头铺初中七年级数学竞赛试卷(2)
七年级数学竞赛试题及答案

七年级数学竞赛试题及答案一、选择题1. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 5/10D. 3/52. 计算:(2x + 3)(x - 2) = ?A. 2x^2 - x - 6B. 2x^2 - 4x + 3x - 6C. 2x^2 - 6x + 3D. 2x^2 - 2x - 63. 一个长方形的长是12cm,宽是8cm,那么它的面积是多少平方厘米?A. 20B. 96C. 120D. 2004. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 20B. 22C. 24D. 265. 一个圆的半径是7cm,求这个圆的周长(π取3.14)。
A. 14cmB. 28cmC. 42cmD. 56cm二、填空题1. 一个等边三角形的每个内角是______度。
2. 如果a:b = 3:4,那么b:a = ______3. 一个分数的分子是12,分母是18,这个分数化简后的结果是______。
4. 一个长方体的体积是60立方厘米,长是5cm,宽是2cm,那么它的高是______厘米。
5. 一个圆的直径是10cm,求这个圆的面积(π取3.14)。
三、解答题1. 甲乙两人同时从A地出发,甲以每小时5公里的速度向东走,乙以每小时7公里的速度向南走。
如果他们各自沿着直线走到B地和C地,且B、C两地相距10公里,求甲乙两人出发后多少时间相遇。
2. 一个班级有40名学生,其中男生和女生的比例是3:2。
如果增加10名女生,那么男生和女生的比例将变为多少?3. 一个数除以4余1,除以5余2,除以6余3,这个数最小是多少?4. 一块长方形的草坪长是20米,宽是15米。
现在要在草坪的四周种上一圈花,每株花占地0.2平方米,问需要多少株花?5. 一个数的平方减去它的三倍再加上20得到的结果是5,求这个数是多少?四、证明题1. 证明:勾股定理。
在一个直角三角形中,直角边的平方和等于斜边的平方。
2. 证明:两个等边三角形如果它们的边长相等,那么这两个三角形全等。
数学竞赛试题初一及答案

数学竞赛试题初一及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果a和b是两个非零实数,且a+b=5,那么a-b的最大值是多少?A. 5B. 4C. 3D. 23. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 44. 下列哪个选项是4的倍数?A. 7B. 8C. 9D. 105. 如果一个三角形的内角和为180°,那么一个四边形的内角和是多少度?A. 360°B. 540°C. 720°D. 900°二、填空题(每题2分,共10分)6. 一个数的绝对值是它与____的距离。
7. 圆的周长公式是C=__。
8. 如果一个数的立方等于它本身,那么这个数可能是____。
9. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是____。
10. 一个数的倒数是1/这个数,那么1的倒数是____。
三、简答题(每题5分,共15分)11. 解释什么是有理数,并给出两个有理数的例子。
12. 什么是质数?请列出前5个质数。
13. 描述如何使用勾股定理来计算直角三角形的斜边长度。
四、计算题(每题10分,共20分)14. 计算下列表达式的值:(2+3)×(2-3)。
15. 解下列方程:2x + 5 = 13。
五、解答题(每题15分,共30分)16. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。
17. 一个班级有40名学生,其中1/4是男生,1/3是女生,剩余的是教师。
求男生、女生和教师的人数。
答案:一、选择题1. B2. A3. A4. B5. A二、填空题6. 07. 2πr(或πd,d为直径)8. 0, ±19. 5 10. 1三、简答题11. 有理数是可以表示为两个整数的比的数,例如1/2和3。
12. 质数是大于1的自然数,且除了1和它本身外,不能被其他自然数整除的数。
七年级数学竞赛练习卷(2)(含答案)-

七年级数学竞赛练习卷(2)一、选择题:1、两个正整数的和是60,它们的最小公倍数是273,则它们的乘积是( )A. 1911B. 1199C. 819D. 273 2、若790a b +=,则2ab 一定是( )A 、正数B 、负数C 、非负数D 、非正数 3、满足(n 2-n-1)n + 2=1的整数n 有几个?( )A 、4个B 、3个C 、2个D 、1个4、若不等式︱x+1︱+︱x-3︱≤a 有解,则a 的取值范围是( ) A.0<a ≤4 B.a ≥4 C.0<a ≤2 D.a ≥25、若a 、b 是有理数,且a 2001+b 2001=0,则A 、a=b=0B 、a-b=0C 、a+b=0D 、ab=06、某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加( )A 、20%B 、25%C 、80%D 、75%7、两个相同的瓶子中装满了酒精溶液,第一个瓶子里的酒精与水的体积之比为a :1,第一个瓶子为b :1,现将两瓶溶液全部混和在一起,则混和溶液中酒精与水的体积之比是( ) (安徽省初中数学联赛试题)A 、2b a + B 、12++b a ab C 、22++++b a ab b a D 、24++++b a abb a 8、咖啡A 与咖啡B 按x :y(以重量计)的比例混合。
A 的原价为每千克50元,B 的原价为每千克40元,如果A 的价格增加10%,B 的价格减少15%,那么混合咖啡的价格保持不变。
则x :y 为( ) A 、5:6 B 、6:5 C 、5:4 D 、4:59、设P 是质数,若有整数对(a ,b )满足 ,则这样的整数对(a ,b )共有 ( ) A .3对 B .4对 C .5对 D .6对 10、有理数a 、b 、c 满足下列条件:a +b +c =0且abc <0,那么cb a 111++的值 ( ) (A )是正数 (B)是零 (C)是负数 (D)不能确定11、设四个自然数a,b,c,d 满中条件1≤a<b<c<d≤2004和a+b+c+d=ad+bc ,m 与n 分别为abcd 的最大值和最小值,则6nm +等于( ) A .2002; B .2004: C .2006: D .2008。
头铺初中七年级数学竞赛试卷 (2)

头铺初中七年级数学竞赛试卷一、选择题(共10题,每题4分共40分)1、下列从左到右是因式分解的是( )(A )、12a 2b=3a ·4ab (B )、(x+3)(x -3)=x 2-9(C )、4x 2+8x -1=4x(x +2)-1 (D )21a x -21ay=21a(x -y)2、下列说法中 ①3是实数②3 是无限不循环小数③3是无理数④3的值等于1.73其中正确的说法有( )个(A )、1个(B )、2个(C )、3个(D )4个3、在-3、25、722 、 2、∏+3这5个数中无理数有( )(A )、1个(B )、2个(C )、3个(D )4个4、16 的算术平方根是( )(A )、±4(B )、4(C )、±2(D )25、下列多项式不能用公式法分解因式的是(A )41x 2-xy+y 2 (B )x 2+2xy+y 2 (C )-x 2+y 2 (D )x 2+y 26、如果单项式-3x 4a -b y 2与31x 3y 2a 是同类项则这两个单项式的乘积为( ) (A )x 6y 4 (B)-x 3y 2 (C)-38 x 3y 2 (D)-x 6y 4 X <37如果不等式组 有解,那么m 的取值范围是( )X >m(A )m >3 (B )m ≥3 (C )m <3 (D)m ≤38、若x 2+2(k-3)x+25是一个整式的平方,则k 的值等于( )(A )8 (B )-2 (C )-8或-2 (D )8或-29、不等式7x-2(10-x)≥7(2x-5)的非负整数解有( )(A )3个 (B )4个 (C )5个 (D )6个110、不等式组 的解集是x <6m+3则m 取值范围是( )2x-m <6(A )m ≤0 (B )m=0 (C)m >0 (D)m <0二、填空题(共4题,每题4分,共6分)11、已知2x-1与21x 是某一个正数的平方根,则这个正数是 12、(21)2009·22010= 13、若式子x 2+mx+41是一个完全平方式则m x +2a >414、若不等式组 的解集是0<x <2那么a+b 的值=2x-b <515、计算 327105 +971+∣3-10∣ (4分)16、解不等式(组)并把解集在数轴上表示出来 (4分)3x-2<x+1x +5>4x+117、计算(2m-5)(2m+5)-(2m+1)(2m -3) (4分)18、分解因式(3a+b )(a-2b)-2a(2b-a)(8分)19、已知,x+y=4 xy=-12求下列各式的值(8分)(1)x 2+y 2 (2) x 2-xy+y 220、求不等式组-2≤321x ≤2的整数解(8分)21、观察下面的分解因式过程(8分)把多项式am+an+bm+bn 分解因式解法一:am+an+bm+ba 解法:am+ an +bm+bn=(am+ an )+(bm+ba ) =(am+bm)+(an+bm)=a(m+n)+b(m+n) =m(a+b)+ n(a+b)=(m+n)(a+b) =(a+b)(m+n)根据你的发现,分解因式:mx-my+ax-ny22、已知不等式5(x-2)+8<6(x-1)+7的最小整数解为方程2x-ax=3的解。
七年级上册数学竞赛题和经典题

七年级上册数学竞赛题和经典题一、竞赛题与经典题。
1. (有理数运算)计算:( 2)^3+[26 ( 3)×2]÷4解析:先计算指数运算( 2)^3=-8。
再计算括号内的式子,[26-( 3)×2]=[26 + 6]=32。
然后进行除法运算32÷4 = 8。
最后进行加法运算-8+8 = 0。
2. (整式的加减)化简:3a + 2b 5a b解析:合并同类项,3a-5a=-2a,2b b=b。
所以化简结果为-2a + b。
3. (一元一次方程)解方程:3(x 1)-2(x + 1)=6解析:先去括号,3x-3-2x 2=6。
再移项,3x-2x=6 + 3+2。
合并同类项得x = 11。
4. (数轴相关)在数轴上,点A表示的数为-3,点B表示的数为5,求A、B两点间的距离。
解析:数轴上两点间的距离等于右边的数减去左边的数(大数减小数)。
所以AB = 5-( 3)=5 + 3 = 8。
5. (绝对值)已知| x|=3,| y| = 5,且x>y,求x + y的值。
解析:因为| x|=3,所以x=±3;因为| y| = 5,所以y=±5。
又因为x>y,当x = 3时,y=-5,此时x + y=3+( 5)=-2;当x=-3时,y=-5,此时x + y=-3+( 5)=-8。
6. (有理数的混合运算)计算:(1)/(2)×(-2)^2-((2)/(3))^2÷(2)/(9)解析:先计算指数运算,(-2)^2 = 4,((2)/(3))^2=(4)/(9)。
然后进行乘除运算,(1)/(2)×4 = 2,(4)/(9)÷(2)/(9)=(4)/(9)×(9)/(2)=2。
最后进行减法运算2-2 = 0。
7. (整式的概念)若3x^m + 5y^2与x^3y^n是同类项,则m=_ ,n=_ 。
(word完整版)初中七年级数学竞赛试题及答案,文档.docx

2019 年初中七年级数学竞赛试题及答案一、选择题 ( 每小题 6 分,共 48 分;以下每题的4 个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内. )1 .如果 a 是有理数,代数式2a 1 1 的最小值是 --------------------------()(A) 1 (B) 2 (C) 3 (D) 42 .正五边形的对称轴有--------------------------------------------------( )( A ) 10 条( B )5 条( C ) 1 条( D ) 0 条3.已知等腰三角形的两边长分别为是3 和 6,,则这个三角形的周长是 --------( )( A ) 9( B ) 12( C ) 15( D ) 12 或 154.从一幅扑克牌中抽出5 张红桃, 4 张梅花, 3 张黑桃放在一起洗匀后,从中一次随机抽出 10张,恰好红桃、梅花、黑桃 3 种牌都抽到,这件事情 --------------- ( )( A )可能发生 ( B )不可能发生 ( C )很有可能发生( D )必然发生5 . 如 果( A )a b c abc 的 值 为 - - - - - - - - - - - - - - - - - - - - - - - - - - - ()ab1 , 则abcc1( B ) 1 ( C )1( D )不确定6.棱长是 1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是()( A ) 36cm 2( B ) 33cm 2( C ) 30cm 2 ( D ) 27cm 2(第 6 题图)(第 7 题图)7.如图是一块矩形 ABCD 的场地,长 AB=102m ,宽 AD=51m ,从 A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为 2m ,其余部分种植草坪,则草坪面积为 ----------- ( ) 22 2 (D) 2( A ) 2018m ( B ) 2018m (C) 2018m 2018m 8.如果一个方程有一个解是整数,我们称这个方程有整数解 . 请你观察下面的四个方程:( 1) 6x 4 y13 ( 2) 3x7 y 10 (3) ( x3)( y 2) 4( 4)1 11xy 2005其中有整数解的方程的个数是 ------------------------------------- ( )(A) 1(B) 2(C) 3 (D) 4二、填空题 ( 每小题 6 分,共 42 分 )9.观察下列算式:4 × 1 × 2+1=3 24 × 2 × 3+l=54 × 3 × 4+l=7 4 × 4 × 5+1=9222用代数式表示上述的律是.10.七 0 一班班主任一起共 48人到公园去划船 .每只小船坐 3 人,租金20 元,每只大船坐 5 人,租金 30元 . 他租船要付的最少租金是元 .11. 2018 减去它的1,再减去剩余数的1,再减去剩余数的1,⋯,依此推,一直234到减去剩余数的1,那么最后剩余的数是.200512.一个正 n 形恰好有 n 条角,那么个正n 形的一个内角是度.13.如, DE是△ ABC的 AB 的垂直平分,分交AB、 BC于 D、 E, AE 平分∠ BAC,若∠ B=30°,∠ C=度.14.ABC的三分a, b,c,其中a, b 足a b4(a b2)20 ,第三的 c 的取范是.15.根据下列 5 个形及相点的个数的化律,在第100 个形中有个点 .三、解答 ( 共 60 分 )16.( 15 分)如,ABC中, AB=6,BD=3, AD BC于 D,B=2 C,求 CD的 .AB CD17.( 15 分)两个代表从甲地乘往乙地,每可乘 35 人。
2022年七年级数学竞赛试卷及答案解析

2022年七年级数学竞赛试卷一.选择题(共10小题,满分30分,每小题3分)1.已知a 是两位数,b 是一位数,把a 接写在b 的后面,就成为一个三位数.这个三位数可表示成( ) A .10b +aB .baC .100b +aD .b +10a2.设x 为有理数,若|x |=x ,则( ) A .x 为正数B .x 为负数C .x 为非正数D .x 为非负数3.某地区一天三次测量气温如下,早上是﹣8℃,中午上升了4℃,半夜下降了14℃,则半夜的气温是( ) A .﹣15℃B .2℃C .﹣18℃D .﹣26℃4.关于x 的方程2x ﹣4=3m 和x +2=m 有相同的解,则m 的值是( ) A .10B .﹣8C .﹣10D .85.当3≤m <5时,化简|2m ﹣10|﹣|m ﹣3|得( ) A .13+mB .13﹣3mC .m ﹣3D .m ﹣136.计算:3+(﹣2)结果正确的是( ) A .1B .﹣1C .5D .﹣57.观察图中的数轴:用字母a ,b ,c 依次表示点A ,B ,C 对应的数,则1ab,1b−a,1c的大小关系是( )A .1ab<1b−a<1cB .1b−a<1ab<1cC .1c<1b−a<1abD .1c<1ab<1b−a8.平面内3条直线最多可以把平面分成( ) A .4部分B .5部分C .6部分D .7部分9.一项工程,甲单独做需m 小时完成,若与乙合作20小时可以完成,则乙单独完成需要的时间是( ) A .20m m−20小时 B .20mm+20小时 C .m−2020m小时 D .m+2020m小时10.如图,是一个正方体的展开图,把展开图折叠成正方体后有“水”字一面的相对面上的字是( )A.共B.山C.绿D.建二.填空题(共10小题,满分40分,每小题4分)11.(4分)已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B的常数项是.12.(4分)写出一个数,使这个数等于它的倒数:.13.(4分)若2x2a﹣b﹣1﹣3y3a+2b﹣16=10是关于x,y的二元一次方程,则a+b=.14.(4分)小东在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1所示.小林看见了说:“我也来试一试.”结果小林七拼八凑,拼成了如图2那样的正方形,中间还留下了一个恰好是边长为2cm的小正方形,则这个小长方形的面积为cm2.15.(4分)如图,点O在直线AB上,∠AOD=120°,CO⊥AB,OE平分∠BOD,则图中一共有对互补的角.16.(4分)若a2+a=0,则a2001+a2000+12的值是.17.(4分)如图,△ABC三边的中线AD,BE,CF相交于点G,若S△ABC=15,则图中阴影部分面积是.18.(4分)小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小何共花费元.(用含a,b的代数式表示)19.(4分)观察式子11×3=12(1−13),13×5=13(13−15),15×7=12(15−17),…由此可知1 1×3+13×5+15×7+⋯+1(2n−1)×(2n+1)=.20.(4分)在长为20m、宽为16m的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,则每个小长方形花圃的面积是m2.三.解答题(共2小题,满分30分,每小题15分)21.(15分)我们把形如aaa1(1≤a≤9且为整数)的四位正整数叫做“三拖一”数,例如:2221,3331是“三拖一”数.(1)最小的“三拖一”数为;最大的“三拖一”数为;(2)请证明任意“三拖一”数不能被3整除;(3)一个“三拖一”数与50的和的2倍与另一个小于5000不同的“三拖一”数与75的和的3倍的和正好能被13整除,求这两个“三拖一”数.22.(15分)对于某些自然数n,可以用n个大小相同的等边三角形拼成内角都为120°的六边形.例如,n=10时就可以拼出这样的六边形,如图,请从小到大,求出前10个这样的n.2022年七年级数学竞赛试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.已知a 是两位数,b 是一位数,把a 接写在b 的后面,就成为一个三位数.这个三位数可表示成( ) A .10b +aB .baC .100b +aD .b +10a解:两位数的表示方法:十位数字×10+个位数字;三位数字的表示方法:百位数字×100+十位数字×10+个位数字.a 是两位数,b 是一位数,依据题意可得b 扩大了100倍,所以这个三位数可表示成100b +a . 故选:C .2.设x 为有理数,若|x |=x ,则( ) A .x 为正数B .x 为负数C .x 为非正数D .x 为非负数解:设x 为有理数,若|x |=x ,则x ≥0,即x 为非负数. 故选:D .3.某地区一天三次测量气温如下,早上是﹣8℃,中午上升了4℃,半夜下降了14℃,则半夜的气温是( ) A .﹣15℃B .2℃C .﹣18℃D .﹣26℃解:由题意早上是﹣8℃,中午上升了4℃,即中午的温度为﹣8℃+4℃=﹣4℃, 半夜下降了14℃,即﹣4℃﹣14℃=﹣18℃.故选C .4.关于x 的方程2x ﹣4=3m 和x +2=m 有相同的解,则m 的值是( ) A .10B .﹣8C .﹣10D .8解:由2x ﹣4=3m 得:x =3m+42;由x +2=m 得:x =m ﹣2 由题意知3m+42=m ﹣2解之得:m =﹣8. 故选:B .5.当3≤m <5时,化简|2m ﹣10|﹣|m ﹣3|得( ) A .13+mB .13﹣3mC .m ﹣3D .m ﹣13解:由于3≤m <5,则|2m ﹣10|﹣|m ﹣3|=10﹣2m ﹣(m ﹣3)=13﹣3m ; 故选:B .6.计算:3+(﹣2)结果正确的是( ) A .1B .﹣1C .5D .﹣5解:3+(﹣2)=+(3﹣2)=1, 故选:A .7.观察图中的数轴:用字母a ,b ,c 依次表示点A ,B ,C 对应的数,则1ab,1b−a,1c的大小关系是( )A .1ab<1b−a<1cB .1b−a<1ab<1cC .1c <1b−a<1abD .1c<1ab<1b−a解:由所给出的数轴表示可以看出﹣1<a <−23,−13<b <0,c >1, ∴0<1c<1,…① ∵13<b ﹣a <1,∴1<1b−a<3…② ∵23<|a |<1,0<|b |<13, ∴0<|ab |<13, ∴1|ab|>3,∴1ab>3…③.∴①<②<③, ∴选C .8.平面内3条直线最多可以把平面分成( ) A .4部分B .5部分C .6部分D .7部分解:如图:平面内3条直线最多可以把平面分成7部分. 故选D .9.一项工程,甲单独做需m 小时完成,若与乙合作20小时可以完成,则乙单独完成需要的时间是( ) A .20m m−20小时 B .20mm+20小时 C .m−2020m小时 D .m+2020m小时解:设工作总量为1,那么甲乙合作的工效是120,甲单独做需m 小时完成,甲的工效为1m,乙单独完成需要的时间是1÷(120−1m)=1÷m−2020m =20mm−20小时.故选:A .10.如图,是一个正方体的展开图,把展开图折叠成正方体后有“水”字一面的相对面上的字是( )A .共B .山C .绿D .建解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形, ∴有“水”字一面的相对面上的字是“建”. 故选:D .二.填空题(共10小题,满分40分,每小题4分)11.(4分)已知A =3x 3+2x 2﹣5x +7m +2,B =2x 2+mx ﹣3,若多项式A +B 不含一次项,则多项式A +B 的常数项是 34 .解:∵A +B =(3x 3+2x 2﹣5x +7m +2)+(2x 2+mx ﹣3) =3x 3+2x 2﹣5x +7m +2+2x 2+mx ﹣3 =3x 2+4x 2+(m ﹣5)x +7m ﹣1 ∵多项式A +B 不含一次项,∴m ﹣5=0, ∴m =5,∴多项式A +B 的常数项是34, 故答案为3412.(4分)写出一个数,使这个数等于它的倒数: ±1 . 解:如果一个数等于它的倒数,则这个数是±1. 故答案为:±1. 13.(4分)若2x 2a﹣b ﹣1﹣3y 3a +2b﹣16=10是关于x ,y 的二元一次方程,则a +b = 7 .解:根据题意,得:{2a −b −1=13a +2b −16=1,解得:{a =3b =4∴a +b =3+4=7, 故答案为:7.14.(4分)小东在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1所示.小林看见了说:“我也来试一试.”结果小林七拼八凑,拼成了如图2那样的正方形,中间还留下了一个恰好是边长为2cm 的小正方形,则这个小长方形的面积为 60 cm 2.解:设每个长方形的宽为xcn ,长为ycm ,那么可得出方程组为: {5x =3y 2x =y +2, 解得:{x =6y =10,因此每个长方形的面积应该是xy =60cm 2. 故答案为:60.15.(4分)如图,点O 在直线AB 上,∠AOD =120°,CO ⊥AB ,OE 平分∠BOD ,则图中一共有 6 对互补的角.解:∵∠AOD=120°,CO⊥AB于O,OE平分∠BOD,∴∠COD=∠DOE=∠EOB=30°,∴这三个角都与∠AOE互补.∵∠COE=∠DOB=60°,∴这两个角与∠AOD互补.另外,∠AOC和∠COB都是直角,二者互补.因此一共有6对互补的角.故答案为:6.16.(4分)若a2+a=0,则a2001+a2000+12的值是12.解:根据题意,a2+a=0,故原式=a1999(a2+a)+12,=12.故答案为12.17.(4分)如图,△ABC三边的中线AD,BE,CF相交于点G,若S△ABC=15,则图中阴影部分面积是5.解:∵△ABC的三条中线AD、BE,CF交于点G,∴点G是△ABC的重心,∴CG=2FG,∴S△ACG=2S△AFG,∵点E是AC的中点,∴S△CEG=12S△ACG,∴S△CGE=S△AGE=13S△ACF,同理:S △BGF =S △BGD =13S △BCF , ∵S △ACF =S △BCF =12S △ABC =12×15=7.5, ∴S △CGE =13S △ACF =13×7.5=2.5,S △BGF =13S △BCF =13×7.5=2.5, ∴S 阴影=S △CGE +S △BGF =5. 故答案为518.(4分)小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费 (4a +10b ) 元.(用含a ,b 的代数式表示) 解:依题意得:4a +10b ; 故答案是:(4a +10b ). 19.(4分)观察式子11×3=12(1−13),13×5=13(13−15),15×7=12(15−17),…由此可知11×3+13×5+15×7+⋯+1(2n−1)×(2n+1)= n 2n+1.解:原式=12(1−13)+12(13−15)+⋯+12(12n−1−12n+1)=12(1−13+13−15+⋯+12n−1−12n+1) =12(1−12n+1) =12×2n 2n+1 =n2n+1. 故答案为n 2n+1.20.(4分)在长为20m 、宽为16m 的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,则每个小长方形花圃的面积是 32 m 2.解:设小矩形的长为xm ,宽为ym , 由题意得:{2x +y =202y +x =16,解得:{x =8y =4, 即小矩形的长为8m ,宽为4m .答:一个小矩形花圃的面积32m 2,故答案为:32三.解答题(共2小题,满分30分,每小题15分)21.(15分)我们把形如aaa1 (1≤a ≤9且为整数)的四位正整数叫做“三拖一”数,例如:2221,3331是“三拖一”数.(1)最小的“三拖一”数为 1111 ;最大的“三拖一”数为 9991 ;(2)请证明任意“三拖一”数不能被3整除;(3)一个“三拖一”数与50的和的2倍与另一个小于5000不同的“三拖一”数与75的和的3倍的和正好能被13整除,求这两个“三拖一”数.解:(1)由题意可知最小的“三拖一”数为1111;最大的“三拖一”数为9991; 故答案为:1111;9991;(2)证明:由题意得aaa1=1110a +1=3×370a +1(1≤a ≤9且为整数),∴3×370a 是3的倍数,∵1不是3的倍数,∴任意“三拖一”数不能被3整除;(3)设这两个“三拖一”数为aaa1,bbb1(1≤a ≤9,1≤b ≤4且a ,b 为整数,a ≠b ), 则有:2(aaa1+50)+3(bbb1+75)=13(171a +256b +25)+2b ﹣3a +5=13k (k 为正整数),∵1≤a ≤9,1≤b ≤4且a ,b 为整数,∴﹣20≤2b ﹣3a +5≤10,∴2b ﹣3a +5=﹣13或0,∴2b ﹣3a =﹣18或﹣5,∴{a =8b =3,{a =3b =2. ∴这两个数为8881,3331或3331,2221.22.(15分)对于某些自然数n ,可以用n 个大小相同的等边三角形拼成内角都为120°的六边形.例如,n =10时就可以拼出这样的六边形,如图,请从小到大,求出前10个这样的n .解:设所用的等边三角形的边长单位为1.任何满足条件的六边形的外接三角形一定是一个边长为l的大等边三角形.该六边形可以通过切去边长分别为a,b,c的等边三角形的角而得到,其中a,b,c为正整数,并且满足a≥b≥c≥1,l>a+b.又由于用边长为1的等边三角形拼成的一个边长为x(正整数)的等边三角形.所需要的个数是1+3+5+…+(2x﹣1)=x2.因此n=l2﹣(a2+b2+c2),其中l≥3,l>a+b,a≥b≥c≥1.(1)l=3时,n可以为32﹣(12+12+12)=9﹣3=6.(2)l=4时,n可以为42﹣(22+12+12)=16﹣6=10;42﹣(12+12+12)=16﹣3=13.(3)l=5时,与上面不同的n可以为52﹣(32+12+12)=25﹣11=14;52﹣(22+22+12)=25﹣9=16;52﹣(22+12+12)=25﹣6=19;52﹣(12+12+12)=25﹣3=22.(4)l=6时,与上面不同的n可以为62﹣(42+12+12)=36﹣18=18;62﹣(32+12+12)=36﹣11=25;62﹣(22+22+22)=36﹣12=24;62﹣(22+22+12)=36﹣9=27;62﹣(22+12+12)=36﹣6=30;62﹣(12+12+12)=36﹣3=33.(5)l=7时,与上面不同的n都比27大.(6)l≥8时,可以证明满足要求的n都不小于26.由(1)到(6)可得,前10个满足要求的n为6,10,13,14,16,18,19,22,24,25.。
初中七年级数学竞赛试题及参考答案

七年级数学竞赛试题一.选择题(每小题4分,共32分) 1.x 是任意有理数,则2|x |+x 的值( ).A .大于零B . 不大于零C .小于零D .不小于零 2.在-0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的数字是( ) A .1 B .4 C .2 D .83.如图,在数轴上1A 、B , A 是线段BC 的中点,则点C 所表示的数是( )A.2 B2 C1 D.14.桌上放着4张扑克牌,全部正面朝下,其中恰有1张是老K 。
两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜。
则赢的机会大的一方是( )A .红方B .蓝方C .两方机会一样D .不知道 5.如果在正八边形硬纸板上剪下一个三角形(如图①中的阴影部分),那么图②,图③,图④中的阴影部分,均可由这个三角形通过一次平移、对称或旋转而得到.要得到图②,图③,图④中的阴影部分,依次进行的变换不可行...的是( )A.平移、对称、旋转 B.平移、旋转、对称 C.平移、旋转、旋转 D.旋转、对称、旋转6.计算:22221111(1)(1)(1)(1)2342007---⋅⋅⋅-等于( ) A .10042007 B .10032007 C .20082007D .200620077.如图,三个天平的托盘中相同的物体质量相等。
图⑴、⑵所示的两个天平处于平衡状态要使第三个天平也保持平衡,则需在它的右盘中放置( )(3)(2)(1)A. 3个球B. 4个球C. 5个球D. 6个球8.用火柴棒搭三角形时,大家都知道,3根火柴棒只能搭成1种三角形,不妨记作它的边长分别为1,1,1;4根火柴棒不能搭成三角形;5根火柴棒只能搭成一种三角形,其边长分别为2,2,1;6根火柴棒只能搭成一种三角形,其边长分别为2,2,2;7根火柴棒只能搭成2种三角形,其边长分别为3,3,1和3,2,2;…;那么30根火柴棒能搭成三角形个数是( )x图①图②图③ 图④A .15B .16C .18D .19 二.填空题(每题4分,共28分)9.定义a*b=ab+a+b,若3*x=31,则x 的值是_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
头铺初中七年级数学竞赛试卷
一、选择题(共10题,每题4分共40分)
1、下列从左到右是因式分解的是( )
(A )、12a 2b=3a ·4ab (B )、(x+3)(x -3)=x 2-9
(C )、4x 2+8x -1=4x(x +2)-1 (D )21a x -21ay=2
1a(x -y)
2、下列说法中 ①3是实数②3 是无限不循环小数③3是无理数④3的值等于1.73
其中正确的说法有( )个
(A )、1个(B )、2个(C )、3个(D )4个
3、在-3、5、722 、 2、∏+3这5个数中无理数有( )
(A )、1个(B )、2个(C )、3个(D )4个
4、16 的算术平方根是( )
(A )、±4(B )、4(C )、±2(D )2
5、下列多项式不能用公式法分解因式的是
(A )41
x 2-xy+y 2 (B )x 2+2xy+y 2 (C )-x 2+y 2 (D )x 2+y 2
6、如果单项式-3x 4a -b y 2与31x 3
y 2a 是同类项则这两个单项式的乘积为(
)
(A )x 6y 4 (B)-x 3y 2 (C)-38 x 3y 2 (D)-x 6y 4
X <3
7如果不等式组 有解,那么m 的取值范围是( )
X >m
(A )m >3 (B )m ≥3 (C )m <3 (D)m ≤3
8、若x 2+2(k-3)x+25是一个整式的平方,则k 的值等于( )
(A )8 (B )-2 (C )-8或-2 (D )8或-2
9、不等式7x-2(10-x)≥7(2x-5)的非负整数解有( )
(A )3个 (B )4个 (C )5个 (D )6个
31
x-1<2m
10、不等式组 的解集是x <6m+3则m 取值范围是( )
2x-m <6
(A )m ≤0 (B )m=0 (C)m >0 (D)m <0
二、填空题(共4题,每题4分,共6分)
11、已知2x-1与2
1x 是某一个正数的平方根,则这个正数是 12、(2
1)2009·22010= 13、若式子x 2+mx+4
1是一个完全平方式则m x +2a >4
14、若不等式组 的解集是0<x <2那么a+b 的值=
2x-b <5
15、计算 327
105 +971+∣3-10∣ (4分)
16、解不等式(组)并把解集在数轴上表示出来 (4分)
3x-2<x+1
x +5>4x+1
17、计算
(2m-5)(2m+5)-(2m+1)(2m -3) (4分)
18、分解因式
(3a+b )(a-2b)-2a(2b-a)(8分)
19、已知,x+y=4 xy=-12求下列各式的值(8分)
(1)x 2+y 2 (2) x 2-xy+y 2
20、求不等式组-2≤3
21x ≤2的整数解(8分)
21、观察下面的分解因式过程(8分)
把多项式am+an+bm+bn 分解因式
解法一:am+an+bm+ba 解法:am+ an +bm+bn
=(am+ an )+(bm+ba ) =(am+bm)+(an+bm)
=a(m+n)+b(m+n) =m(a+b)+ n(a+b)
=(m+n)(a+b) =(a+b)(m+n)
根据你的发现,分解因式:mx-my+ax-ny
22、已知不等式5(x-2)+8<6(x-1)+7的最小整数解为方程2x-ax=3的解。
求代数式4a-a
14的值(10分)
23、一服装店欲购甲、乙两种运动服,甲款每套进价350元,乙款每款进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套,甲、乙两款运动服。
(1)该店订购这两款运动服,共有几种方案?
(2)若该店以甲款每套400元,乙款每套300元价格全部售出,哪种方案获利最大?(10分)。