最新整理中考数学《填空压轴题》专题练习(1)(含解析)汇总
江苏中考数学《填空压轴题》专题练习含解析

2016年中考数学《填空压轴题》专题练习(1)1. (2015年广东4分)如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是.(第1题)(第2题) 2. (2015年广东深圳3分)如图,已知点A 在反比例函数(0)k y x x=<上,作Rt ABC ∆,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E ,若BCE ∆的面积为8,则k =.3. (2015年广东汕尾5分)(2015年广东梅州3分)若()()121212121a b n n n n =+-+-+,,对任意自然数n 都成立,则a =,b =; 计算:11111335571921m =+++⋅⋅⋅+=⨯⨯⨯⨯..4. (2015年广东广州3分)如图,四边形ABCD 中,∠A =90°,AB =AD =3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为.(第4题)(第6题)(第7题)5. (2015年广东佛山3分)各边长度都是整数,最大边长为8的三角形共有个.6. (2015年陕西3分)如图,AB 是⊙O 的弦,AB =6,点C 是⊙O 上的一个动点,且∠ACB =45°.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是.7. (2015年浙江衢州4分)如图,已知直线334y x =-+分别交x 轴、y 轴于点A 、B ,P 是抛物线21252y x x =-++上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ BQ =时,a 的值是.【8. (2015年浙江绍兴5分)(2015年浙江义乌4分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm 高度处连通(即管子底端离容器底5cm ),现三个容器中,只有甲中有水,水位高1cm ,如图所示. 若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升65cm ,则开始注入分钟的水量后,甲与乙的水位高度之差是0.5cm.(第8题)(第9题)9. (2015年浙江台州5分)如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为。
中考数学填空压轴题选编(含答案)

中考数学填空压轴题选编1. 直角坐标系中直线AB 交x 轴,y 轴于点A (4,0)与 B (0,-3),现有一半径为1的动圆的圆心位于原点处,以每秒1个单位的速度向右作平移运动,则经过 秒后动圆与直线AB 相切.2.k 是整数,已知关于x 的一元二次方程kx 2+(2k -1)·x +k -1=0只有整数根,则k =________.3.对于实数u ,v ,定义一种运算“*”为u *v =uv +v .若关于x 的方程x *(a *x )=-41有两个相等的实数根,则满足条件的实数a 的值是________.4.按一定规律排列的一列数依次为:21,31,101,151,261,351…,按此规律排列下去,这列数中的第9个数是________.5. 如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 _.6.如图,P 为边长为2的正三角形中任意一点,连接PA 、PB 、P C ,过P 点分别做三边的垂线,垂足分别为D 、E 、F ,则 PD+PE+PF= ;阴影部分的面积为__________.7. 如图,正方形OA 1B 1C 1的边长为2,以O 为圆心、OA 1为半径作弧A 1C 1交OB 1于点B 2,设弧A 1C 1与边A 1B 1、B 1C 1围成的阴影部分面积为1S ;然后以OB 2为对角线作正方形OA 2B 2C 2,又以O 为圆心、OA 2为半径作弧A 2C 2交OB 2于点B 3,设弧A 2C 2与边A 2B 2、B 2C 2围成的阴影部分面积为2S ;…,按此规律继续作下去,设弧n n A C 与边n n A B 、n n B C 围成的阴影部分面积为n S .则=1S ,=n S .8.如图所示,将一张矩形纸片对折,可得到一条折痕(图中的虚线),连续对折,对折时每次折痕与上次折痕保持平行,连续操作三次可以得到7条折痕,那么对折n 次可得到折痕的条数是________.…9.如图,在Rt △ABC 中,∠C =90°,BC =3,AC =4,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C′点,那么△ADC′的面积是___________________.o xyAB第1题图 (第5题)10. 在Rt △ABC 中,∠ACB=90°,BC <AC ,若214BC AC AB ⋅=,则∠A = °. 11. 如图,在平面直角坐标系xOy 中,1B (0,1),2B (0,3),3B (0,6),4B (0,10),…,以12B B 为对角线作第一个正方形1112A B C B ,以 23B B 为对角线作第二个正方形2223A B C B ,以34B B 为对角线作第三个正方形3334A B C B ,…,如果所作正方形的对角线1n n B B +都在 y 轴上,且1n n B B +的长度依次增加1个单位,顶点n A 都在第一象 限内(n ≥1,且n 为整数).那么1A 的纵坐标为 ;用n 的代数式表示n A 的纵坐标: .12.在平面直角坐标系中,我们称边长为1、且顶点的横、纵坐标均为整数的正方形为单位格点正方形.如图,在菱形ABCD 中,四个顶点坐标分别是(-8,0),(0,4),(8,0),(0,-4),则菱形ABCD 能覆盖的单位格点正方形的个数是 个;若菱形A n B n C n D n 的四个顶点坐标分别为(-2n ,0),(0,n ),(2n ,0),(0,-n )(n 为正整数),则菱形A n B n C n D n 能覆盖的单位格点正方形的个数为 (用含有n 的式子表示).13.一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).14. 下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_____________(请填图形下面的代号)。
中考数学填空题压轴题精选(含答案),初中数学50道经典难题汇总及答案解析

名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
中考数学---几何选择填空压轴题精选1

中考数学---几何选择填空压轴题精选1一.选择题:1.如下图1,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A. 1个B. 2个C. 3个D. 4个2、如上图2,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个3.如上图3,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGE;④图中有8个等腰三角形.其中正确的是()A.①③ B.②④ C.①④ D.②③4.如下图1,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A.B. C. D.5、如上图2,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个 B.2个 C.3个 D.4个6.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下图1,下列结论:①(BE+CF)=BC;②S△AEF ≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个7.如上图2,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD =S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有()A.①④⑤B.①②④C.③④⑤D.②③④8.如上图3,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE 交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是()A.①②③B.①②④C.①②⑤D.②④⑤9.如下图1,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④10.正方形ABCD、正方形BEFG和正方形RKPF的位置如上图2所示,点G在线段DK上,正方形BEFG 的边长为4,则△DEK的面积为()A. 10B. 12C. 14D. 16二.填空题1.如下图1,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形, 图4中有30个菱形…,则第6个图中菱形的个数是 个.2.如下图2,在△ABC 中,∠A=α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1; ∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; …;∠A 2011BC 与∠A 2011CD 的平分线相交于点A 2012,得∠A 2012,则∠A 2012= .3.如下图1,已知Rt △ABC 中,AC=3,BC=4,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,C 1A 2,…,则CA 1= ,= .4、如上图2,点A 1,A 2,A 3,A 4,…,A n 在射线OA 上,点B 1,B 2,B 3,…,B n ﹣1在射线OB 上, 且A 1B 1∥A 2B 2∥A 3B 3∥…∥A n ﹣1B n ﹣1,A 2B 1∥A 3B 2∥A 4B 3∥…∥A n B n ﹣1,△A 1A 2B 1,△A 2A 3B 2,…,△A n ﹣1A n B n ﹣1为阴影三角形,若△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,则△A 1A 2B 1的面为 ; 面积小于2011的阴影三角形共有 个. 5、如下图1,已知点A 1(a ,1)在直线l :上,以点A 1为圆心,以为半径画弧,交x 轴于点B 1、B 2,过点B 2作A 1B 1的平行线交直线l 于点A 2,在x 轴上取一点B 3,使得A 2B 3=A 2B 2,再过点B 3作A 2B 2的平行线交直线l 于点A 3,在x 轴上取一点B 4,使得A 3B 4=A 3B 3,按此规律继续作下去, 则①a= ;②△A 4B 4B 5的面积是 .6、如下图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有.7、如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为.8、如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于.9.如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD =15cm2,S△BQC=25cm2,则阴影部分的面积为cm2.中考数学---几何选择填空压轴题精选1答案一.选择题:1、解:作EJ⊥BD于J,连接EF①∵BE平分∠DBC ∴EC=EJ,∴△DJE≌△ECF ∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22.5°∴∠EHF=180°﹣67.5°﹣22.5°=90°∵DH=HF,OH是△DBF的中位线∴OH∥BF ∴OH=BF②∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF,∴∠EBC=∠CDF=22.5°,∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,故②正确;③∵OH是△BFD的中位线,∴DG=CG=BC,GH=CF,∵CE=CF,∴GH=CF=CE∵CE<CG=BC,∴GH<BC,故此结论不成立;④∵∠DBE=45°,BE是∠DBF的平分线,∴∠DBH=22.5°,由②知∠HBC=∠CDF=22.5°,∴∠DBH=∠CDF,∵∠BHD=∠BHD,∴△DHE∽△BHD,∴=∴DH=HE•HB,故④成立;所以①②④正确.故选C.(第5题图)2、解:根据BE=AE,∠GBE=∠CAE,∠BEG=∠CEA可判定①△BEG≌△AEC;用反证法证明②∠GAC≠∠GCA,假设∠GAC=∠GCA,则有△AGC为等腰三角形,F为AC的中点,又BF⊥AC,可证得AB=BC,与题设不符;由①知△BEG≌△AEC 所以GE=CE 连接ED、四边形ABED为平行四边形,∵∠ABC=45°,AE⊥BC于点E,∴∠GED=∠CED=45°,∴△GED≌△CED,∴DG=DC;④设AG为X,则易求出GE=EC=2﹣X 因此,S△AGC =SAEC﹣SGEC=﹣+x=﹣(x2﹣2x)=﹣(x2﹣2x+1﹣1)=﹣(x﹣1)2+,当X取1时,面积最大,所以AG等于1,所以G是AE中点,故G为AE中点时,GF最长,故此时△AGC的面积有最大值.故正确的个数有3个.故选C.3、解:∵DF=BD,∴∠DFB=∠DBF,∵AD∥BC,DE=BC,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE,∵DE=DC,∴∠DEG=∠DCE,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°﹣(∠BGD+∠EGF)=180°﹣(∠BGD+∠BGC),=180°﹣(180°﹣∠DCG)÷2=180°﹣(180°﹣45°)÷2=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD,∴∠EDG=∠CGB=∠CBF,∴∠GDH=∠GHD,∴S△CDG =S▭DHGE.故选D.4、解:∵矩形ABCD的对角线互相平分,面积为5,∴平行四边形ABC1O1的面积为,∵平行四边形ABC1O1的对角线互相平分,∴平行四边形ABC2O2的面积为×=,…,依此类推,平行四边形ABC2009O2009的面积为.故选B.5、解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,正确;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;(见上图)④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形;∴BN=PB=PC,正确.故选D.6、解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠MDN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF.在△AED与△CFD中,∵,∴△AED≌△CFD(ASA),∴AE=CF,在Rt△ABD中,BE+CF=BE+AE=AB==BD=BC.故①正确;设AB=AC=a,AE=CF=x,则AF=a﹣x.∵S△AEF =AE•AF=x(a﹣x)=﹣(x﹣a)2+a2,∴当x=a时,S△AEF有最大值a2,又∵S△ABC =×a2=a2,∴S△AEF≤S△ABC.故②正确;EF2=AE2+AF2=x2+(a﹣x)2=2(x﹣a)2+a2,∴当x=a时,EF2取得最小值a2,∴EF≥a(等号当且仅当x=a时成立),而AD=a,∴EF≥AD.故④错误;由①的证明知△AED≌△CFD,∴S四边形AEDF =S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,∵EF≥AD,∴AD•EF≥AD2,∴AD•EF>S四边形AEDF故③错误;当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.故⑤正确.综上所述,正确的有:①②⑤,共3个.故选C.7、解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵tan∠AED=,由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴tan∠AED=>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD >S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∴其中正确结论的序号是:①④⑤.故选:A.8、解:①由∠ABC=90°,△BEC为等边三角形,△ABE为等腰三角形,∠AEB+∠BEC+∠CEH=180°,可求得∠CEH=45°,此结论正确;②由△EGD≌△DFE,EF=GD,再由△HDE为等腰三角形,∠DEH=30°,得出△HGF为等腰三角形,∠HFG=30°,可求得GF∥DE,此结论正确;③由图可知2(OH+HD)=2OD=BD,所以2OH+DH=BD此结论不正确;④如图,过点G作GM⊥CD垂足为M,GN⊥BC垂足为N,设GM=x,则GN=x,进一步利用勾股定理求得GD=x,BG=x,得出BG=GD,此结论不正确;⑤由图可知△BCE和△BCG同底不等高,它们的面积比即是两个三角形的高之比,由④可知△BCE的高为(x+x)和△BCG的高为x,因此S△BCE :S△BCG=(x+x):x=,此结论正确;故正确的结论有①②⑤.故选C.9、解:(1)连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.(上图2)(2)∵FH⊥AE,FH=AF,∴∠HAE=45°.(3)连接AC交BD于点O,可知:BD=2OA,(上图3)∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.(4)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,根据△MEC≌△CIM,(见下图2)可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故(1)(2)(3)(4)结论都正确.故选D.10、解:如下图1,连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△DGE =S△GEB(同底等高的两三角形面积相等),同理S△GKE=S△GFE.∴S阴影=S△DGE+S△GKE=S△GEB+S△GEF=S正方形GBEF=4×4=16 故选D.二.填空题:1、解:观察图形,发现规律:图1中有1个菱形,图2中有1+22=5个菱形,图3中有5+32=14个菱形,图4中有14+42=30个菱形,则第5个图中菱形的个数是30+52=55,第6个图中菱形的个数是55+62=91个.故答案为91.2、解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=(∠A+∠ABC),整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2012=.故答案为:.3、解:在Rt△ABC中,AC=3,BC=4,∴AB=,又因为CA1⊥AB,∴AB•CA1=AC•BC,即CA1===.∵C4A5⊥AB,∴△BA5C4∽△BCA,∴,∴==.所以应填和.4、解:由题意得,△A2B1B2∽△A3B2B3,∴==,==,又∵A1B1∥A2B2∥A3B3,∴===,==,∴OA1=A1A2,B1B2=B2B3继而可得出规律:A1A2=A2A3=A3A4…;B1B2=B2B3=B3B4…又△A2B1B2,△A3B2B3的面积分别为1、4,∴S△A1B1A2=,S△A2B2A3=2,继而可推出S△A3B3A4=8,S△A4B4A5=32,S△A5B5A6=128,S△A6B6A7=512,S△A7B7A8=2048,故可得小于2011的阴影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6个.故答案是:;6.5、解:如图所示:①将点A1(a,1)代入直线1中,可得,所以a=.②△A1B1B2的面积为:S==;因为△OA1B1∽△OA2B2,所以2A1B1=A2B2,又因为两线段平行,可知△A1B1B2∽△A2B2B3,所以△A2B2B3的面积为S1=4S;以此类推,△A4B4B5的面积等于64S=.6、解:∵梯形ABCD中,AD∥BC,EA⊥AD,∴AE⊥BC,即②正确.∵∠MBE=45°,∴BE=ME.在△ABE与△CME中,∵∠BAE=∠MCE,∠AEB=∠CEM=90°,BE=ME,∴△ABE≌△CME,∴AB=CM,即①正确.∵∠MCE=∠BAE=90°﹣∠ABE<90°﹣∠MBE=45°,∴∠MCE+∠MBC<90°,∴∠BMC>90°,即③⑤错误.∵∠AEB=∠CEM=90°,F、G分别是AB、CM的中点,∴EF=AB,EG=CM.又∵AB=CM,∴EF=EG,即④正确.故正确的是①②④.7、解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM==,∴AC=,同理可得AC1=AC=()2,AC2=AC1=3=()3,按此规律所作的第n个菱形的边长为()n﹣1故答案为()n﹣1.8、解:∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,(见上图3)同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形.∴EH=FG(矩形的对边相等);又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF=,∴HF=5,又∵HE•EF=HF•EM,∴EM=,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=,∴AD:AB=5:=.故答案为:.9、解:如图,连接EF;∵△ADF与△DEF同底等高,∴S△ADF =S△DEF即S△ADF﹣S△DPF=S△DEF﹣S△DPF,即S△APD =S△EPF=15cm2,同理可得S△BQC=S△EFQ=25cm2,∴阴影部分的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为40.。
填空压轴题(函数篇)-2023年中考数学压轴题专项训练(解析版)

填空压轴题(函数篇)1.压轴题速练1一.填空题(共40小题)1(2023•上虞区模拟)已知点A 在反比例函数y =12x(x >0)的图象上,点B 在x 轴正半轴上,若△OAB 为等腰直角三角形,则AB 的长为23或26 .【答案】23或26.【分析】因为等腰三角形的腰不确定,所以分三种情况分别计算即可.【详解】解:当AO =AB 时,此时∠OAB =90°;∵A 在函数y =12x(x >0)上,∴S △OAB =12,∴12×OA ×AB =12,即12AB 2=12,∴AB =24=26;当AB =BO 时,此时∠ABO =90°;∵A 在函数y =12x (x >0)上,∴S △AOB =122=6,∴12×OB ×AB =6,即12AB 2=6,∴AB =23,当OA =OB 时,A 点落在y 轴上,故不合题意,综上所述,AB 的长为23或26.故答案为:23或26.2(2023•姑苏区校级一模)在平面直角坐标系xOy 中,对于点P (a ,b ),若点P '的坐标为ka +b ,a +b k(其中k 为常数且k ≠0),则称点P '为点P 的“k -关联点”.已知点A 在函数y =3x (x >0)的图象上运动,且A 是点B 的“3-关联点”,若C (-1,0),则BC 的最小值为 3105 .【答案】3105.【分析】由A 是点B 的“3-关联点”,可设点B 坐标,表示出点A 坐标,由点A 在函数y =3x(x >0)的图象上,就得到点B 在一个一次函数的图象上,可求出这条直线与坐标轴的交点M 、N ,过C 作这条直线的垂线,这点到垂足之间的线段CB ,此时CB 最小,由题中的数据,可以证明出△MON ∽△MBC ,进而得出MNMC =ONBC,进而求出BC .【详解】解:过点B 作QB ⊥MN ,垂足为B ,设B (x ,y ),∵A 是点B 的“3-关联点”,∴A 3x +y ,x +y3 ,∵点A 在函数y =3x (x >0)的图象上,∴(3x +y )x +y3=3,即:3x +y =3或2x +y =-3(舍去x <0,y <0),∴y =-3x +3,∴点B 在直线y =-3x +3上,直线y =-3x +3与x 轴、y 轴相交于点M 、N ,则M (1,0)、N (0,3),∴MN =12+32=10,MC =MO +OC =1+1=2,当CB ⊥MN 时,线段BC 最短,∵∠CBM =∠NOM =90°,∠CMB =∠NMO ,∴△MON ∽△MBC ,∴MN MC =ON BC ,即102=3BC,解得:BC =3105,故答案为:3105.3(2023•海门市一模)如图,在平面直角坐标系xOy 中,已知点A (m ,n ),B (m +4,n -2)是函数y =kx(k >0,x >0)图象上的两点,过点B 作x 轴的垂线与射线OA 交于点C .若BC =8,则k 的值为6.【答案】6.【分析】作AD ⊥x 轴于点D ,设直线CB 与x 轴交于点E ,根据AD ∥CE ,得AD CE =ODOE,所以n =32m ,即可得到点A m ,32m ,B m +4,32m -2 ,代入y =kx (k >0,x >0)即可求出答案.【详解】解:如图,作AD ⊥x 轴于点D ,设直线CB 与x 轴交于点E ,∵点A (m ,n ),B (m +4,n -2),BC =8,∴点D (m ,0),E (m +4,0),CE =n +6,∵AD ∥CE ,∴AD CE =ODOE ,∴n n +6=m m +4,∴n =32m ,∴点A m ,32m ,B m +4,32m -2 ,∵点A ,B 是函数y =kx(k >0,x >0)图象上的两点,∴k =m ⋅32m =(m +4)•32m -2 ,解得m =2,∴k =m ⋅32m =6,故答案为:6.【点睛】此题考查了反比例函数图象上点的坐标特征,平行线分线段成比例定理,关键是根据AD ∥CE ,得AD CE =OD OE,求出n =32m .4(2023•建昌县一模)如图,在平面直角坐标系中,点A ,B 在反比例函数y =kx(k ≠0,x >0)的图象上,点C 在y 轴上,AB =AC ,AC ∥x 轴,BD ⊥AC 于点D ,若点A 的横坐标为5,BD =3CD ,则k 值为 154 .【答案】154.【分析】延长BD 交x 轴于点E ,过点B 作BG ⊥y 轴于点G ,过点A 作AF ⊥x 轴于点F ,设B (m ,n ),可得BD =3m ,AD =5-m ,根据勾股定理求出m =1,进一步得出AF =n -3,再根据n =5(n -3)求出n =154即可得出结论.【详解】解:延长BD 交x 轴于点E ,过点B 作BG ⊥y 轴于点G ,过点A 作AF ⊥x 轴于点F ,则四边形BGCD ,COED ,ADEF 均为矩形,∴BG =CD ,AF =DE ,CD =OE ,设B (m ,n ),则有BG =CD =OE =m ,BE =n ,∵AC =AB =5,∴AD =AC -CD =5-m ,∵BD =3CD =3m ,∴AF =DE =n -3m ,在Rt △ABD 中,BD 2+AD 2=AB 2,∴(3m )2+(5-m )2=52,解得m 1=1,m 2=0(不符合题意,舍去),∴DE =n -3,AF =n -3,∴B (1,n ),A (5,n -3),∵点A ,B 在反比例函数y =kx(k ≠0,k >0)的图象上,∴n =5(n -3),解得n =154,∴k =1×154=154.故答案为:154.【点睛】本题主要考查了反比例函数图象上点的坐标特征,矩形的判定与性质以及勾股定理等知识,熟练掌握反比例函数图象上点的坐标一定满足该函数解析式是解答本题的关键.5(2023•碑林区校级模拟)如图,等腰直角△ABC的顶点A 坐标为(-3,0),直角顶点B 坐标为(0,1),反比例函数y =kx(x <0)的图象经过点C ,则k =-4.【答案】-4.【分析】先利用等角的余角相等证明∠CBD =∠BAO ,则可根据“AAS ”判断△AOB ≌△BDA ,所以OB =CD =1,OA =BD =3,则OD =OC +CD =4,从而得到点C 的坐标,代入y =kx(x <0)即可求得k 的值.【详解】解:作CD ⊥y 轴于D ,∵A (3,0),B (0,1),∴OA =3,OB =1,∵∠ABC =90°,∴∠ABO +∠CBD =90°,∵∠ABO +∠BAO =90°,∴∠CBD =∠BAO ,在△AOB 和△BDC 中,∠CBD =∠BAO ∠AOB =∠BDC =90°AB =BC ,∴△AOB ≌△BDA (AAS ),∴OB =CD =1,OA =BD =3,∴点C 的坐标(-1,4),∵反比例函数y =kx(x <0)的图象经过点C ,∴k =-1×4=-4.故答案为:-4.6(2023•宁波模拟)如图,在平面直角坐标系xOy 中,△OAB 为等腰直角三角形,且∠A =90°,点B 的坐标为(4,0).反比例函数y =kx(k ≠0)的图象交AB 于点C ,交OA 于点D .若C 为AB 的中点,则OD OA=32 .【答案】32.【分析】由等腰直角三角形的性质得到A (2,2),直线OA 为y =x ,进一步求得点C (3,1),利用待定系数法求得反比例函数的解析式,与直线OA 的解析式联立,解方程组求得点D 的坐标,从而求得ODOA=32.【详解】解:∵点B 的坐标为(4,0),∴OB =4,∵△OAB 为等腰直角三角形,且∠A =90°,∴A (2,2),∴直线OA 为y =x ,∵C 为AB 的中点,∴C (3,1),∵反比例函数y =kx(k ≠0)的图象交AB 于点C ,交OA 于点D ,∴k =3×1=3,∴反比例函数为y =3x,由y =3x y =x,解得x =3y =3 或x =-3y =-3 ,∴D (3,3),∴OD OA=32.故答案为:32.7(2023•龙港市二模)如图,Rt △ABO 放置在平面直角坐标系中,∠ABO =Rt ∠,A 的坐标为(-4,0).将△ABO 绕点O 顺时针旋转得到△A ′B ′O ,使点B 落在边A ′O 的中点.若反比例函数y =kx(x >0)的图象经过点B ',则k 的值为 3 .【答案】3.【分析】连接BB′,交y轴于D,由题意可知OB=12OA,得出∠A′OB′=∠AOB=60°,证得△BOB′是等边三角形,然后证得BB′垂直于y轴,BD=B′D,从而求得BD=B′D=1,OD=3,得到B′(1,3),代入y=k x(x>0)即可求得k的值.【详解】解:连接BB′,交y轴于D,由题意可知OB=12OA,∴∠OAB=30°,∴∠A′OB′=∠AOB=60°,∵BO=B′O,∴△BOB′是等边三角形,∵∠BOD=90°-60°=30°,∴OD平分∠BOB′,∴BB′垂直于y轴,BD=B′D,∴BB′∥x轴,∵A的坐标为(-4,0),∴OA=4,∴OB=2,∴等边△BOB′的边长为2,∴BD=B′D=1,OD=3,∴B′(1,3),∵反比例函数y=k x(x>0)的图象经过点B',∴k=1×3=3,故答案为:3.8(2023•温州二模)如图,点A在x轴上,以OA为边作矩形OABC,反比例函数y=kx(k>0,x>0)的图象经过AB的中点E,交边BC于点D,连结OE.若OE=OC,CD=2,则k的值为 1633 .【答案】1633.【分析】设OC =AB =m ,则AE =12OE =12m ,利用勾股定理求得OA =32m ,即可得到D (2,m ),E 32m ,12m,由k =xy 得到k =2m =32m •12m ,解得m =833,即可求得k =2m =1633.【详解】解:设OC =AB =m ,∵点E 是AB 的中点,∴AE =12AB∵OE =OC ,CD =2,∴AE =12OE =12m ,∴OA =OE 2-12OE 2=32OE =32m ,∴D (2,m ),E 32m ,12m ,∵反比例函数y =kx (k >0,x >0)的图象经过点D 、E ,∴k =2m =32m •12m ,解得m 1=833,m 2=0(舍去),∴k =2m =1633,故答案为:1633.9(2023•石家庄二模)已知A ,B ,C 三点的坐标如图所示.(1)若反比例函数y =kx的图象过点A ,B ,C 中的两点,则不在反比例函数图象上的是点C ;(2)当反比例函数的图象与线段AC (含端点)有且只有一个y =kx公共点时,k 的取值范围是3≤k <4或k =12424 .【答案】(1)C ;(2)3≤k <4或k =12124.【分析】(1)根据反比例函数系数k =xy 判断即可;(2)求得直线AC 的解析式,与反比例函数解析式联立,整理得3x 2-11x +2k =0,当Δ=0时,反比例函数的图象与直线AC 有且只有一个公共点,求得此时k 的值,根据k =4时,反比例函数经过A 、B 两点,k =3时,反比例函数经过C 点,根据图象即可得出3≤k <4时,反比例函数y =kx的图象与线段AC (含端点)有且只有一个公共点,从而得出3≤k <4或k =12124.【详解】解:(1)由坐标系可知,A (1,4),B (2,2),C (3,1),∵1×4=2×2≠3×1,∴反比例函数y =kx的图象过点A 、B ,点C 不在反比例函数图象上,故答案为:C ;(2)设直线AC 为y =kx +b ,代入A 、C 的坐标得k +b =43k +b =1 ,解得k =-32b =112,∴直线AC 为y =-32x +112,令k x =-32x +112,整理得3x 2-11x +2k =0,当反比例函数的图象与直线AC 有且只有一个公共点时,Δ=0,∴(-11)2-4×3×2k =0,解得k =12124,由(1)可知k =4时,反比例函数图象过A (1,4),B (2,2)两点,k =3时,反比例函数图象过C 点,∴3≤k <4时,反比例函数y =kx 的图象与线段AC (含端点)有且只有一个公共点,综上,当反比例函数y =kx的图象与线段AC (含端点)有且只有一个公共点时,k 的取值范围是3≤k<4或k =12124.故答案为:3≤k <4或k =12124.10(2023•郫都区二模)定义:若一个函数图象上存在横纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(-1,-1)是函数y =2x +1的图象的“等值点”.若函数y =x 2-2(x ≥m )的图象记为W 1,将其沿直线x =m 翻折后的图象记为W 2.当W 1、W 2两部分组成的图象上恰有2个“等值点”时,m 的取值范围为m <-98或-1<m <2.【答案】m <-98或-1<m <2.【分析】先求出函数y =x 2-2的图象上有两个“等值点”(-1,-1)或(2,2),再利用翻折的性质分类讨论即可.【详解】解:令x =x 2-2,解得:x 1=-1,x2=2,∴函数y =x 2-2的图象上有两个“等值点”(-1,-1)或(2,2),①当m <-1时,W 1,W 2两部分组成的图象上必有2个“等值点”(-1,-1)或(2,2),W 1:y =x 2-2(x ≥m ),W 2:y =(x -2m )2-2(x <m ),令x =(x -2m )2-2,整理得:x2-(4m+1)x+4m2-2=0,∵W2的图象上不存在“等值点”,∴Δ<0,∴(4m+1)2-4(4m2-2)<0,∴m<-98,②当m=-1时,有3个“等值点”(-2,-2)、(-1,-1)、(2,2),③当-1<m<2时,W1,W2两部分组成的图象上恰有2个“等值点”,④当m=2时,W1,W2两部分组成的图象上恰有1个“等值点”(2,2),⑤当m>2时,W1,W2两部分组成的图象上没有“等值点”,综上所述,当W1,W2两部分组成的图象上恰有2个“等值点”时,m<-98或-1<m<2.故答案为:m<-98或-1<m<2.11(2023•双阳区一模)如图,抛物线y=-0.25x2+4与y轴交于点A,过AO的中点作BC∥x轴,交抛物线y=x2于B、C两点(点B在C的左边),连接BO、CO,若将△BOC向上平移使得B、C两点恰好落在抛物线y=-0.25x2+4上,则点O平移后的坐标为(0,1.5).【答案】(0,1.5).【分析】先求得A的坐标,进而根据题意得到B、C两点的纵坐标为2,把y=2代入y=x2得x=±2,即可求得B(-2,2),进一步求得x=-2时,函数y=-0.25x2+4的值,即可求得平移的距离,得到点O平移后的坐标.【详解】解:∵抛物线y=-0.25x2+4与y轴交于点A,∴A(0,4),∴OA=4,∵过AO的中点作BC∥x轴,交抛物线y=x2于B、C两点(点B在C的左边),∴B、C两点的纵坐标为2,把y=2代入y=x2得x=±2,∴B(-2,2),把x=-2代入y=-0.25x2+4得y=-0.5+4=3.5,∴此时点B的坐标为(-2,3.5),∴平移的距离为3.5-2=1.5,∴点O平移后的坐标为(0,1.5),故答案为:(0,1.5).12(2023•衡水二模)如图,点A a,-3 a(a<0)是反比例函数y=k x图象上的一点,点M(m,0),将点A绕点M顺时针旋转90°得到点B,连接AM,BM.(1)k的值为-3;(2)当a=-3,m=0时,点B的坐标为(1,3);(3)若a=-1,无论m取何值时,点B始终在某个函数图象上,这个函数图象所对应的表达式.【答案】(1)-3;(2)(1,3);(3)点B始终在函数y=x-2的图象上.【分析】(1)把A的坐标代入反比例函数反比例函数y=kx即可求得;(2)作AC⊥x轴于C,BD⊥x轴于D,根据旋转的性质得出△BDM≌△MCA,从而得出AC=MD,CM=BD,即可得出点B的坐标;(3)由(2)可知AC=MD,CM=BD,根据题意得出B(3+m,m+1),从而得出点B始终在函数y= x-2的图象上.【详解】解:(1)∵点A a,-3 a(a<0)是反比例函数y=k x图象上的一点,∴k=a•-3a=-3.故答案为:-3;(2)作AC⊥x轴于C,BD⊥x轴于D,∵∠AMB=90°,∴∠AMC+∠BMD=90°,∵∠AMC+∠MAC=90°,∴∠BMD=∠MAC,∵∠BDM=∠MCA=90°,BM=AM,∴△BDM≌△MCA(AAS),∴AC=MD,CM=BD,∵a=-3,m=0,∴A(-3,1),M(0,0),∴AC=1,MC=3,∴MD=1,BD=3,∴B(1,3);故答案为:(1,3);(3)若a=-1,则A(-1,3),由(2)可知AC=MD,CM=BD,∵M(m,0),∴B(3+m,m+1),∴点B始终在函数y=x-2的图象上.13(2023•市中区二模)如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)⋯根据这个规律,第2023个点的坐标(45,2).【答案】(45,2).【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,横坐标是奇数时,最后以横坐标为该数,纵坐标以0结束;据此求解即可.【详解】解:观察图形可知,到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,∴横坐标以n结束的有n2个点,∵452=2025,∴第2025个点的坐标是(45,0),∴2023个点的纵坐标往上数2个单位为2,∴2023个点的坐标是(45,2);故答案为:(45,2).【点睛】本题考查了点坐标规律探究,观察出点的个数与横坐标存在平方关系是解题的关键.14(2023•沈阳二模)某商厦将进货单价为70元的某种商品,按销售单价100元出售时,每天能卖出20个,通过市场调查发现,这种商品的销售单价每降价1元,日销量就增加1个,为了获取最大利润,该种商品的销售单价应降5元.【答案】5.【分析】设降价x元时,则日销售可以获得利润为W,由销售问题的数量关系表示出W与x之间的关系,根据关系式的性质就可以求出结论.【详解】解:设该种商品的销售单价应降价x元时,日销售可以获得利润为W元,由题意,得W=(100-70-x)(20+x)=-x2+10x+600=-(x-5)2+625,∵a=-1<0,∴当x=5时,W=625.最大故答案为:5.【点睛】本题考查了销售问题的数量关系的运用,利润=(售价-进价)×销量的运用,二次函数的顶点式的运用,解答时求出二次函数的解析式是解题的关键15(2023•贵港二模)如图,抛物线y1截得坐标轴上的线段长AB=OD=6,D为y1的顶点,抛物线y2由y 1平移得到,y2截得x轴上的线段长BC=9.若过原点的直线被抛物线y1,y2所截得的线段长相等,则这条直线的解析式为y =x .【答案】y =x .【分析】根据已知条件,待定系数求得抛物线y 1,y 2的解析式,设过原点的直线解析式为y =kx ,过原点的直线被抛物线y 1,y 2所截得的线段长相等,即可求解.【详解】解:∵抛物线y 1截得坐标轴上的线段长AB =OD =6,D 为y 1的顶点,∴A (-3,0),B (3,0),D (0,6),设y 1的解析式为y =ax 2+6,代入(3,0),得9a +6=0,解得:a =-23,∴y 1的解析式为y 1=-23x 2+6,∵抛物线y 2由y 1平移得到,y 2截得x 轴上的线段长BC =9,∴C (12,0),则y 2的解析式为y =-23(x -3)(x -12),即y 2=-23x 2+10x -24,设过原点的直线解析式为y =kx ,与y 1,y 2分别交于点F ,G ,H ,K ,如图所示,联立y =kx y 1=-23x 2+6,即-23x 2-kx +6=0,∴x 1+x 2=-3k2,x 1•x 2=-9,∴F 、G 两点横坐标之差为|x 1-x 2|=(x 1+x 2)2-4x 1⋅x 2=94k 2+36,联立y =kx y 2=-23x 2+10x -24,即-23x 2+(10-k )x -24=0,∴x 1+x 2=-3k -302,x 1⋅x 2=36,∴H 、K 两点横坐标之差为|x 1-x 2|=(x 1+x 2)2-4x 1⋅x 2=-3k -302 2-144,∵FG =HK ,∴94k 2+36=-3k -3022-144,解得k =1,故直线解析式为y =x .故答案为:y =x .16(2023•江都区一模)如图,在平面直角坐标系中,点A ,B 坐标分别为(3,4),(-1,1),点C 在线段AB 上,且AC BC=13,则点C 的坐标为 2,134 .【答案】2,134.【分析】分别过点A ,B ,C 作x 轴的垂线垂足分别为E ,D ,F ,过点B 作BG ⊥AE 于点G ,交CF 于点H ,则CF ∥AE ,BH ⊥CF ,BD =HF =EG ,设点C 的坐标为(m ,n ),则CF =n ,OF =m ,可得CH=n -1,BH =m +1,根据△BHC ∽△BGA ,可得m +14=n -13=34,即可求解.【详解】解:如图,分别过点A ,B ,C 作x 轴的垂线垂足分别为E ,D ,F ,过点B 作BG ⊥AE 于点G ,交CF 于点H ,则CF ∥AE ,BH ⊥CF ,BD =HF =EG ,∵点A ,B 坐标分别为(3,4),(-1,1),∴BD =HF =EG =1,AE =4,BG =4,∴AG =3,设点C 的坐标为(m ,n ),则CF =n ,OF =m ,∴CH =n -1,BH =m +1,∵AC BC=13,∴BC AB=34,∵CF ∥AE ,∴△BHC ∽△BGA ,∴BH BG =CH AG =BC AB ,∴m +14=n -13=34,解得:m =2,n =134,∴点C 的坐标为2,134 .故答案为:2,134 .17(2023•龙华区二模)如图,在平面直角坐标系中,OA =3,将OA 沿y 轴向上平移3个单位至CB ,连接AB ,若反比例函数y =kx(x >0)的图象恰好过点A 与BC 的中点D ,则k =25 .【答案】25.【分析】设A (m ,n ),则由题意B (m ,n +3),进而求得D m 2,n +62,根据反比例函数系数k =xy ,得到k =mn =m 2•n +62,解得n =2,利用勾股定理求得m 的值,得到A (5,2),代入解析式即可求得k 的值.【详解】解:设A (m ,n ),则B (m ,n +3),∵点D 是BC 的中点,C (0,3),∴D m 2,n +62,∵反比例函数y =kx (x >0)的图象恰好过点A 与BC 的中点D ,∴k =mn =m 2•n +62,解得n =2,∴A (m ,2),∵OA =3,∴m 2+22=32,∴m =5(负数舍去),∴A (5,2),∴k =5×2=25,故答案为:25.18(2023•乐至县模拟)如图,在平面直角坐标系中,点A 、A 1、A 2、A 3⋯A n 在x 轴上,B 1、B 2、B 3⋯B n 在直线y =-33x +33上,若A (1,0),且△A 1B 1O 、△A 2B 2A 1⋯△A n B n A n -1都是等边三角形,则点B n 的横坐标为1-3×2n -2(n 为正整数).【答案】1-3×2n -2(n 为正整数).【分析】过点B n 作B n ∁n ⊥x 轴于点∁n ,利用一次函数图象上点的坐标特征,可得出该直线与y 轴的交点,解直角三角形,可得出∠OAB 1=30°,利用等边三角形的性质及三角形的外角性质,可得出OA 1的长度,结合B 1C 1=32OA 1可得出B 1C 1的长,同理,可求出B n ∁n =3•2n -2(n ≥2,且n 为整数),再结合一次函数图象上点的坐标特征,即可求出点B n 的横坐标.【详解】解:过点B n 作B n ∁n ⊥x 轴于点∁n ,如图所示.∵直线的解析式为y =-33x +33,∴该直线与y 轴交于点0,33,∴tan ∠OAB 1=331=33,∴∠OAB 1=30°.∵△A 1B 1O 是等边三角形,∴∠A 1OB 1=60°,∴∠AB 1O =30°=∠OAB 1,∴OA 1=OB 1=OA =1,∴B 1C 1=32OA 1=32;同理:A 1A 2=AA 1=2,A 2A 3=AA 2=4,A 3A 4=AA 3=8,⋯,∴A n -1A n =AA n -1=2n -1(n ≥2,且n 为整数),∴B n ∁n =32A n -1A n =3•2n -2(n ≥2,且n 为整数),∴点B n 的纵坐标为3•2n -2(n 为正整数).当y =3•2n -2时,3•2n -2=-33x +33,解得:x =1-3×2n -2,∴点B n 的横坐标为1-3×2n -2(n 为正整数).故答案为:1-3×2n -2(n 为正整数).19(2023•玄武区一模)已知函数y =2x 2-(m +2)x +m (m 为常数),当-2≤x ≤2时,y 的最小值记为a .a 的值随m 的值变化而变化,当m =2时,a 取得最大值.【答案】2.【分析】分类讨论抛物线对称轴的位置确定出m 的范围即可.【详解】解:由二次函数y =2x 2-(m +2)x +m (m 为常数),得到对称轴为直线x =m +24,抛物线开口向上,当m +24≥2,即m ≥6时,由题意得:当x =2时,a =8-2m -4+m =4-m ,a 随m 增大而减小,a 的最大值为-2;当-2<m +24<2,-10<m <6时,由题意得:当x =m +24时,a =2×m +24 2-(m +2)•m +24 +m =-18(m -2)2+32,则m =2时,a 取得最大值32;当m +24≤-2,即m ≤-10时,由题意得:当x =-2时,a =8+2m +4+m =3m +12,a 随m 增大而增大,a 的最大值为-18;综上,当m =2时,a 取得最大值.故答案为:2.20(2023•萧山区一模)已知点P (x 1,y 1)Q (x 2,y 2)在反比例函数y =6x图象上.(1)若x 1x 2=2,则y 1y 2= 12 .(2)若x 1=x 2+2,y 1=3y 2,则当自变量x >x 1+x 2时,函数y 的取值范围是y <-32 .【答案】(1)12;(2)y <-32.【分析】(1)把P 、Q 代入解析式得到y 1=6x 1,y 2=6x 2,进一步得到y 1y 2=6x 16x 2=x 2x 1=12;(2)由x 1=x 2+2,y 1=3y 2得到x 1=-1,x 2=-3,即可得到x 1+x 2=-4,求得x =-4时的函数值,然后根据反比例函数的性质即可得到函数y 的取值范围.【详解】解:(1)∵点P (x 1,y 1)Q (x 2,y 2)在反比例函数y =6x图象上,∴y 1=6x 1,y 2=6x 2,∵x 1x 2=2,∴y 1y 2=6x 16x 2=x 2x 1=12,故答案为:12;(2)∵点P (x 1,y 1)Q (x 2,y 2)在反比例函数y =6x图象上,∴y 1=6x 1,y 2=6x 2,∵y 1=3y 2,∴6x 1=3×6x 2,∴x 2=3x 1,∵x 1=x 2+2,∴x 1=3x 1+2,∴x 1=-1,x 2=-3,∴x 1+x 2=-4,当x =-4时,y =6-4=-32,∵反比例函数y =6x中k >0,∴x <0时,y 随x 的增大而减小,∴当自变量x >x 1+x 2时,函数y 的取值范围是y <-32,故答案为:y <-32.21(2023•灞桥区校级模拟)如图,点A ,B 分别在y 轴正半轴、x 轴正半轴上,以AB 为边构造正方形ABCD,点C,D恰好都落在反比例函数y=k x(k≠0)的图象上,点E在BC延长线上,CE=BC,EF⊥BE,交x轴于点F,边EF交反比例函数y=k x(k≠0)的图象于点P,记△BEF的面积为S,若S=k2+12,则k的值为8.【答案】8.【分析】作DM⊥y轴于M,CN⊥x轴于N.设OA=b,OB=a.首先利用全等三角形的性质求出D、C两点坐标,再证明a=b,再构建方程求出k的值.【详解】解:如图作DM⊥y轴于M,CN⊥x轴于N.设OA=b,OB=a.∵四边形ABCD是正方形,∴∠DAB=90°,AD=AB,∴∠DAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠DAM=∠ABO,∵∠AOB=∠DAM=90°,∴△AOB≌△BNC(AAS),同理△BNC≌△DMA,∴DM=OA=BN=b,AM=OB=CN=a,∴D(b,a+b),C(a+b,a),∵点C,D恰好都落在反比例函数y=k x(k≠0)的图象上,∴b(a+b)=a(a+b),∵a+b≠0,∴a=b,∴OA=OB,∴∠ABO=45°,∠EBF=45°,∵BE⊥EF,∴△BEF是等腰直角三角形,∵BC=EC,∴可得E(3a,2a),F(5a,0),∴12×4a×2a=k2+12,∴4a2=k2+12,∵D(a,2a),∴2a2=k,∴2k=k2+12,∴k =8.故答案为:8.【点睛】本题考查反比例函数图象的点的特征,正方形的性质、全等三角形的判定和性质,解题的关键是学会利用参数解决问题,属于中考选择题中的压轴题.22(2023•东莞市校级一模)如图,在平面直角坐标系中,点A 在y 轴上,点B 在x 轴上.以AB 为边长作正方形ABCD ,S 正方形ABCD =50,点C 在反比例函数y =k /x (k ≠0,x >0)的图象上,将正方形沿x 轴的负半轴方向平移6个单位长度后,点D 刚好落在该函数图象上,则k 的值是8.【答案】8.【分析】作DF ⊥y 轴于点F ,CE ⊥x 轴于点E ,通过证得△OAB ≌△EBC ≌△FDA 可得出BE =OA =DF ,CE =OB =AF ,设OA =a ,OB =b ,即可得出C (a +b ,b ),D (a ,a +b ),进而把点C 和平移后的D 点坐标代入反比例函数的解析式求出k 的值即可.【详解】解:作DF ⊥y 轴于点F ,CE ⊥x 轴于点E ,正方形ABCD 中,AB =BC ,∠ABC =90°,∴∠ABO +∠CBE =90°,Rt △ABO 中,∠BAO +∠ABO =90°,∴∠CBE =∠BAO ,在△OAB 与△EBC 中,∠CBE =∠BAO ∠BEC =∠AOB =90°BC =AB ,∴△OAB ≌△EBC (AAS ),∴BE =OA ,CE =OB ,同理△OAB ≌△FDA ,∴DF =OA ,AF =OB ,设OA =a ,OB =b ,则C (a +b ,b ),D (a ,a +b ),∵点C 在反比例函数y =k /x (k ≠0,x >0)的图象上,将正方形沿x 轴的负半轴方向平移6个单位长度后,点D 刚好落在该函数图象上,∴k =b (a +b )=(a -6)•(a +b ),∴a -6=b ,∵S 正方形ABCD =50,∴AB 2=50,∵OA 2+OB 2=AB 2,∴a 2+b 2=50,即a 2+(a -6)2=50,解得a =7(负数舍去),∴b =a -6=1,∴k =b (a +b )=8.故答案为:8.23(2023•长春一模)如图,正方形ABCD 、CEFG 的顶点D 、F 都在抛物线y =-12x 2上,点B 、C 、E 均在y 轴上.若点O 是BC 边的中点,则正方形CEFG 的边长为1+2 .【答案】1+2.【分析】设OB =OC =12BC =a ,且a >0,即可得D (-2a ,-a ),根据D (-2a ,-a )在抛物线y =-12x 2上,可得a =12,设正方形CEFG 的边长为b ,且b >0,同理可得F b ,-12-b ,代入y =-12x 2中,问题得解.【详解】解:∵点O 是BC 边的中点,∴设OB =OC =12BC =a ,且a >0,在正方形ABCD 中,DC =BC =2a ,DC ⊥BC ,∴D (-2a ,-a ),∵D (-2a ,-a )在抛物线y =-12x 2上,∴-a =-12(-2a )2,解得:a =12,设正方形CEFG 的边长为b ,且b >0,∴CE =EF =b ,∴OE =OC +CE =12+b ,∴结合正方形的性质,可知F b ,-12-b ,∵F b ,-12-b 在抛物线y =-12x 2上,∴-12-b =-12b 2,解得:b =1+2(负值舍去),故答案为:1+2.24(2023•成都模拟)如图,在△AOB 中,AO =AB ,射线AB 分别交y 轴于点D ,交双曲线y =kx(k >0,x >0)于点B ,C ,连接OB ,OC ,当OB 平分∠DOC 时,AO 与AC 满足AO AC=23,若△OBD 的面积为4,则k = 407 .【答案】407.【分析】通过证得△AOD ∽△ACO ,得到AD AB=23,即可求得△AOB 的面积为12,进一步求得△BOC 的面积为6,根据S △BOC =S 梯形BMNC 得出k 的值即可.【详解】解:作BM ⊥x 轴于M ,CN ⊥x 轴于N ,∵AO =AB ,∴∠AOB =∠ABO ,∴∠AOD +∠BOD =∠OCB +∠BOC ,∵∠BOD =∠BOC ,∴∠AOD =∠ACO ,∵∠OAD =∠CAO ,∴△AOD ∽△ACO ,∴AD OA =AO AC=23,∴AD AB=23,∵△OBD 的面积为4,∴△AOB 的面积为12,∵AO AC=23,∴AB AC=23,∴△BOC 的面积为6,∴COD 的面积为10,∴x B x C =410=25,∴设B 2x ,k 2x ,则C 5x ,k5x,∵S △BOC =S △BOM +S 梯形BMNC -S △CON ,S △BOM =S △CON =12|k |,∴S △BOC =S 梯形BMNC =12k 2x +k5x⋅(5x -2x )=6,解得k =407,故答案为:407.25(2023•北仑区二模)如图,将矩形OABC 的顶点O 与原点重合,边AO 、CO 分别与x 、y 轴重合.将矩形沿DE 折叠,使得点O 落在边AB 上的点F 处,反比例函数y =kx(k >0)上恰好经过E 、F 两点,若B 点的坐标为(2,1),则k 的值为10-221 .【答案】10-221.【分析】连结OF ,过E 作EH ⊥OA 于H ,由B 点坐标为(2,1),即可得出E 点的坐标为(k ,1),F 点的坐标为2,k 2 ,证得△EHD ∽△OAF ,得到EH OA =HD AF,求得HD =k4,进而求得OD =HD +OH =k 4+k =5k 4,AD =2-5k 4,由折叠可得DF =OD =5k 4,利用勾股定理得到关于k 的方程,解方程即可求得k 的值.【详解】解:连结OF ,过E 作EH ⊥OA 于H .∵B 点坐标为(2,1),∴E 点的纵坐标为1,F 点的横坐标为2,∵反比例函数y =kx(k >0)上恰好经过E 、F 两点,∴E 点的坐标为(k ,1),F 点的坐标为2,k2,∵∠EDH +∠AOF =∠EDH +∠HED =90°,∴∠AOF =∠HED ,又∠EHD =∠OAF =90°,∴△EHD ∽△OAF ,∴EH OA =HD AF,即12=HD k 2,∴HD =k4,∴OD =HD +OH =k 4+k =5k 4,AD =2-5k4,由折叠可得DF =OD =5k4,在Rt △DAF 中,由勾股定理可得2-5k 4 2+k 2 2=5k 44,解得k 1=10-221,k 2=10+221(舍).∴k 的值为10-221.故答案为:10-221.26(2023•合肥二模)已知函数y =x 2+mx (m 为常数)的图形经过点(-5,5).(1)m =4.(2)当-5≤x ≤n 时,y 的最大值与最小值之和为2,则n 的值n =-3或n =10-2 .【答案】(1)4;(2)n =-3或n =10-2.【分析】(1)把已知坐标代入解析式计算即可.(2)根据抛物线额性质,分类计算.【详解】解:(1)∵函数y=x2+mx(m为常数)的图形经过点(-5,5),∴5=(-5)2-5m,解得m=4,故答案为:4;(2)由(1)得m=4,∴函数的解析式为y=x2+4x,∴y=x2+4x=(x+2)2-4,故抛物线的对称轴为直线x=-2,二次函数的最小值为-4,∵(-5,5)的对称点为(1,5),当-5≤x≤n时,y的最大值与最小值之和为2,当-5≤n<-2时,最大值为5,x=n时,取得最小值,且为y=n2+4n,根据题意,得n2+4n+5=2,解得n=-3,n=-1(舍去),故n=-3;当-2≤n≤1时,最大值为5,x=-2时,取得最小值,且为-4,根据题意,得5-4=1,不符合题意;当n>1时,x=-2时,取得最小值,且为-4,x=n时,取得最大值,且为y=n2+4n,根据题意,得n2+4n-4=2,解得n=10-2,n=-10-2(舍去),故n=10-2;故答案为n=-3或n=10-2.27(2023•仓山区校级模拟)下表记录了二次函数y=ax2+bx+2(a≠0)中两个变量x与y的6组对应值,x⋯-5x1x21x33⋯y⋯m020n m⋯其中-5<x1<x2<1<x3<3.根据表中信息,当-52<x<0时,直线y=k与该二次函数图象有两个公共点,则k的取值范围为2<k<83 .【答案】2<k<8 3.【分析】由抛物线经过(-5,m),(3,m)可得抛物线对称轴,从而可得a与b的关系,再将(1,0)代入解析式可得二次函数解析式,将二次函数解析式化为顶点式求解.【详解】解:∵抛物线经过(-5,m),(3,m),∴抛物线对称轴为直线x=-b2a=-1,∴b=2a,y=ax2+2ax+2,将(1,0)代入y=ax2+2ax+2得0=a+2a+2,解得a=-2 3,∴y =-23x 2-43x +2=-23(x +1)2+83,∴x =-1时,y =83为函数最大值,将x =-52代入y =-23x 2-43x +2得y =76,将x =0代入代入y =-23x 2-43x +2得y =2,∴2<k <83满足题意.故答案为:2<k <83.28(2023•西安二模)如图,在平面直角坐标系中,直线y =-x +1与x 轴,y 轴分别交于点A ,B ,与反比例函数y =kx(k <0)的图象在第二象限交于点C ,若AB =BC ,则k 的值为-2.【答案】-2.【分析】过点C 作CH ⊥x 轴于点H .求出点C 的坐标,可得结论.【详解】解:过点C 作CH ⊥x 轴于点H .∵直线y =-x +1与x 轴,y 轴分别交于点A ,B ,∴A (1,0),B (0,1),∴OA =OB =1,∵OB ∥CH ,∴△AOB ∽△AHC ,∴OA AH =AB AC ,∴AO OH =AB CB=1,∴OA =OH =1,∴CH =2OB =2,∴C (-1,2),∵点C 在y =kx的图象上,∴k =-2,故答案为:-2.29(2023•龙泉驿区模拟)在某函数的给定自变量取值范围内,该函数的最大值与最小值的差叫做该函数在此范围内的界值.当t ≤x ≤t +1时,一次函数y =kx +1(k >0)的界值大于3,则k 的取值范围是k >3;当t ≤x ≤t +2时,二次函数y =x 2+2tx -3的界值为2,则t =-1+22或-22 .【答案】k >3;-1+22或-22.【分析】y =kx +1:根据k >0时,y 随x 的增大而增大,根据最大值-最小值>3列不等式可解答;y=x2+2tx-3:先求得二次函数的对称轴,得到函数的增减性,分情况讨论,根据二次函数y=x2 +2tx-3的界值为2列方程可解答.【详解】解:当t≤x≤t+1时,一次函数y=kx+1(k>0)的界值大于3,∴y最大值-y最小值>3,∵k>0,y随x的增大而增大,∴x=t时,y最小值=tk+1,x=t+1时,y最大值=k(t+1)+1,∴k(t+1)+1-(tk+1)>3,∴k>3;y=x2+2tx-3=(x+t)2-3-t2,当x=-t时,y最小值=-3-t2,当x=t时,y=3t2-3,当x=t+2时,y=3t2+8t+1,①当-t≤t≤t+2时,t≥0,此时,当x=t时,y取最小值,当x=a+2时,y取最大值,∴y最大值=3t2+8t+1,y最小值=3t2-3,∴3t2+8t+1-(3t2-3)=2,解得t=-14(舍去);②当t≤-t≤t+2时,-1≤t≤0,当-12≤t≤0时,y最大值=3t2+8t+1,y最小值=-3-t2,∴3t2+8t+1-(-t2-3)=2,解得t=-1+22或t=-1-22(舍);当-1≤t≤-12时,y最大值=3t2-3,y最小值=-3-t2,3t2-3-(-t2-3)=2,解得t=-22或t=22(舍);③当t≤t+2≤-t时,t≤-1,y最小值=3t2+8t+1,y最大值=3t2-3,∴3t2-3-(3t2+8t+1)=2,解得t=-34(舍去);综上所述,t的值为-1+22或-22.故答案为:k>3;-1+22或-22.30(2023•姑苏区一模)如图①,四边形ABCD中,AB∥DC,AB>AD.动点P,Q均以1cm/s的速度同时从点A出发,其中点P沿折线AD-DC-CB运动到点B停止,点Q沿AB运动到点B停止,设运动时间为t(s),△APQ的面积为y(cm2),则y与t的函数图象如图②所示,则AB=15cm.【答案】15.【分析】结合图象可知当t =13时,点P 到达点D ,此时y =90,AQ =13cm ,从而可求出此时△APQ 的高DE =12cm ,当t =18时,点P 到达点C ,点Q 已经停止,此时y =90,AQ =AB .由AB ∥DC ,可知此时△APQ 的高也为12cm ,再根据三角形的面积公式即可求出AB 的长.【详解】解:过点D 作DE ⊥AB 于E ,如图所示:当t =13时,P 到达D 点,即AD =AQ =13cm ,此时y =78,∴12AQ •DE =12×13•DE =78,∴DE =12,当t =18时,点P 到达点C ,此时点Q 已停止运动,此时y =90cm 2,AQ =AB ,∵AB ∥DC ,∴此时△APQ 的高也为12cm ,∴S △APQ =12AB •DE =12AB ×12=90,∴AB =15(cm ),故答案为:15.【点睛】本题考查动点问题的函数图象,平行线间的距离,三角形的面积公式等知识.利用数形结合的思想是解题关键.31(2023•宁波模拟)如图,点B 是反比例函数y =8x(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C .反比例函数y =kx(x >0)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .则k =2;△BDF 的面积=3.【答案】2,3.【分析】连接OD ,表示出点M 的坐标,即可求得k 的值,根据△BDF 的面积=△OBD 的面积=S △BOA -S △OAD ,即可求得.【详解】解:连接OD ,设点B (m ,n ),则点M 12m ,12n,∵点B 是反比例函数y =8x(x >0)图象上一点,∴mn =8,∵反比例函数y =kx(x >0)的图象经过OB 的中点M ,∴k =12m ⋅12n =14mn =14×8=2,∴△BDF 的面积=△OBD 的面积=S △BOA -S △OAD =12×8-12×2=3.故答案为:2,3.32(2023•青羊区模拟)如图,在平面直角坐标系中,一次函数y =3x 与反比例函数y =kx(k ≠0)的图象交于A ,B 两点,C 是反比例函数位于第一象限内的图象上的一点,作射线CA 交y 轴于点D ,连接BC ,BD ,若CD BC=45,△BCD 的面积为30,则k =6.【答案】6.【分析】作CF ⊥y 于点I ,BF ⊥x ,交CI 的延长线于点F ,作AE ⊥CF 于点E ,设BC 交y 轴于点M ,设A (m ,3m ),则B (-m ,-3m ),k =3m 2,设点C 的横坐标为a ,则C a ,3m 2a,可证明tan ∠CAE =tan ∠CBF =a 3m ,则∠CAE =∠CBF ,即可推导出∠CDM =∠CMD ,则CD =CM ,所以CI CF =CMBC=CD BC=45,则CI =4FI ,所以a =4m ,C 4m ,3m 4 ,由CI MI =tan ∠CMD =tan ∠CBF =43,得DI=MI =3m ,则DM =6m ,于是得12×6m ×m +12×6m ×4m =30,则m 2=2,所以k =3m 2=6.【详解】解:作CF ⊥y 于点I ,BF ⊥x ,交CI 的延长线于点F ,作AE ⊥CF 于点E ,设BC 交y 轴于点M ,∵直线y =3x 经过原点,且与双曲线y =kx交于A ,B 两点,∴点A 与点B 关于原点对称,设A (m ,3m ),则B (-m ,-3m ),k =3m 2,设点C 的横坐标为a ,则C a ,3m 2a ,F -m ,3m 2a,∵tan ∠CAE =CE AE =a -m 3m -3m 2a =a 3m ,tan ∠CBF =CF BF =a +m 3m 2a+3m=a3m ,∴tan ∠CAE =tan ∠CBF ,∴∠CAE =∠CBF ,∵AE ∥BF ∥DM ,∠CAE =∠CDM ,∠CBF =∠CMD ,∴∠CDM =∠CMD ,∴CD =CM ,∵CI CF =CM BC =CD BC=45,∴CI =4FI ,∴a =4m ,∴C 4m ,3m4 ,∵CI MI=tan ∠CMD =tan ∠CBF =a 3m =4m 3m =43,∴DI =MI =34CI =34×4m =3m ,∴DM =DI +MI =6m ,∵12DM •FI +12DM •CI =S △BCD =30,∴12×6m ×m +12×6m ×4m =30,∴m 2=2,∴k =3m 2=3×2=6,故答案为:6.33(2023•锦江区模拟)已知关于x 的多项式ax 2+bx +c (a ≠0),二次项系数、一次项系数和常数项分别a ,b ,c ,且满足a 2+2ac +c 2<b 2.若当x =t +2和x =-t +2(t 为任意实数)时ax 2+bx +c 的值相同;当x =-2时,ax 2+bx +c 的值为2,则二次项系数a 的取值范围是 215<x <27 .【答案】215<a <27.【分析】先根据二次函数的对称性可得其对称轴是:-b 2a =t +2-t +22=2,得b 与a 的关系:b =-4a ,将(-2,2)代入y =ax 2+bx +c 中可得:c =2-12a ,代入a 2+2ac +c 2<b 2中可解答.【详解】解:∵当x =t +2和x =-t +2(t 为任意实数)时ax 2+bx +c 的值相同,∴-b 2a =t +2-t +22=2,∴b =-4a ,∵当x =-2时,ax 2+bx +c 的值为2,∴函数y =ax 2+bx +c 经过点(-2,2),∴4a -2b +c =2,∴4a +8a +c =2,∴c =2-12a ,∵a 2+2ac +c 2<b 2,∴(a +c )2<b 2,∴(a +c )2-b 2<0,∴(a +c +b )(a +c -b )<0,∵b =-4a ,c =2-12a ,∴(a +2-12a -4a )(a +2-12a +4a )<0,∴(2-15a )(2-7a )<0,∴215<a <27.故答案为:215<a <27.34(2023•江北区一模)如图,菱形ABCO 的顶点A 与对角线交点D 都在反比例函数y =kx(k >0)的图象上,对角线AC 交y 轴于点E ,CE =2DE ,且△ADB 的面积为15,则k =8;延长BA 交x 轴于点F ,则点F 的坐标为 607,0 .【答案】8,607,0.【分析】通过构造延长线得到直角三角形EOM ,再用射影定理求出ED 、DA 、DO 之间的数量关系,在通过△ODA 面积为15求出ED 、DA 、DO 实际长度,再通过求D 点到y 轴的距离求出D 点坐标,也解出k ,进而得出B 点坐标.再过点A 作AH ⊥ND 于H ,然后通过相似求出A 点坐标,进而得出AB 直线解析式,最后得出F 点坐标.【详解】解:延长DA 交x 轴于点M ,设DE =a ,则CE =2a ,CD =AD =3a ,∵ED =a ,∴AM =a ,∴Rt △MOE 中,OD ⊥EM ,OD 2=ED ⋅DM ,∴OD =2a ,∵S △AOD =12OD ⋅DA =15,∴2a ⋅3a 2=15,∴a =5过D 作DN ⊥y 轴,则tan ∠DOE =12,即ON =2DN ,∵OD =25,∴D (2,4),即k =8.∵D (2,4),∴B (4,8),过点A 作AH ⊥ND 于H ,∵∠OND =∠H =90°,∠EDN +∠NDO =90°,∠NDO +∠HDA =90°,∴∠NDO =∠HDA ,∴△DHA ∽△OND ,∵DA =35,∴DH =6,AH =3,。
中考数学选择填空压轴题训练整理

中考数学选择填空压轴题训练1。
如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD=45°,DF⊥AB 于点F,EG⊥AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是2. 如图,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC的延长线于点F ,BG⊥AE,垂足为G,BG=24,则ΔCEF 的周长为( ) (A )8 (B )9.5 (C )10 (D)11.5 3、如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与 对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1B .34C .23D .25.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时, 点B 的坐标为(A )(0,0) (B )(22,22) (C)(-21,-21) (D )(-22,-22)6.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( )A ′G DBCA图 yxOBA(第5题图)G DCEF ABba(第6题图)stOA .stOB .C .stOD .stO7 如图,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC,交DE 于点F ,若BC=6,则DF 的长是(A )2 (B )3 (C )25(D )4 9.矩形ABCD 中,8cm 6cm AD AB ==,.动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:2cm ),则y 与x 之间的函数关系用图象表示大致是下图中的( )12如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。
中考数学填空题压轴题(含答案)

根据考试大纲,填空压轴题仍将以探究规律类型题为主要考察方向。
题型一:数字规律【例1】一组按一定规律排列的式子:-,,-,,…,(0a ≠),则第n 个式子是 (n为正整数).【答案】【例2】按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .【答案】1125,122+n n【例3】一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).【答案】67;32+n (n 为正整数)【例4】将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.【答案】81;第45行第15列2a 52a 83a 114a 31(1)n na n --例题精讲填空题压轴题【例5】某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )第n 年 1 2 3 4 5 … 老芽率 a a 2a 3a 5a … 新芽率 0 a a 2a 3a … 总芽率a2 a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 .【解析】由规律可以看出,从第3年开始,老芽率、新芽率,总芽率都分别是前两年之和,因此,第8年的老芽为21,总芽为34,因此答案为2134. 【解析】2134题型二:多边形上存在的点数【例6】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【解析】此类型题首先要找到边数的特点,然后找每条边上点的数目,第n 个图形是2n +边形,而且每个边上有n 个点。
【答案】(2)n n +或22n n +或2(1)1n +-【例7】用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子___________【答案】4n【例8】用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要 个“O”.① ② ③ ④ 【答案】181第2个“口”第1个“口” 第3个“口”第n 个“口”………………第1个图形第2个图形第3个图形第4个图形题型三:藏头露尾型【例9】如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.【解析】此类问题重点要找到“头是谁”“尾是谁”,①13+;②132+⨯;③133+⨯,……第n 个31n + 【答案】31n +【例10】搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.图1 图2 图3【答案】83.题型四:成倍数变化型【例11】如图,ABC ∆中,90ACB ∠=︒,1AC BC ==,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与ABC ∆的BC 边重叠为止,此时这个三角形的斜边长为_____.【解析】注意每一次变化所变化的倍数 【答案】81;11(2)2n n - 【例12】如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,......依次作下去,图中所作的第三个四边形的周长为________; 所作的第n 个四边形的周长为_________________.【答案】2,24()2n【例13】如图,在ABC ∆中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠,则1______A ∠=.1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,得2A ∠,……,2009A BC ∠的平分线与2009A CD ∠的平分线交于点2010A ,得2010A ∠,则2010A ∠= .【答案】2α,20102α(1)(2)(3)……A 2A 1DC A【例14】如图,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ,正方形1111A B C D 的面积为 ; 再把正方形1111A B C D 的各边延长一倍得到正方形2222A B C D , 如此进行下去,正方形n n n n D C B A 的面积为 . (用含有n 的式子表示,n 为正整数)【答案】5,n5【例15】把一个正三角形分成四个全等的三角形,第一次挖去中间的一个小三角形,对剩下的三个小正三角形再重复以上做法……一直到第n 次挖去后剩下的三角形有 个.第一次 第二次 第三次 第四次【答案】3n题型五:相似与探究规律【例16】已知ABC AB AC m ∆==中,,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC交AB 于2B ,作23B B 平分21AB B ∠,交AC 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .【答案】m 6215⎪⎪⎭⎫⎝⎛-【例17】如图,矩形纸片ABCD 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使 点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .第一次折叠 第二次折叠 第三次折叠【答案】2;12332n n -- B AD C 1O 1O 2O 1D 1D 2D 1O 2O 3O B AD C B ADCBA DC【例18】如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线 交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于 点3A ,…,按此做法进行下去,点4A 的坐标为( , ); 点n A ( , ).【答案】(938,0)(1)332(-n ,0) 【例19】如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1ABA ,再以等腰直角三角形1ABA 的斜边为直角边向外作第3个等腰直角三角形11A BB ,……,如此作下去,若1OA OB ==,则第n 个等腰直角三角形的面积n S = ________(n 为正整数).【解析】由题干可知:123124 (222)S S S ===,,可知22n n S -=【答案】22n -【例20】如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).【答案】233,31nn + 【例21】如图,P 为ABC ∆的边BC 上的任意一点,设BC a =,当1B 、1C 分别为AB 、AC 的中点时,1112B C a =,当2B 、2C 分别为1BB 、1CC 的中点时,2234B C a =,当3B 、3C 分别为2BB 、2CC 的中点时,3378B C a =,当4B 、4C 分别为3BB 、3CC 的中点时,441516B C a =当5B 、5C 分别为4BB 、4CC 的中点时,55_____B C =当n B 、n C 分别为1n BB -、1n CC -的中点时,则n n B C = ;设ABC ∆中BC 边上的高为h ,则n n PB C ∆的面积为______(用含a 、h 的式子表示).【答案】a 3231,a n n 212-, ah n n 12212+-D 4D 3D 2D 1C 5C 4C 3C 2C 1B 5B 4B 3B 2B 1A……B 2B 1A 1BOAC 3B 3B 2C 2C 1B 1CBA【例22】如图,在梯形ABCD 中,AB CD ∥,AB a =,CD b =,E 为边AD 上的任意一点,EF AB ∥,且EF 交BC 于点F .若E 为边AD 上的中点,则______EF =(用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则______EF =(用含有n ,a ,b 的式子表示).【答案】2a b +;(1)b n an+-【例23】已知在ABC ∆中,BC a =.如图1,点1B 、1C 分别是AB 、AC 的中点,则线段11B C 的长是_______; 如图2,点1B 、2B ,1C 、2C 分别是AB 、AC 的三等分点,则线段1122B C B C +的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(1)n +等分点,则线段1122n n B C B C B C ++⋅⋅⋅+的值是 ______.【答案】1,2a a ,12na 【例24】已知:如图,在Rt ABC ∆中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥于点1E ,连接1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,连接2BE ,交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点4D 、5D 、…n D , 分别记11BD E ∆、22BD E ∆、33BD E ∆、…n n BD E ∆的面积 为1S 、2S 、3S …n S .设ABC ∆的面积是1,则1______S =, ______n S =(用含n 的代数式表示).【答案】14,21(1)n +题型六:折叠与探究规律【例25】如图,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .设2AB =,当12CE CD =时,则________AMBN=. 若1CE CD n =(n 为整数),则_______AM BN=.(用含n 的式子表示) 【答案】15;1)1(22+-n n【例26】如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)连接DE ,作DE 的中垂线,交图3图2图12n-1B 2C 2A BCB 1C 1C 1B 1CBA FE D CBANMFEDCBAB321AD 于点F .⑴若E 为AB 中点,则______DFAE= ⑵若E 为AB 的n 等分点(靠近点A ),则________DFAE= 【答案】251,42n n+题型七:其他类型【例27】图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+3中线段AB 的长为 .图1 图2 图31+【例28】如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S ,试计算求出=-23S S ;并猜想得到1n n S S --=()2n ≥【答案】1)41(2,32---n ππ【例29】如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n 块纸板的周长为n P ,则=-34P P ;1--n n P P = .P 3P 2P 1【答案】81,121-⎪⎭⎫⎝⎛n【例30】已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当8n =时,共向外作出了 个小等边三角形;当n k =时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用含k 的式子表示).【答案】18; 【例31】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(10),,点D 的坐标为(02),.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C …按这样 的规律进行下去,第3个正方形的面积为________;第n 个正方形的面积为___________(用含n 的代数式表示).【答案】4235)(,22235-⎪⎭⎫ ⎝⎛n【例32】如图所示,111()P x y ,、222()P x y ,,……()n n n P x y ,在函数4y x=(0x >)的图象上,11OP A ∆,212P A A ∆,323P A A ∆…1n n n P A A -∆都是等腰三角形,斜边1OA 、12A A …1n n A A -,都在x 轴上, 则1_____y =,12______n y y y ++⋅⋅⋅+=【答案】2 , 2n【例33】如图所示,直线1+=x y 与y 轴交于点1A ,以1OA 为边作正方形111OA B C ,然后延长11C B 与直线1+=x y 交于点2A ,得到第一个梯形112AOC A ;再以12C A 为边作正方形1222C A B C ,同样延长22C B 与直线1+=x y 交于点3A 得到第二个梯形2123A C C A ;,再以23C A 为边作正方形2333C A B C ,延长33C B ,得到第三个梯形;……则第2个梯形2123A C C A 的面积是 ;第n (n 是正整数)个梯形的面积是 (用含n 的式子表示).3(-2)k 23(2)k s k-n =3n =5……n =4① ② ③ ④C 2B 2A 2C 1B 1A 1DC B AO yx【答案】6;2n 2223-⨯或1n 423-⨯【例34】在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形n n n n A B C D 的四个顶点坐标分别为(20)-,n , (0),n ,(20),n ,(0)-,n (n 为正整数), 则菱形n n n n A B C D 能覆盖的单位格点正方形的 个数为_________(用含有n 的式子表示).【答案】单位格点个数为48,单位格点个数为n n 442-【例35】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形1111A B C D 、2222A B C D 、3333A B C D 每个正方形四条边上的整点的个数.按此规律推算出正方形10101010A B C D 四条边上的整点共有 个.【答案】80【例36】对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于n A ,n B 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);112220112011A B A B A B +++的值为 .【答案】()20122011,11+n nyxOD 1D 2D 3C 1C 2C 3B 1B 2B 3A 3A 2A 1123-1-2-3-3-2-1321-8-448ODC BAyx。
中考数学选择填空压轴题专题(含答案)

专题01代数式的求值问题例1.观察下列等式:1=2=3=4=5=6=64,…,根据这个规律,则1)+2\S\UP6(2)+2\S\UP6(3)+2\S\UP6(4)+…+2\S\UP6(2017的末位数字是()A.0 B.2 C.4 D.6同类题型1.1计算:1=2=3=4=5=31,…归纳各计算结果中的个位数字规律,猜测2016的个位数字是()A.1 B.3 C.7 D.5同类题型1.2观察下列算式1=2=3=4=5=6=7=2187…根据上述算式中的规律,你认为2018的末位数字是()A.3 B.9 C.7 D.1例2.下列定义一种关于n的运算:①当n是奇数时,结果为3n+5②n为偶数时结果是n2\S\UP6(k)(其中k是使n2\S\UP6(k)是奇数的正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是()A.1 B.2 C.7 D.8同类题型2.1定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n2\S\UP6(k) (其中k是使n2\S\UP6(k)为奇数的正整数),并且运算重复进行.例如,取n=26,那么当n=26时,第2016次“F运算”的结果是________.同类题型2.2对于任意正整数n,定义"n!!"如下:当n是偶数时,n!!=n﹒(n-2)﹒(n-4)…6﹒4﹒2,当n是奇数时,n!!=n﹒(n-2)﹒(n-4)…5﹒3﹒1,且有n!=n﹒(n-1)﹒(n-2)…3﹒2﹒1则有四个命题:①(2015!!)﹒(2016!!)=2016!②2016!!=2018③2015!!的个位数是5④2014!!的个位数是0其中正确的命题有()A.1个B.2个C.3个D.4个例3.一列数123满足条件:1=12n=1n-1且n为整数),则2017等于()A.-1 B.12C.1 D.2同类题型 3.1一列数123满足条件:1=12n=1n-1且n为整数),则1)+a\S\DO(2)+a\S\DO(3)+…+a\S\DO(2017=________.同类题型3.2 1、2、3、20是20个由1,0,-1组成的数,且满足下列两个等式:①1)+x\S\DO(2)+x\S\DO(3)+…+x\S\DO(20=4,②(\l(x\S\DO(1)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(2)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(3)-1))\S\UP6(2)+…+\b\bc\((\l(x\S\DO(20)-1))\S\UP6(2=32,则这列数中1的个数为()A.8 B.10 C.12 D.14例4.设△ABC的面积为1.如图1,分别将AC,BC边2等分1),E\S\DO(1是其分点,连接1)BD\S\DO(1交于点1得到四边形1)F\S\DO(1)E\S\DO(1其面积1=13.如图2,分别将AC,BC边3等分1),D\S\DO(2),E\S\DO(1),E\S\DO(2是其分点,连接2)BD\S\DO(2交于点2得到四边形2)F\S\DO(2)E\S\DO(2其面积2=16如图3,分别将AC,BC边4等分1),D\S\DO(2),D\S\DO(3),E\S\DO(1),E\S\DO(2),E\S\DO(3是其分点,连接3)BD\S\DO(3交于点3得到四边形3)F\S\DO(3)E\S\DO(3其面积3=110…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形n)F\S\DO(n)E\S\DO(n其面积n =________.同类题型4.1庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=112)3)n.4.2图图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作1于点1再过点1作1)C\S\DO(2于点2又过点2作2)C\S\DO(3于点3如此无限继续下去,则可将利△ABC分割成1、1)C\S\DO(2、1)C\S\DO(2)C\S\DO(3、2)C\S\DO(3)C\S\DO(4、…、n-2)C\S\DO(n-1)C\S\DO(n、….假设AC=2,这些三角形的面积和可以得到一个等式是________________________________.同类题型4.2 如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为________.例5.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A.aa+b B.ba+b C.ha+b D.ha+h例5图 5.1图同类题型5.1如图,一个啤酒瓶的高度为30cm,瓶中装有高度12cm的水,将瓶盖盖好后倒置,这时瓶中水面高度20cm,则瓶中水的体积和瓶子的容积之比为________.(瓶底的厚度不计)同类题型5.2一艘轮船往返甲、乙两港之间,第一次往返航行时,水流速度为a千米/时,第二次往返航行时,正遇上发大水,水流速度为b千米/时(b>a),已知该船在两次航行中的静水速度相同,则该船这两次往返航行所用时间的关系是()A.第一次往返航行用的时间少B.第二次往返航行用的时间少C.两种情况所用时间相等D.以上均有可能例6.若1x=3,求2)x\S\UP6(4)+x\S\UP6(2)+1的值是()A.18 B.110 C.12 D.14同类题型6.1 已知a,b,c满足|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2=2+2ac,则a-b+c的值为()A.2 B.4 C.6 D.8同类题型6.2已知a,b,c满足ab-ca+c5,则a+c2a+b的值为()A.12 B.34 C.1 D.2参考答案例1.观察下列等式:1=2=3=4=5=6=64,…,根据这个规律,则1)+2\S\UP6(2)+2\S\UP6(3)+2\S\UP6(4)+…+2\S\UP6(2017的末位数字是()A.0 B.2 C.4 D.6解:∵1=2=3=4=5=6=64,…,∴2017÷4=504…1,∵(2+4+8+6)×504的末尾数字是0,∴1)+2\S\UP6(2)+2\S\UP6(3)+2\S\UP6(4)+…+2\S\UP6(2017的末位数字是2,选B.同类题型1.1计算:1=2=3=4=5=31,…归纳各计算结果中的个位数字规律,猜测2016的个位数字是()A.1 B.3 C.7 D.5解:∵1=2=3=4=15,5=6=7=8=255…∴由此可以猜测个位数字以4为周期按照1,3,7,5的顺序进行循环,知道2016除以4为504,而第4个数字为5,所以可以猜测2016的个位数字是5.选D.同类题型1.2观察下列算式1=2=3=4=5=6=7=2187…根据上述算式中的规律,你认为2018的末位数字是()A.3 B.9 C.7 D.1解:以3为底的幂的末位数字是3,9,7,1依次循环的,2018÷4=504…2,所以2018的个位数字是9,选B.例2.下列定义一种关于n的运算:①当n是奇数时,结果为3n+5②n为偶数时结果是n2\S\UP6(k)(其中k是使n2\S\UP6(k)是奇数的正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是()A.1 B.2 C.7 D.8解:第一次:3×449+5=1352,第二次:1352k根据题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:8k因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为449是奇数,所以第449次运算结果是8.选D.同类题型2.1定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n2\S\UP6(k) (其中k是使n2\S\UP6(k)为奇数的正整数),并且运算重复进行.例如,取n=26,那么当n=26时,第2016次“F运算”的结果是________.解:根据题意,得当n=26时,第1次的计算结果是262=13,第2次的计算结果是13×3+5=44,第3次的计算结果是442\S\UP6(2)=11,第4次的计算结果是11×3+5=38,第5次的计算结果是382=19,第6次的计算结果是19×3+5=62,第7次的计算结果是622=31,第8次的计算结果是31×3+5=98,第9次的计算结果是982=49,第10次的计算结果是49×3+5=152,第11次的计算结果是1522\S\UP6(3)=19,以下每6次运算一循环,∵(2016-4)÷6=335…2,∴第2016次“F运算”的结果与第6次的计算结果相同,为62,故答案为:62.同类题型2.2对于任意正整数n,定义"n!!"如下:当n是偶数时,n!!=n﹒(n-2)﹒(n-4)…6﹒4﹒2,当n是奇数时,n!!=n﹒(n-2)﹒(n-4)…5﹒3﹒1,且有n!=n﹒(n-1)﹒(n-2)…3﹒2﹒1则有四个命题:①(2015!!)﹒(2016!!)=2016!②2016!!=2018③2015!!的个位数是5④2014!!的个位数是0其中正确的命题有()A.1个B.2个C.3个D.4个解:根据题意,依次分析四个命题可得:对于①,(2015!!)﹒(2016!!)=(2﹒4﹒6﹒8…2008﹒2010﹒2012﹒2014﹒2016)﹒(1﹒3﹒5﹒7…2009﹒2011﹒2013﹒2015)=1﹒2﹒3﹒4﹒5…﹒2012﹒2013﹒2014﹒2015﹒2016=2016!,故①正确;对于②,2016!!=2﹒4﹒6﹒8﹒10…2008﹒2010﹒2012﹒2014﹒2016=1008)(1﹒2﹒3﹒4…1008=1008故②正确;对于③,2015!=2015×2011×2009×…×3×1,其个位数字与1×3×5×7×9的个位数字相同,故其个位数字为5,故正确;对于④,2014!!=2﹒4﹒6﹒8…2008﹒2010﹒2012﹒2014,其中含有10,故个位数字为0,故正确;选D.例3.一列数123满足条件:1=12n=1n-1且n为整数),则2017等于()A.-1 B.12C.1 D.2解:∵1=12n=1n-1∴2=11-a\S\DO(1)=112=2,3=11-a\S\DO(2)=11-2=-1,4=11-a\S\DO(3)=11-(-1)=12…∴这列数每3个数为一循环周期,∵2017÷3=672…1,∴2017=1=12选B.同类题型 3.1一列数123满足条件:1=12n=1n-1且n为整数),则1)+a\S\DO(2)+a\S\DO(3)+…+a\S\DO(2017=________.解:∵1=12n=1n-1∴2=11-a\S\DO(1)=112=2,3=11-a\S\DO(2)=11-2=-1,4=11-a\S\DO(3)=11-(-1)=12…∴这列数每3个数为一循环周期,∵2017÷3=672…1,∴2017=1=12又∵1)+a\S\DO(2)+a\S\DO(3=12=32∴1)+a\S\DO(2)+a\S\DO(3)+…+a\S\DO(2017=312=12.答案为12.同类题型3.2 1、2、3、20是20个由1,0,-1组成的数,且满足下列两个等式:①1)+x\S\DO(2)+x\S\DO(3)+…+x\S\DO(20=4,②(\l(x\S\DO(1)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(2)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(3)-1))\S\UP6(2)+…+\b\bc\((\l(x\S\DO(20)-1))\S\UP6(2=32,则这列数中1的个数为()A.8 B.10 C.12 D.14解:∵1、2、3、20是20个由1,0,-1组成的数,且满足下列两个等式:①1)+x\S\DO(2)+x\S\DO(3)+…+x\S\DO(20=4,②(\l(x\S\DO(1)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(2)-1))\S\UP6(2)+\b\bc\((\l(x\S\DO(3)-1))\S\UP6(2)+…+\b\bc\((\l(x\S\DO(20)-1))\S\UP6(2=32,∴-1的个数有8个,则1的个数有12个.故选C.例4.设△ABC的面积为1.如图1,分别将AC,BC边2等分1),E\S\DO(1是其分点,连接1)BD\S\DO(1交于点1得到四边形1)F\S\DO(1)E\S\DO(1其面积1=13.如图2,分别将AC,BC边3等分1),D\S\DO(2),E\S\DO(1),E\S\DO(2是其分点,连接2)BD\S\DO(2交于点2得到四边形2)F\S\DO(2)E\S\DO(2其面积2=16如图3,分别将AC,BC边4等分1),D\S\DO(2),D\S\DO(3),E\S\DO(1),E\S\DO(2),E\S\DO(3是其分点,连接3)BD\S\DO(3交于点3得到四边形3)F\S\DO(3)E\S\DO(3其面积3=110…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形n)F\S\DO(n)E\S\DO(n其面积n =________.解:如图所示,连接12)E\S\DO(23∵图1中1),E\S\DO(1是△ABC两边的中点,∴1)∥ABD\S\DO(1)E\S\DO(1=12∴1)E\S\DO(1且1)E\S\DO(1)BF\S\DO(1)=1)E\S\DO(1)AB=12∴△CD1E1=14)S\S\DO(△ABC=14∵1是BC的中点,∴△BD1E1=△CD1E1=14∴△D1E1F1=13)S\S\DO(△BD1E1=114=112∴1=△CD1E1)+S\S\DO(△D1E1F1=1112=13同理可得:图2中2=△CD2E2)+S\S\DO(△D2E2F2=1118=16图3中3=△CD3E3)+S\S\DO(△D3E3F3=1380=110以此类推,将AC,BC边(n+1)等分,得到四边形n)E\S\DO(n)F\S\DO(n其面积n=1n+1)\S\UP6(2)n+1)\S\UP6(2)1+n+1=2n+1)(n+2答案为2(n+1)(n+2).同类题型4.1庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=112)3)n.图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作1于点1再过点1作1)C\S\DO(2于点2又过点2作2)C\S\DO(3于点3如此无限继续下去,则可将利△ABC分割成1、1)C\S\DO(2、1)C\S\DO(2)C\S\DO(3、2)C\S\DO(3)C\S\DO(4、…、n-2)C\S\DO(n-1)C\S\DO(n、….假设AC=2,这些三角形的面积和可以得到一个等式是________.解:如图2,∵AC=2,∠B=1∴1中1=30°,且BC=3∴1=12=1=3)AC\S\DO(1=3∴△ACC1=12)﹒AC\S\DO(1)﹒CC\S\DO(1=13=32∵1)C\S\DO(2∴1)C\S\DO(2=1=30°,∴2=12)CC\S\DO(1=321=3)CC\S\DO(2=32∴△CC)\S\DO(1)C\S\DO(2=12)﹒CC\S\DO(2)﹒C\S\DO(1)C\S\DO(2=1\R(332=334同理可得,△C)\S\DO(1)C\S\DO(2)C\S\DO(3=3(\l(\F(32△C)\S\DO(2)C\S\DO(3)C\S\DO(4=3(\l(\F(33…∴△C)\S\DO(n-2)C\S\DO(n-1)C\S\DO(n=3(\l(\F(3n-1又∵△ABC=12=13=3∴3=3\R(33\R(3(\l(\F(323(\l(\F(333(\l(\F(3n-1∴3=3\l(1+\F(3(\l(\F(323n-1n)+….答案为3=3\l(1+\F(3(\l(\F(323n-1n)+….同类题型4.2 如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为________.解:记原来三角形的面积为s,第一个小三角形的面积为1第二个小三角形的面积为2∵1=14=122=114=143=16∴n=12\S\UP6(2n)=12n)2=12n-1答案为12\S\UP6(2n-1).例5.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A.aa+b B.ba+b C.ha+b D.ha+h解:设规则瓶体部分的底面积为S平方厘米.倒立放置时,空余部分的体积为bS立方厘米,正立放置时,有墨水部分的体积是aS立方厘米,因此墨水的体积约占玻璃瓶容积的asas+bs=aa+b.选A.同类题型5.1如图,一个啤酒瓶的高度为30cm,瓶中装有高度12cm的水,将瓶盖盖好后倒置,这时瓶中水面高度20cm,则瓶中水的体积和瓶子的容积之比为________.(瓶底的厚度不计)解:设瓶的底面积为2,则左图V水=12S cm3,右图V空=10S cm3,∵V瓶=V水+V空=22S cm3,∴V水:V瓶=6:11.故答案为611.同类题型5.2一艘轮船往返甲、乙两港之间,第一次往返航行时,水流速度为a千米/时,第二次往返航行时,正遇上发大水,水流速度为b千米/时(b>a),已知该船在两次航行中的静水速度相同,则该船这两次往返航行所用时间的关系是()A.第一次往返航行用的时间少B.第二次往返航行用的时间少C.两种情况所用时间相等D.以上均有可能解:设两次航行的路程都为S,静水速度设为v,第一次所用时间为:SS2vS2)-a\S\UP6(2第二次所用时间为:SS2vS2)-b\S\UP6(2∵b>a,∴2)>a\S\UP6(2,∴2)-b\S\UP6(2)<v\S\UP6(2)-a\S\UP6(2∴2vS2)-b\S\UP6(2)2)-a\S\UP6(2∴第一次的时间要短些.选A.例6.若1x=3,求2)x\S\UP6(4)+x\S\UP6(2)+1的值是()A.18 B.110 C.12 D.14解:∵1x=3,∴1x))\S\UP6(2=9,即1x\S\UP6(2)=9-2=7,∴4)+x\S\UP6(22))=x\S\UP6(22=7+1=8,∴24)+x\S\UP6(2)+18.选A.同类题型6.1 已知a,b,c满足|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2=2+2ac,则a-b+c的值为()A.2 B.4 C.6 D.8解:∵已知a,b,c满足|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2=2+2ac,∴|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2-2ac=2,…①且(a-3)b\S\UP6(2)必有意义,又∵2≥0,∴a-3≥0①当a-3>0时,|2a-4|>2,有|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2-2ac>2,则这与①式相矛盾,即a-3>0不成立;②当a-3=0时,a=3,则|2a-4|+|b+2|(a-3)b\S\UP6(2))+a\S\UP6(2)+c\S\UP6(2-2ac=2+|b+2|2=2,|b+2|2=0,又∵|b+2|≥0,2≥0,∴必有b+2=0,c-3=0即:b=-2,c=3∴a-b+c=3-(-2)+3=8选D.同类题型6.2已知a,b,c满足ab-ca+c5,则a+c2a+b的值为()A.12 B.34 C.1 D.2解:设ab-ca+c5=k,则a=2k①,b-c=3k②,a+c=5k③.①+②+③得:2a+b=10k.∴a+c5k12.选A.专题02方程、不等式中的含参问题例1.已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b-3c=1,若m=3a+b-7c,则m的最小值为__________.同类题型1.1 已知x+2y-3z=0,2x+3y+5z=0,则x+y+zx-y+z=________.同类题型1.2 方程组4x+3m=28x-3y=m)的解x,y满足x>y,则m的取值范围是()A.910 B.109 C.1910 D.1019例2.关于x的方程2+mx-9=0和2)-3x+m\S\UP6(2+6m=0有公共根,则m的值为________.同类题型2.1 已知a是一元二次方程2-2018x+1=0的一个根,则代数式2018a\S\UP6(2)+1的值是___.同类题型2.2 已知关于x的方程2)-1)x\S\UP6(2+(2k-1)x+1=0有两个不相等的实数根,那么实数k的取值范围为_____________.同类题型2.3 已知α、β是方程2-2x-4=0的两个实数根,则3+8β+6的值为()A.-1B.2C.22D.30例3.已知方程11a的两根分别为a,1a,则方程11a-1的根是()A.a,1a-1 B.1a-1,a-1C.1a,a-1D.a,aa-1同类题型3.1 若关于x的方程2x-bx-1=3的解是非负数,则b的取值范围是________.同类题型3.2 观察分析下列方程:①2x=3;②6x=5;③12x=7.请利用它们所蕴含的规律,求关于x的方程2)+nx-4=2n+5(n为正整数)的根,你的答案是_________________.同类题型3.3 已知关于x的方程2a+13a x-1)(x+2只有整数解,则整数a的值为_____________.例4.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[-2.1]=-3.则下列结论:①[-x]=-[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当-1<x<1时,[1+x]+[1-x]的值为1或2;④x=-2.75是方程4x-2[x]+5=0的唯一一个解.其中正确的结论有_________(写出所有正确结论的序号).同类题型4.1 设[x]表示不大于x的最大整数,{x}表示不小于x的最小整数,(x)表示最接近x的整数(x ≠n+0.5,n为整数).例如[3.4]=3,{3.4}=4,(3.4)=3.则不等式8≤2x+[x]+3{x}+4(x)≤14的解为()A.0.5≤x≤2 B.0.5<x<1.5或1.5<x<2C.0.5<x<1.5D.1.5<x<2同类题型4.2规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是___________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=-2.1时,[x]+(x)+[x)=-7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当-1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.同类题型4.3 如果关于x的不等式(a+b)x+2a-b>0的解集是52,那么关于x的不等式(b-a)x+a +2b≤0的解集是____________.同类题型4.4 若关于x的不等式组\F(x+4x2x-a<0解集为x<2,则a的取值范围是___________.同类题型4.5 按如图的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有___________.参考答案例1.已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b-3c=1,若m=3a+b-7c,则m的最小值为__________.解:由题意可得3a+2b+c=52a+b-3c=1m=3a+b-7c,解得7﹒(m+2)3-3,11﹒(m+2)3,m+23,由于a,b,c是三个非负实数,∴a≥0,b≥0,c≥0,∴157.所以m_(最小值)=57.故本题答案为:-57.同类题型1.1 已知x+2y-3z=0,2x+3y+5z=0,则x+y+zx-y+z=________.解:由题意得:x+2y-3z=0①2x+3y+5z=0②),①×2-②得y=11z,代入①得x=-19z,原式x+y+z-19z+11z+z729.同类题型1.2 方程组4x+3m=28x-3y=m)的解x,y满足x>y,则m的取值范围是()A.910 B.109 C.1910 D.1019解:4x+3m=2①8x-3y=m②)由①得2-3m4,代入②得,2-3m4-3y=m,4-7m3.∵x>y,即2-3m4-7m3,解得1019.选D.例2.关于x的方程2+mx-9=0和2)-3x+m\S\UP6(2+6m=0有公共根,则m的值为________.解:设这个公共根为α.则方程2+mx-9=0的两根为α、-m-α;方程2)-3x+m\S\UP6(2+6m=0的两根为α、3-α,由根与系数的关系有:α(-m-α)=-9,2+6m,整理得,2+mα=9①,2)-3α+m\S\UP6(2+6m=0②,②-①得,2+6m-3α-mα=-9,即2-α(m+3)=0,(m+3)(m+3-α)=0,所以m+3=0或m+3-α=0,解得m=-3或α=m+3,把α=m+3代入①得,2+m(m+3)=9,2)+6m+9+m\S\UP6(2+3m=9,m(2m+9)=0,所以m=0或2m+9=0,解得m=0或m=-4.5,综上所述,m的值为-3,0,-4.5.同类题型2.1 已知a是一元二次方程2-2018x+1=0的一个根,则代数式2018a\S\UP6(2)+1的值是___.解:由题意,把根a代入2-2018x+1=0,可得:2-2018a+1=0,∴2-2017a-a+1=0,2+1=2018a;∴2-2017a=a-1,∴20182)+11a-122018a a-1=2018-1,=2017.同类题型2.2 已知关于x的方程2)-1)x\S\UP6(2+(2k-1)x+1=0有两个不相等的实数根,那么实数k的取值范围为_____________.解:由题意知,k≠±1,2)-4(k\S\UP6(2-1)=5-4k>0∴54且k≠±1.同类题型2.3 已知α、β是方程2-2x-4=0的两个实数根,则3+8β+6的值为()A.-1 B.2 C.22 D.30解:∵α、β是方程2-2x-4=0的两个实数根,∴α+β=2,2-2α-4=0,∴2=2α+4∴3)+8β+6=α﹒α\S\UP6(2+8β+6=α﹒(2α+4)+8β+62+4α+8β+6=2(2α+4)+4α+8β+6=8α+8β+14=8(α+β)+14=30,故选D.例3.已知方程11a的两根分别为a,1a,则方程11a-1的根是()A.a,1a-1 B.1a-1,a-1 C.1a,a-1 D.a,aa-1解:方程11a-1可以写成11a-1的形式,∵方程11a的两根分别为a,1a,∴方程11a-1的两根的关系式为x-1=a-1,1a-1,即方程的根为x=a或aa-1,∴方程11a-1的根是a,aa-1.选D.同类题型3.1 若关于x的方程2x-bx-1=3的解是非负数,则b的取值范围是________.解:去分母得,2x-b=3x-3∴x=3-b∵x≥0∴3-b≥0解得,b≤3又∵x-1≠0∴x≠1即3-b≠1,b≠2则b的取值范围是b≤3且b≠2.同类题型3.2 观察分析下列方程:①2x=3;②6x=5;③12x=7.请利用它们所蕴含的规律,求关于x的方程2)+nx-4=2n+5(n为正整数)的根,你的答案是_________________.解:1×2x=3,解得:x=2或x=1;2×3x=5,解得:x=2或x=3;3×4x=7,解得:x=3或x=4,得到规律mnx=m+n的解为:x=m或x=n,所求方程整理得:n(n+1)x-4=2n+1,根据规律得:x-4=n或x-4=n+1,解得:x=n+4或x=n+5.同类题型3.3 已知关于x的方程2a+13a x-1)(x+2只有整数解,则整数a的值为_____________.解:方程两边同乘以(x-1)(x+2),得:2(x+2)-(a+1)(x-1)=3a,解得:2a-531-a,∵方程只有整数解,∴1-a=3或1或-3或-1,当1-a=3,即a=-2时,x=-2-1=-3,检验,将x=-3代入(x-1)(x+2)=4≠0,故x=-3是原分式方程的解;当1-a=1,即a=0时,x=-2-3=-5,检验,将x=-5代入(x-1)(x+2)=18≠0,故x=-7是原分式方程的解;当1-a=-3,即a=4时,x=-2+1=-1,检验,将x=-1代入(x-1)(x+2)=-2≠0,故x=-1是原分式方程的解;当1-a=-1,即a=2时,x=1,检验,将x=1代入(x-1)(x+2)=0,故x=1不是原分式方程的解;∴整数a的值为:-2,0或4.例4.[x]表示不超过x的最大整数.如,[π]=3,[2]=2,[-2.1]=-3.则下列结论:①[-x]=-[x];②若[x]=n,则x的取值范围是n≤x<n+1;③当-1<x<1时,[1+x]+[1-x]的值为1或2;④x=-2.75是方程4x-2[x]+5=0的唯一一个解.其中正确的结论有_________(写出所有正确结论的序号).解:①当x=-3.5时,[-3.5]=-4,-[x]=-3,不相等,故原来的说法错误;②若[x]=n,则x的取值范围是n≤x<n+1是正确的;③当-1<x<0时,[1+x]+[1-x]=0+1=1;当x=0时,[1+x]+[1-x]=1+1=2;当0<x<1时,[1+x]+[1-x]=1+0=1;故当-1<x<1时,[1+x]+[1-x]的值为1或2是正确的;④x-[x]的范围为0~1,4x-2[x]+5=0,-5≤2x<-7,即-2.5≤x<-3.5,x=-2.75或x=-3.25都是方程4x-2[x]+5=0,故原来的说法错误.故答案为:②③.同类题型4.1 设[x]表示不大于x的最大整数,{x}表示不小于x的最小整数,(x)表示最接近x的整数(x ≠n+0.5,n为整数).例如[3.4]=3,{3.4}=4,(3.4)=3.则不等式8≤2x+[x]+3{x}+4(x)≤14的解为()A.0.5≤x≤2 B.0.5<x<1.5或1.5<x<2C.0.5<x<1.5 D.1.5<x<2解:根据题意得:x>0,若x≥2,则2x≥4,[x]≥2,3{x}≥6,4(x)≥8,不等式不成立.故只需分析0<x<2时的情形即可,①0<x≤0.5时,不等式可化为:8≤2x+0+3+0≤14,解得:2.5≤x≤5.5,不符合不等式;②当0.5<x≤1时,不等式可化为:8≤2x+0+3+4≤14,解得:0.5≤x≤3,因此0.5<x≤1,符合不等式;③当1<x<1.5时,不等式可化为:8≤2x+1+6+4≤14,解得:-1.5≤x≤1.5,因此1<x<1.5,符合不等式;④当1.5<x<2时,不等式可化为:8≤2x+1+6+8≤14,解得:-3.5≤x≤-0.5,不符合不等式.故原不等式的解集为:0.5<x<1.5.故选C.同类题型4.2规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是___________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=-2.1时,[x]+(x)+[x)=-7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当-1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.解:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=-2.1时,[x]+(x)+[x)=[-2.1]+(-2.1)+[-2.1)=(-3)+(-2)+(-2)=-7,故②正确;③4[x]+3(x)+[x)=11,7[x]+3+[x)=11,7[x]+[x)=8,1<x<1.5,故③正确;④∵-1<x<1时,∴当-1<x<-0.5时,y=[x]+(x)+x=-1+0+x=x-1,当-0.5<x<0时,y=[x]+(x)+x=-1+0+x=x-1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x-1=4x时,得13;x+1=4x时,得13;当x=0时,y=4x=0,∴当-1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为:②③.同类题型4.3 如果关于x的不等式(a+b)x+2a-b>0的解集是52,那么关于x的不等式(b-a)x+a +2b≤0的解集是____________.解:∵关于x的不等式(a+b)x+2a-b>0的解集是52,∴b-2aa+b,∴b-2a52,且a+b<0,即b=-3a,a+b<0,∴a-3a<0,即a>0,∴b-a=-4a<0,∴关于x的不等式(b-a)x+a+2b≤0的解集是-a-2bb-a,∵-a-2b-a+6a54,∴关于x的不等式(b-a)x+a+2b≤0的解集是54.同类题型4.4 若关于x的不等式组\F(x+4x2x-a<0解集为x<2,则a的取值范围是___________.解:由x+4x2+1,得2x+8>3x+6,解得x<2,由x-a<0,得x<a,又因关于x的不等式组\F(x+4x2x-a<0解集为x<2,所以a≥2.同类题型4.5 按如图的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有___________.解:∵最后输出的数为656,∴5x+1=656,得:x=131>0,∴5x+1=131,得:x=26>0,∴5x+1=26,得:x=5>0,∴5x+1=5,得:x=0.8>0;∴5x+1=0.8,得:x=-0.04<0,不符合题意,故x的值可取131,26,5,0.8共4个.专题03函数的几何综合问题例1.如图,在平面直角坐标系中,直线l:3\R(33与x轴交于点1,以1为边长作等边三角形1)OB\S\DO(1,过点1作1)B\S\DO(2平行于x轴,交直线l于点2,以1)B\S\DO(2为边长作等边三角形2)A\S\DO(1)B\S\DO(2,过点2作2)B\S\DO(3平行于x轴,交直线l于点3,以2)B\S\DO(3为边长作等边三角形3)A\S\DO(2)B\S\DO(3,…,则点2017的横坐标是____________.同类题型1.1 如图,直线l:y=x+1交y轴于点1,在x轴正方向上取点1,使1)=OA\S\DO(1;过点1作2)B\S\DO(1⊥x轴,交l于点2,在x轴正方向上取点2,使1)B\S\DO(2)=B\S\DO(1)A\S\DO(2;过点2作3)B\S\DO(2⊥x轴,交l于点3,在x轴正方向上取点3,使2)B\S\DO(3)=B\S\DO(2)A\S\DO(3;…记1)B\S\DO(1面积为1,1)A\S\DO(2)B\S\DO(2面积为2,2)A\S\DO(3)B\S\DO(3面积为3,…则2017等于()A.4030 B.4031 C.4032 D.4033同类题型1.2 如图,已知直线l:33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点1;过点1作y轴的垂线交直线l于点1,过点1作直线l的垂线交y轴于点2;…;按此作法继续下去,则点4的坐标为()A.(0,128)B.(0,256)C.(0,512)D.(0,1024)同类题型1.3 如图,在平面直角坐标系中,直线l:33x+1交x轴于点B,交y轴于点A,过点A作1⊥AB 交x轴于点1,过点1作1)A\S\DO(1⊥x轴交直线l于点2…依次作下去,则点n的横坐标为____________.例2.高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离1、2(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的坐标为(7,180),其中正确的有_________(把所有正确结论的序号都填在横线上).同类题型2.1 甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个C.2个D.3个同类题型2.2 甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟74h到达B地;(4)乙车行驶94小时或194小时,两车恰好相距50km.正确的个数是()A.1B.2C.3D.4同类题型2.3 甲、乙两人从科技馆出发,沿相同的路线分别以不同的速度匀速跑向极地馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向极地馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象.则下列四种说法:①甲的速度为1.5米/秒;②a=750;③乙在途中等候甲100秒;④乙出发后第一次与甲相遇时乙跑了375米.其中正确的个数是()A.1个B.2个C.3个D.4个例3.如图,已知动点P在函数12x(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=-x+1交于点E,F,则AF﹒BE的值为()A.4B.2C.1D.12同类题型3.1 如图,在反比例函数32x的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数kx的图象上运动,若tan∠CAB=2,则k的值为()A.-3B.-6C.-9D.-12同类题型3.2 如图,在平面直角坐标系中,点A在x轴的正半轴上,点B在第一象限,点C在线段AB上,点D在AB的右侧,△OAB和△BCD都是等腰直角三角形,∠OAB=∠BCD=90°,若函数6x(x>0)的图象经过点D,则△OAB与△BCD的面积之差为()A.12 B.6 C.3 D.2同类题型3.3 如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1x和9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交1x的图象于点C,连结A C.若△ABC是等腰三角形,则k的值是___________.例4.如图,一次函数y=x+b的图象与反比例函数kx的图象交于点A(3,6)与点B,且与y轴交于点C,若点P是反比例函数kx图象上的一个动点,作直线AP与x轴、y轴分别交于点M、N,连结BN、CM.若△ACM)=S\S\DO(△ABN,则APAN的值为__________.同类题型4.1 当12≤x≤2时,函数y=-2x+b的图象上至少有一点在函数1x的图象下方,则b的取值范围为()A.2 B.92 C.b<3D.92同类题型4.2 方程2+3x-1=0的根可视为函数y=x+3的图象与函数1x的图象交点的横坐标,那么用此方法可推断出方程2+2x-1=0的实数根0所在的范围是()A.0<0 B.0<1 C.0<2 D.0<3例5.在平面直角坐标系xOy中,抛物线2)+2mx-m\S\UP6(2-m+1交y轴于点为A,顶点为D,对称轴与x轴交于点H.当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,则m=__________.同类题型5.1 已知抛物线14)x\S\UP6(2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为3,3),P是抛物线14)x\S\UP6(2+1上一个动点,则△PMF周长的最小值是()A.3 B.4 C.5 D.6同类题型5.2 抛物线2+bx+3(a≠0)经过点A(-1,0),32,0),且与y轴相交于点C.设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.同类题型5.3小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为__________cm.参考答案例1.如图,在平面直角坐标系中,直线l:3\R(33与x轴交于点1,以1为边长作等边三角形1)OB\S\DO(1,过点1作1)B\S\DO(2平行于x轴,交直线l于点2,以1)B\S\DO(2为边长作等边三角形2)A\S\DO(1)B\S\DO(2,过点2作2)B\S\DO(3平行于x轴,交直线l于点3,以2)B\S\DO(3为边长作等边三角形3)A\S\DO(2)B\S\DO(3,…,则点2017的横坐标是____________.解:由直线l:3\R(33与x轴交于点1,可得1(1,0),D(0,33),∴1=1,1D=30°,如图所示,过1作1)A⊥OB\S\DO(1于A,则112,即1的横坐标为12\S\UP6(12,由题可得1)B\S\DO(2)B\S\DO(1)=∠OB\S\DO(1D=30°,2)A\S\DO(1)B\S\DO(1)=∠A\S\DO(1)B\S\DO(1O =60°,∴1)B\S\DO(1)B\S\DO(2=90°,∴1)B\S\DO(2)=2A\S\DO(1)B\S\DO(1=2,过2作2)B⊥A\S\DO(1)B\S\DO(2于B,则12)A\S\DO(1)B\S\DO(2=1,即2的横坐标为132\S\UP6(22,过3作3)C⊥A\S\DO(2)B\S\DO(3于C,同理可得,2)B\S\DO(3)=2A\S\DO(2)B\S\DO(2=4,12)A\S\DO(2)B\S\DO(3=2,即3的横坐标为172\S\UP6(32,同理可得,4的横坐标为1152\S\UP6(42,由此可得,n的横坐标为n)-12,∴点2017的横坐标是2017)-12.同类题型1.1 如图,直线l:y=x+1交y轴于点1,在x轴正方向上取点1,使1)=OA\S\DO(1;过点1作2)B\S\DO(1⊥x轴,交l于点2,在x轴正方向上取点2,使1)B\S\DO(2)=B\S\DO(1)A\S\DO(2;过点2作3)B\S\DO(2⊥x轴,交l于点3,在x轴正方向上取点3,使2)B\S\DO(3)=B\S\DO(2)A\S\DO(3;…记1)B\S\DO(1面积为1,1)A\S\DO(2)B\S\DO(2面积为2,2)A\S\DO(3)B\S\DO(3面积为3,…则2017等于()A.4030 B.4031 C.4032 D.4033解:∵1)=OA\S\DO(1;过点1作2)B\S\DO(1⊥x轴,1)B\S\DO(2)=B\S\DO(1)A\S\DO(2);A\S\DO(3)B\S\DO(2⊥x轴,2)B\S\DO(3)=B\S\DO(2)A\S\DO(3;…∴1)B\S\DO(1,1)A\S\DO(2)B\S\DO(2,2)A\S\DO(3)B\S\DO(3是等腰直角三角形,∵y=x+1交y轴于点1,∴1(0,1),∴1(1,0),∴1)=OA\S\DO(1=1,∴112,同理112,112;…∴12)×2\S\UP6(2n-2)=2\S\UP6(2n-3,∴2017)=2\S\UP6(2×2017-3)=2\S\UP6(4031,选B.同类题型1.2 如图,已知直线l:33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点1;过点1作y轴的垂线交直线l于点1,过点1作直线l的垂线交y轴于点2;…;按此作法继续下去,则点4的坐标为()A.(0,128)B.(0,256)C.(0,512)D.(0,1024)解:∵直线l的解析式为33x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴OB=2,∴3,∵1B⊥l,∴1=60°,∴1O=4,∴1(0,4),同理可得2(0,16),…∴4纵坐标为4=256,∴4(0,256).选B.同类题型1.3 如图,在平面直角坐标系中,直线l:33x+1交x轴于点B,交y轴于点A,过点A作1⊥AB 交x轴于点1,过点1作1)A\S\DO(1⊥x轴交直线l于点2…依次作下去,则点n的横坐标为____________.解:由直线l:33x+1交x轴于点B,交y轴于点A,可得A(0,1),3,0),∴33,即∠ABO=30°,∴BA=2AO=2,又∵1⊥AB交x轴于点1,AO=1,∴23,∴1中,43;由题可得83,∴23,∴1)B\S\DO(2中,163;由题可得329,∴33,∴2)B\S\DO(3中,643,…以此类推,\F(4n3,又∵3,∴\F(4n3,∴点n的横坐标为4n3.例2.高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离1、2(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的坐标为(7,180),其中正确的有_________(把所有正确结论的序号都填在横线上).解:①450+240=690(千米).故A、C之间的路程为690千米是正确的;②450÷5-240÷4=90-60=30(千米/小时).故乙车比甲车每小时快30千米是正确的;③690÷(450÷5+240÷4)=690÷(90+60)=690÷150=4.6(小时).故4.6小时两车相遇,原来的说法是错误的;④(450-240)÷(450÷5-240÷4)=210÷(90-60)=210÷30=7(小时),450÷5×7-450=630-450=180(千米).故点E的坐标为(7,180)是正确的,故其中正确的有①②④.同类题型2.1 甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个C.2个D.3个解:①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5-3-120÷(40×2),=2.5-1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为1)=k\S\DO(1)t+b\S\DO(1,EF的解析式为2)=k\S\DO(2)t+b\S\DO(2,由图象,得120=4k\S\DO(1)+b\S\DO(1)240=5.5k\S\DO(1)+b\S\DO(,)),240=5k\S\DO(2)+b\S\DO(2)0=8k\S\DO(2)+b\S\DO(2))解得k\S\DO(1)=80b\S\DO(1)=-200),k\S\DO(2)=-80b\S\DO(2)=640),∴1=80t-200,2=-80t+640,当1)=y\S\DO(2时,80t-200=-80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为:120km,乙车行的路程为:80×(3-2)=80km,∴两车相距的路程为:120-80=40千米,故④正确,选A.同类题型2.2 甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟74h到达B地;(4)乙车行驶94小时或194小时,两车恰好相距50km.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)小床这样设计应用的数学原理是
(2)若 AB :BC=1 : 4,则 tan∠CAD 的值是
k 17.( 2015 年浙江丽水 4 分) 如图,反比例函数 y 的图象经过点( - 1, 2 2 ),点 A
(1)当 m
1 时, n =
;
4
(2)随着点 M 的转动,当 m 从 1 变化到 2 时,点 N 相应移动的路径长为
3
3
16(. 2015 年浙江金华 4 分)图 1 是一张可以折叠的小床展开后支撑起来放在地面的示意图, 此时,点 A , B ,C 在同一直线上,且∠ ACD=90 ° .图 2 是小床支撑脚 CD 折叠的示意图,
变化到 2 时,点 N 相应移动的路径长为 3
(第 12 题)
(第 13 题)
13(. 2015 年浙江杭州 4 分)如图,在四边形纸片 ABCD 中,AB=BC,AD=CD ,∠ A=∠C=90 °,
∠B=150°,将纸片先沿直线 BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,
剪
开后的图形打开铺平,若铺平后的图形中有一个是面积为
。
10. ( 2015 年浙江温州 5 分)图甲是小明设计的带图案的花边作品, 该作品由形如图乙的矩
形图案拼接而成(不重叠,无缝隙)
. 图乙中, AB 6 , EF=4cm ,上下两个阴影三角形 BC 7
的面积之和为 54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为
cm
11. ( 2015 年内蒙古呼和浩特 3 分) 以下四个命题 :
;
计算: m 1
1
1
1
..
13 35 57
19 21
4. ( 2015 年广东广州 3 分)如图, 四边形 ABCD 中,∠ A=90°, AB 3 3 ,AD =3,点 M,
N 分别为线段 BC, AB 上的动点(含端点,但点 M 不与点 B 重合),点 E, F 分别为 DM ,
MN 的中点,则 EF 长度的最大值为
2 的平行四边形,则 CD=
14.( 2015 年浙江湖州 4 分)已知正方形 ABC 1D 1 的边长为 1,延长 C1D1 到 A1,以 A1C1 为边 向右作正方形 A1C1C2D 2,延长 C2D2 到 A2,以 A2C2 为边向右作正方形 A2C2C3 D3(如图所示 ), 以此类推 ? ,若 A1 C1=2,且点 A,D 2, D3,? , D10 都在同一直线上,则正方形 A9C9C10D10 的边长是 。
.
7. ( 2015 年浙江衢州 4 分) 如图,已知直线 y
3 x 3分别交 x 轴、 y 轴于点 A 2 x 5 上的一个动点, 其横坐标为 a ,过点 P 且平行于 y 轴的直线 2
3
交直线 y
x 3于点 Q ,则当 PQ BQ 时, a 的值是
.【
4
8. ( 2015 年浙江绍兴 5 分)( 2015 年浙江义乌 4 分) 实验室里,水平桌面上有甲、乙、丙
(第 14 题)
(第 15 题)
15.( 2015 年浙江嘉兴 5 分) 如图,在直角坐标系 xOy 中,已知点 A( 0, 1),点 P 在线段
OA 上,以 AP 为半径的⊙ P 周长为 1. 点 M 从 A 开始沿⊙ P 按逆时针方向转动, 射线 AM 交
x 轴于点 N( n , 0) . 设点 M 转过的路程为 m ( 0 < m < 1) .
5
cm,
6
(第 8 题)
(第 9 题)
9. ( 2015 年浙江台州 5 分) 如图,正方形 ABCD 的边长为 1,中心为点 O,有一边长大小
不定的正六边形 EFGHIJ 绕点 O 可任意旋转,在旋转过程中,这个正六边形始终在正方形
ABCD 内(包括正方形的边) ,当这个六边形的边长最大时, AE 的最小值为
.
(第 4 题)
(第 6 题)
(第 7 题)
5. ( 2015 年广东佛山 3 分) 各边长度都是整数,最大边长为 8 的三角形共有
个.
6. ( 2015 年陕西 3 分) 如图, AB 是⊙ O 的弦, AB=6,点 C 是⊙ O 上的一个动点,且
∠ACB =45°.若点 M , N 分别是 AB, BC 的中点,则 MN 长的最大值是
三个圆柱形容器 (容器足够高) ,底面半径之比为 1:2:1,用两个相同的管子在容器的 5cm
高度处连通(即管子底端离容器底 5cm),现三个容器中,只有甲中有水,水位高
1cm,如
图所示 . 若每分钟同时向乙和丙注入相同量的水,开始注水
则开始注入
分钟的水量后,甲与乙的水位高度之差是
1 分钟,乙的水位上升 0.5cm.
。
12. ( 2015 年浙江舟山 4 分) 如图,在直角坐标系 xOy 中,已知点 A( 0, 1),点 P 在线段 OA 上,以 AP 为半径的⊙ P 周长为 1. 点 M 从 A 开始沿⊙ P 按逆时针方向转动, 射线 AM 交
x 轴于点 N( n ,0) . 设点 M 转过的路程为 m ( 0 < m < 1 ) . 随着点 M 的转动,当 m 从 1 3
中考数学《填空压轴题》专题练习( 1)
1. ( 2015 年广东 4 分) 如图, △ABC 三边的中线 AD ,BE,CF 的公共点 G,若 S△ ABC 12 ,
则图中阴影部分面积是
.
(第 1 题)
(第 2 题)
2. ( 2015 年广东深圳 3 分) 如图,已知点 A 在反比例函数 y
k (x
①若一个角的两边和另一个角的两边分别互相垂直,
则这两个角互补; ②边数相等的两个正
多边形一定相似;③等腰三角形 ABC 中, D 是底边 BC 上一点, E 是一腰 AC 上的一点,若
∠BAD =60°且 AD=AE,则∠ EDC =30°;④任意三角形的外接圆的圆心一定是三角形三条边
的垂直平分线的交点 .其中正确命题的序号为
0) 上,作 Rt ABC ,
x
点 D 为斜边 AC 的中点,连 DB 并延长交 y 轴于点 E,若 BCE 的面积为 8,则 k=
.
1
3. ( 2015 年广东汕尾 5 分)( 2015 年广东梅州 3 分)若
2n 1 2n 1
a
b ,,
2n 1 2n 1
对任意自然数 n 都成立,则 a =
,b =