q x =,22pq x =,……,22k k p q x= 则1232,,,,k q q q q 为正数,且12321k q q q q ++++= ,由归纳假定知121222323222log log log log k k q q q q q q q q k ++++≥-121222323222log log log log k kp p p p p p p p ++++1212223232222(log log log log log )k k x q q q q q q q q x =+++++2()l o g x k x x ≥-+ ①同理,由1212221k k k p p p x ++++++=- ,可得112222*********log log log k k k k k k p p p p p p +++++++++2(1)()(1)log (1)x k x x ≥--+-- ②综合①、②两式11121222323222log log log log k k p p p p p p p p ++++++22()log (1)()(1)log (1)x k x x x k x x ≥-++--+-- 22()log (1)log (1)k x x x x =-++--1(1)k k≥--=-+ 即当n=k+1时命题也成立根据(ⅰ)、(ⅱ)可知对一切正整数n 命题成立。

2005年高考理科数学(湖北)(已整理)

2005年高考理科数学(湖北)(已整理)

A.9
2.对任意实数 a,b,c,给出下列命题:
B.8
C.7
①“ a b ”是“ ac bc ”充要条件; ②“ a 5 是无理数”是“a 是无理数”的充要条件
③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.
其中真命题的个数是
A.1
B.2
C.3
3.已知向量 a=(-2,2),b=(5,k).若|a+b|不超过 5,则 k 的取值范围是 ( )
2005 年普(湖北卷)数学试题卷(文史类)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分. 在每小题给出的四个备选项中,只有一项是符合 题目要求的.
1.设 P、Q 为两个非空实数集合,定义集合 P+Q={a b | a P,b Q},若P {0,2,5},
Q {1,2,6},则 P+Q 中元素的个数是
3
B.
8
7.在 y 2 x , y log2 x, y x 2 , y cos 2x 这四个函数中,当 0 x1 x2 1 时,使
f ( x1 x2 ) f (x1 ) f (x2 ) 恒成立的函数的个数是
A.0
2
2
B.1
8.已知 a、b、c 是直线, 是平面,给出下列命题:
①若 a b,b c,则a // c ;
C.[-6,2]
C.120 倍
16
C.
3
C.2
2.社会主义本质理论对探索怎样建设3.社19会57主年义2月具,有毛重在要《的关实于践正意确义处。理社人会民主内义2.社部本科会矛质学主盾理的义的论1本本问的.邓质质题提小是的》出平创科讲,提新学话为出,内中我“创涵提们社邓新。出寻始会小的邓(找终主平关小1一代义)坚键平种表的我2持在对能.1中本国把科人社9够国质社5发学才会从4先,会展社年,主更进是主作会,人义深生解义为主毛才本层产放制执义在的质次1力生度政理《成所.认社1的产还兴论论长作.识会 发发力刚国和十靠的社主 展展,刚的实大教概会义 才要发建第践关坚育括主本 是求展立一的系2持。,义质 硬、,生,要基》以人一,理 道发大产还务本重发才方从论 理展力力没是成要展资面而把 ,才促,有由果讲社的源强为我 把是进消完中,话会办是调中四们 发(硬先灭全国抓中主法第必国、对 展2道进剥建共住提三义解一)须的科社 生理生削立产“出、经决资采解社学会 产,产,党什(代济前源取放会技主 力是力消还的么1表基进。从和主术义 作)对的除不执是中础科低发义是1的 为吧社3发两完政社9国基的学级展.建第发认 社二国5会展极全地会先本问技到6生设一展识 会、内主,年分巩位主进建题术高产在生才提 主发外义是底化固所义生立,实级力改产是高 义1展一时中我,的决邓产的是力9,革力硬到 建是切间5国最思定怎小力同实和国另3开道了 设党积经共对终想年的样平的时行国家一放理一 的执极验产农达。1,建一发,改民资方中2,个 根政因教党业到(是设月再展我革教本面探是新 本兴素训站、共2对社,强要国开育主指索)适的 任国都的在手一同执会毛调求的放水义出出第创应科 务在的调深时工、富1政主泽,政以平的4了一三造.时学 ,社第动刻坚代.业发裕规义东中一治来,过2解条节性代水 符会一起总持前.和展。律”关社 国个领我始度放发、地主平 合阶要来结社列资才”认这于会 社公域们终形和展社提题。 马级务为。会,本是1识个总主 会有也党是式发更会9出变社 克二关中主保硬的根8路义 主制发的衡。展快主了化会 思6、系国义持道3深本线基 义占生一年量所生、义社.的主社发解用工现理化问的本 基主了条,综谓产人的会需义会生决和业金商,题1完制 本体重主邓合国力民根主要本 基.主变事所平化向业1也,整度 制,大要小国家的享本9义。质 本义化业有方建的是深5的度一变经平力资手受社任理 原6本的服问法设根社对刻表确 的个化验年提和本段到会 1务论 理第质同务题进与本会一党揭.述立 确共,。出社主社和社主基的 ,二理时的行社体主、实示:, 立同确苏“会义会目会3义本提 是节论,基关改会现义社现了.从为 ,富立共社文,社主的主一改矛出 巩、的我本键造主和改会其社中当 使裕了二会明就会义。义、造盾, 固对重国方是。义根造之所会华代 占,中十主程是主基建中的和为 和第社要针这改本基一承主人中 世这国大义度在义本设国基两进 发一会意。靠不造要本本担义民国 界是共以财的国基制内成特本类一 展节主义的(自仅同求完质的本共一 人我产后富重家本度涵果色完矛步 社、义主2己保时。成理历质和切 口们党毛属要直)制的包最伴社成盾推 会中本要的证并,论史,国发 四必领泽于标接正度确括大随会,的进 主国质矛发了举标第的这成展 分须导东人志控确的立(,着主是学改 义特理盾展2社。志五提需是立进 之坚的提民。制处确是1.能社义我说采革 制色论也。会实着章)出要对,步 一持人出,和理立中够会建国,取开 度社的发的践中把。马到奠 的民要社支经,国社充经设强积放 的会提生稳证国解克社定 东民“会配济是历会分济道调极和 必主出了定明历放思会了 方主以下建4广史主体制路要引社 然义变,.史和主主把制 大专苏义的设大上义现度初严导会 要二建化而党上发义义对度 国政为的资和劳最的出和步经格、主 求设。且坚长展的改企基 进党的鉴致本社动深本对社探济区逐义 。确道人极持达生重造业础 入在根社”富主会人刻质资会索结分步现立路民大社数产大基的。 了过本会,是义发民最和本经的构过代社的对的会千力逐发本改社渡原主探全经展真伟根主济理发正渡化会初于促主年概步展完造会时则义索民济中正大本义结论生确的建新主步经进义的括实,成和主期。基自共的成任优构成了处方设中义探济了改阶为现对,对义总本己同国一为社务越的果根理式提国基索文社造级国于这人制 社路政的致家系国会性根本两。供的本化会与剥家建是的度 会线治道富资列家变的一本变类中了成制迅主社削的设一改的 ,第制路。本重的革道、变化不国强立度速义会制社中个造建 这三主度。社大主,路社化,同这大,的发事主度的会国过结立 是节要。会义关人也,1会社性场的标重展业义的本主特.渡合极 世、内人主有系解和是奠主我会质巨思志大的的工结(质义色时起大 界社容民义初。决社2定义国主的大想着意需发业束30。工社期来地 社(会被民原级了会)世了基社义矛而武我义要展化,(业会。,提 会2主概则和3在生把纪理本会经盾深器国同),同实2化主党把高 主对义括专,高一产资中)论制的济,刻。新经遵改总时现新是义在对了 义手制为政第级个资本国强基度阶成在特的通民济循革之并了民党具这资工 运二七度“实一形以料主又调础的级分新别社过主文自4过,举由主在有个本人 动、届 业在一质是式农的.(义一消,初关已民是它会(没主化愿于和的新主过重过主阶 史新社二 的中化上发之民主1工次灭开步系占主要是变4收义不互集平方民()义渡大渡义级 上民会中 社国三已展)分为人商划剥阔确也绝主正中革官能利中改针主3用社时的时工和 又主全 会的改成生坚。主)业时削了立发对义确国,僚命满、的造,主和会期理期商广 一主义会确”为产持初题正者代,广2生优革处革不资阶足典计解对义平的论.的业大 个义改提立。无,积级资的确改的消阔了势命理命仅√本段人型划决于向赎五总和总搞劳 历革造出 改“产第极形本、分造历除前根,理人的没中而民示体了在社3买种路实路糟动 史命的使 造一阶二领式主落(.析成史两景本社论民具有国形基需党范制诸深会的经线践线成人 性理历中 ,化级是导的义后1农为巨极。√的会内体对革成本要的和如刻主)方济的意和为民 的论史国 党”专共、工的村自变分邓中主指部实生命的结建国初实的义积法成主义总自的 伟是经“ 和即政同稳家商半的食。化小国义导矛际产在走社束状设家步现社的极改分体。任食积 大以验稳 政社;致步资业殖阶其们平社革。公下盾出力一农会和况。帮构社会转引造—。务其极 胜一毛步 府会人富前本的民级力吐对1会命有,。发的个村主社之加助想会变导资—要.,力性 利、泽地 采主民。进农社地和的出社第必制中(,发以包义会间强的,变革农本社从是的和 。适东由 取义代”的业会半阶社了会二须已国3不展农围的主党原要革中社民主会根)要社创合为农 了工表这方是、主封层会最主节级走成共拘造民城国义矛的则求与保会组义主本从在会造中主业 积大段针国手义建状主终义、构农为产泥成为市营改盾建,2中经持主织工义上全一主性国要极化会话,家工改的.况义达本社成村我党武于破主、经造,设以央济社义起商性改体个义。特代转 领,制成采对业造东,劳到质会主包国领装已坏体武济阶成,互向发会基来业中质变人相劳点表变 导“度为取私的方制动�
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年高考理科数学湖北卷一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的上个选项中,中有一项是符合题目要求的)1.设P 、Q 为两个非空数集,定义集合P+Q={a+b|a ∈P ,b ∈Q}若P={0,2,5},Q={1,2,6},则P+Q 中元素的个数是A .9B .8C .7D .6 2.对任意实数a ,b ,c ,给出下列命题:①“a=b ”是“ac=bc ”的充要条件;②“a+5是无理数”是“a 是无理数”的充要条件;③“a>b ”是“a 2>b 2”的充分条件; ④“a<5”是“a<3”的必要条件 其中真命题的个数是A .1B .2C .3D .43.ii i ++-1)21)(1(=A .-2-iB .-2+iC .2-iD .2+i4. 函数|1|||ln --=x e y x 的图象大致是 ( )A B C D5.双曲线)0(122≠=-mn ny m x 的离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为A .163 B .83 C .316 D .38 6.在x y x y x y y x2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是 A .0 B .1 C .2 D .3 7.若)20(tan cos sin παααα<<=+,则∈αA .(0,6π) B .(6π,4π) C .(4π,3π) D .(3π,2π) 8.若1)11(lim 21=---→x bx a x ,则常数a ,b 的值为A .a=-2,b=4B .a=2,b=-4C .a=-2,b=-4D .a=2,b=4 9.若20π<<x ,则2x 与3sinx 的大小关系:A .2x>3sinxB .2x<3sinxC .2x=3sinxD .与x 的取值有关 10.如图,在三棱柱C B A ABC '''-中,点E 、F 、H 、K 分别为C A '、B C '、B A '、C B '' 的中点,G 为ΔABC 的重心从K 、H 、G 、B '中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为 A .K B .H C .G D .B '11.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,223,250;②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④305784111138165192219246270 关于上述样本的下列结论中,正确的是A .②、③都不能为系统抽样B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样12.以平行六面体D C B A ABCD ''''-的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率p 为A .385367B .385376C .385192D .38518二、填空题(本大题共4小题,每小题4分 ,共16分把答案填写在答题卡相应的位置上)13.已知向量a=(-2,2),b=(5,k |a+b|不超过5,则k 的取值范围是14.5)212(++xx 的展开式中整理后的常数项等于 15.设等比数列{n a }的公比为q ,前n 项和为n S ,若1+n S ,n S ,2+n S 成等差数列,则q 的值为16.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元在满足需要的条件下,最少要花费 元三、解答题(本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 17.(本小题满分12分)已知向量a =(2x ,x+1),b = (1-x ,t)若函数)(x f =a ·b 在区间(-1,1)上是增函数,求t 的取值范围 18.(本小题满分12分)在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD=5,求sinA 的值19.(本小题满分12分)某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一量某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9求在一年内李明参加驾照考试次数ξ的分布列和ξ的期望,并求李明在一所内领到驾照的概率 20.(本小题满分12分)如图,在四棱锥P —ABC 右,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,AB=3,BC=1,PA=2,E 为PD 的中点(Ⅰ)求直线AC 与PB 所成角的余弦值;(Ⅱ)在侧面PAB 内找一点N ,使NE ⊥面PAC , 并求出N 点到AB 和AP 的距离21.(本小题满分12分)设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由 22.(本小题满分14分)已知不等式][log 21131212n n >+++ ,其中n 为大于2的整数,][log 2n 表示不超过n 2log {n a }的各项为正,且满足111,)0(--+≤>=n n n a n na a b b a ,,4,3,2=n(Ⅰ)证明:][log 222n b ba n +<, ,5,4,3=n ;(Ⅱ)猜测数列{n a }是否有极限?如果有,写出极限的值; (Ⅲ)试确定一个正整数N ,使得当n>N 时,对任意b>0,都有51<n a2005年高考理科数学湖北卷试题及答案参考答案1.B 2.B 3.C 4.D 5.A 6.B 7.C 8.C 9.D 10.C 11.D 12.A 13.[-6,2] 14.2263 15.-2 16.500 17.解法一:依定义t tx x x x t x x x f +++-=++-=232)1()1()(则t x x x f ++-='23)(2,若)(x f 在(-1,1)上是增函数,则在(-1,1)上可设)(x f '≥0∴)(x f '≥0x x t 232-≥⇔在(-1,1)上恒成立考虑函数x x x g 23)(2-=,由于)(x g 的图象是对称轴为31=x ,开口向上的抛物线,故要使x x t 232-≥在(-1,1)上恒成立)1(-≥⇔g t ,即t ≥5而当t ≥5时,)(x f '在(-1,1)上满足)(x f '>0,即)(x f 在(-1,1)上是增函数故t 的取值范围是t ≥5解法二:依定义t tx x x x t x x x f +++-=++-=232)1()1()(,t x x x f ++-='23)(2若)(x f 在(-1,1)上是增函数,则在(-1,1)上可设)(x f '≥0∵)(x f '的图象是开口向下的抛物线,∴当且仅当01)1(≥-='t f ,且05)1(≥-=-'t f 时,)(x f '在(-1,1)上满足)(x f '>0,即)(x f 在(-1,1)上是增函数故t 的取值范围是t ≥518.解法一:设E 为BC 的中点,连接DE ,则DE//AB ,且36221==AB DE ,设BE=x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 2222⋅-+=,x x 6636223852⨯⨯++=,解得1=x ,37-=x (舍去) 故BC=2,从而328cos 2222=⋅-+=B BC AB BC AB AC ,即3212=AC 又630sin =B ,故6303212sin 2=A ,1470sin =A 解法二:以B 为坐标原点,为x 轴正向建立直角坐标指法,且不妨设点A 位于第一象限由630sin =B ,则)354,34()sin 364,cos 364(==B B , 设=(x ,0),则352,634(x += 由条件得)352()634(||22=++=x 从而x=2,314-=x (舍去)故354,32(-=CA 于是14149809498091698098||||cos =+⋅++-=⋅=CA BA A ∴1470cos 1sin 2=-=A A 解法三:过A 作AH ⊥BC 交BC 于H ,延长BD 到P 使BP=DP ,连接AP 、PC过窗PN ⊥BC 交BC 的延长线于N ,则354,34cos ===AH B AB HB , 310)354()52(222222=-=-=-=AH BP PN BP BN , 而34==HB CN ,∴BC=BN=CN=2,32=HC ,321222=+=HC AH AC 故由正弦定理得6303212sin 2=A ,∴1470sin =A 19.解:ξ的取值分别为1,2,3,4ξ=1,表明李明第一次参加驾照考试就通过了,故P (ξ=1)=0.6ξ=2,表明李明在第一次考试未通过,第二次通过了,故P (ξ=2)=(1-0.6)×0.7=0.28ξ=3,表明李明在第一、二次考试未通过,第三次通过了,故P (ξ=3)=(1-0.6)×(1-0.7)×0.8=0.096ξ=4,表明李明在第一、二、三次考试都未通过,故P (ξ=4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024∴李明实际参加考试次数ξ的分布列为∴ξ的期望E ξ=1×0.6+2×0.28+3×0.096+4×0.024=1.544李明在一年内领到驾照的概第为1-(1-0.6)×(1-0.7)×(1-0.8)×(1-0.9)=0.9976 20.解法一:(Ⅰ)建立如图所示的空间直角坐标系,则A 、B 、C 、D 、P 、E 的坐标分别为A (0,0,0),B (3,0,0),C (3,1,0),D (0,1,0), P (0,0,2),E (0,21,2) 从而=(3,1,0),=(3,0,-2)设AC 与PB 的夹角为θ,则1473723||||cos ==⋅=PB AC θ, ∴AC 与PB 1473(Ⅱ)由于N 点在侧面PAB 内,故可设N 点坐标为(x ,0,z ), 则1,21,(z x ME --= 由NE ⊥面PAC 可得:⎪⎩⎪⎨⎧=⋅=⋅,0,0即⎪⎪⎩⎪⎪⎨⎧=⋅--=⋅--,0)0,1,3()1,21,(,0)2,0,0()1,21,(z x z x化简得⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=+-=-.1,63.0213,01z x x z即N 点的坐标为(63,0,1),从而N 点到AB 、AP 的距离分别为163解法二:(Ⅰ)设AC ∩BD=O ,连OE ,则OE//PB ,∴∠EOA 即为AC 与PB 所成的角或其补角在ΔAOE 中,AO=1,OE=21PB=27,AE=21PD=25,∴14173127245471cos =⨯⨯-+=EOA 即AC 与PB 14173 (Ⅱ)在面ABCD 内过D 作AC 的垂线交AB 于F ,则6=∠ADF连PF ,则在Rt ΔADF 中DF=33tan ,332cos ===ADF AD AF ADF AD 设N 为PF 的中点,连NE ,则NE//DF ,∵DF ⊥AC ,DF ⊥PA ,∴DF ⊥面PAC 从而NE ⊥面PAC∴N 点到AB 的距离=21AP=1,N 点到AP 的距离=216321.(Ⅰ)解法一:依题意,可设直线AB 的方程为y=k (x-1)+3,代入λ=+223y x ,整理得:0)3()3(2)3(222=--+--+λk x k k x k ①设A (11,y x ),B (22,y x ),则1x ,2x 是方程①的两个不同的根, ∴0])3(3)3([422>--+=∆k k λ,② 且3)3(2221+-=+k k k x x 由N (1,3)是线段AB 的中点,得21x x +=2, ∴)3(2+=-k k k 解得k=-1,代入②得12>λ,即λ的取值范围是(12,+∞)于是直线AB 的方程为)1(3--=-x y ,即4=-+y x 解法二:设A (11,y x ),B (22,y x ),则有)())((3.3,321212122222121=-++-⇒⎪⎩⎪⎨⎧=+=+y y x x x x y x y x λλ 依题意,212121,y y k x x AB +=∴≠∵N (1,3)是AB 的中点,∴21x x +=2,21y y +=6,从而1-=AB k又由N (1,3)在椭圆内,∴1231322=+⨯>λ, ∴λ的取值范围是(12,+∞)直线AB 的方程为)1(3--=-x y ,即4=-+y x(Ⅱ)解法一:∵CD 垂直平分AB ,∴直线CD 的方程为y-3=x-1,即x-y+2=0代入椭圆方程,整理得4442=-++λx x ③又设C (33,y x ),D (44,y x ),CD 的中点为M (00,y x ), 则3x ,4x 是方程③的两根, ∴3x +4x =-1,且232,200210=+==+=x y x x x ,即M (21-,23)于是由弦长公式可得)3(2||)1(||432-=-⋅-+==λx x kCD ④将直线AB 的方程04=-+y x 代入椭圆方程得16842=-+-λx x ⑤同理可得)12(2||1||212-=-⋅+=λx x k AB ⑥∵当12>λ时,)3(2-λ>)12(2-λ,∴|AB|<|CD|假设存在12>λ,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心点M 到直线AB 的距离为2232|42321|2|4|00=-+-=-+=y x d 于是,由④⑥⑦式及勾股定理可得2222|2|2321229|2|||||CD AB d MB MA =-=-+=+==λλ故当12>λ时,A 、B 、C 、D 四点均在以M 为圆心,|2CD|为半径的圆上(注:上述解法中最后一步可按如下解法获得: A 、B 、C 、D 共圆⇔ACD 为直角三角形,A 为直角⇔||||||2DN CN AN ⋅=,即)2||)(2||()2||(2d CD d CD AB -+=⑧ 由⑥式知,⑧式左边=212-λ,由④⑦知,⑧式右边==--=--+-2923)2232)3(2)(2232)3(2(λλλ2∴⑧式成立,即A 、B 、C 、D 四点共圆)解法二:由(Ⅱ)解法一知12>λ,∵CD 垂直平分AB ,∴直线CD 的方程为y-3=x-1,代入椭圆方程,整理得4442=-++λx x ③将直线AB 的方程04=-+y x 代入椭圆方程整理得16842=-+-λx x ⑤解③和⑤式可得21222,1-±=λx ,2314,3-±-=λx ,不妨设A (12211-+λ,12213--λ), C (231---λ,233--λ),D (231-+-λ,233-+λ)∴⎪⎪⎭⎫⎝⎛-+---+-+=23123,23123λλλλCA , ⎪⎪⎭⎫ ⎝⎛-------+=23123,23123λλλλDA , 计算可得0=⋅,∴A 在以CD 为直径的圆上又B 为A 关于CD 的对称点, ∴A 、B 、C 、D 四点共圆(注:也可用勾股定理证明AC ⊥AD )22.(Ⅰ)证法一:∵当n ≥2时,110--+≤<n n n a n na a ,∴n a a n a n a n n n n 111111+=++≥---,即na a n n 1111≥--, 于是有211112≥-a a ,311123≥-a a ,…,na a n n 1111≥--, 所有不等式两边相加可得na a n 3121111+++≥- 由已知不等式知,当n ≥3时有][log 211121n a a n ≥-∵b a <1,∴bn b a n 2][log 211122=+> ∴][log 22n b a n +<证法二:设nn f 13121)(+++=,首先利用数学归纳法证不等式,5,4,3,)(1=+≤n bn f b a n (ⅰ)当n=3时,由b f b a a a a a a )3(11223313333112223+=++⋅≤+=+≤, 知不等式成立 (ⅱ)假设当n=k (k ≥3)时,不等式成立,即b k f b a k )(1+≤,则 ,)1(1)11)((1)()1()1()1(1)(1)1(1111)1()1(1b k f b b k k f b b b k f k k b k bb k f k k a k k a k a k a k k k k ++=+++=+++++=++⋅++≤+++=+++≤+ 即当n=k+1时,不等式也成立由(ⅰ)(ⅱ)知,,5,4,3,)(1=+≤n b n f b a n 又由已知不等式得,5,4,3,][log 22][log 21122=+=+≤n n b b b n ba n (Ⅱ)有极限,且lim =∞→n n a (Ⅲ)∵][log 2][log 2222n n b b <+,令51][log 22<n , 则有1024210][log log 1022=>⇒>≥n n n ,故取N=1024,可使沁n>N 时,都有51<n a。

相关文档
最新文档