单片机复位

合集下载

c51复位电路工作原理

c51复位电路工作原理

C51复位电路是用于复位8051系列单片机(例如AT89C51)的电路,通过将单片机复位引脚置高或置低来实现复位功能。

以下是C51复位电路的工作原理:
1.复位信号源:C51复位电路的主要信号源是一个复位按钮或开关。

当用户按下复位按钮
时,复位信号产生。

2.复位脉冲发生器:复位按钮按下后,复位脉冲发生器会产生一个短暂的复位脉冲信号。

3.复位控制器:复位控制器接收到复位脉冲信号后,根据设计要求,将其转换为适合8051
单片机的复位信号。

4.复位引脚控制:复位控制器通过控制连接到8051单片机的复位引脚(一般为RST或
RESET引脚),将其拉高或拉低。

拉低复位引脚会将单片机置于复位状态,重新启动执行程序。

5.复位完成:一旦复位引脚被拉高,单片机完成复位操作,并开始按照程序中的指令继续
执行。

C51复位电路的目的是在需要时将8051单片机恢复到初始化状态,确保程序可以从头开始执行。

复位电路能够提供稳定可靠的复位功能,让单片机在出现异常情况或需要重新启动时能够正常运行。

单片机复位

单片机复位

单片机的复位操作由复位引脚RST/VPD上出现高电平引起的,高电平持续时间不少于两个机器周期(24个震荡周期),CPU在第2个机器周期内执行复位操作。

如果RST/VPD持续为高电平,那么每隔24个震荡周期重复一次复位操作。

复位后机内各特殊功能寄存器初始状态如表1-12所示,而片内128BRAM的状态不受复位信号影响。

SFR 复位状态SRF 复位状态P0~P3 FFH TH0 00H SP 07H TH1 00HDPL 00H SCON 00HDPH 00H SBUF 不定PCON 0xxx xxxxB(HMOS) IE 0xx0 0000BTCON 00H IP xxx0 0000BTMOD 00H PSW 00HTL0 00H A 00HTL1 00H B 00H各个特殊功能寄存器的复位状态解释如下:P0~P3=FFH:表示已向各端口写入1,使各端口即能作输入线,又能作输出线使用。

SP=07H:表示堆栈栈底位于07H单元,第1个进栈字节将写入08H单元中。

DPTR=0000H:表示片外储存器的操作将从000H单元开始(DPTR包括DPL和PPH 两种状态)。

PCON:HMOS单片机的PCON=0xxx xxxxB,最高位为0表示串行工作时的波特率不加倍。

CHMOS单片机的PCON=00xx xx00 B,最低两位00表示复位后单片机处于正常操作方式。

TCON=00H:表示T0,T1的工作均被停止。

TL0=00H,TH0=00H:表示T0的初始值为000H。

TL1=00H,TH1=00H:表示T1的初始值为000H。

SCON=00H:表示串行口处于工作方式0,允许发送,禁止接收。

SBUF 不定:SUBF存放的是串行口待发送或待接收数据,此时数据无用。

IE=0xx0 0000B:最高为0表示禁止所以中断。

IP=xxx0 0000B:表示5个中断源处于低优先级。

PSW=00H:表示工作寄存器选用0组。

单片机 复位

单片机 复位

单片机复位一、引言单片机的复位是指将单片机从非工作状态重新返回到初始状态的过程。

在单片机的运行过程中,可能会出现各种异常情况,如程序死循环、崩溃等,这时候需要对单片机进行复位,以恢复正常的工作状态。

本文将对单片机复位进行全面、详细、完整地探讨。

二、单片机复位的定义单片机复位是通过将单片机的复位引脚置高或低电平来实现的。

复位引脚一般用来接收外部的复位信号,当该引脚接收到复位信号时,会导致单片机内部的电路和寄存器被重置,使其重新进入初始状态,从而重新开始运行。

三、单片机复位的分类单片机的复位可以分为两种类型:软件复位和硬件复位。

3.1 软件复位软件复位是通过程序代码来实现的。

在程序的某个位置,通过特定的代码操作来触发单片机的复位功能。

软件复位的优点是可以在程序运行的任何时候进行复位,灵活性较高。

但是由于软件复位是在程序中实现的,因此必须保证程序的正确执行才能触发复位操作,可能会存在一定的风险。

3.2 硬件复位硬件复位是通过物理电路来实现的。

当复位引脚接收到复位信号时,通过硬件电路将单片机的电路和寄存器重置,使其重新进入初始状态。

硬件复位的优点是可以在任何情况下进行复位,不受程序的影响。

同时,硬件复位通常比软件复位更可靠,可以有效避免因软件错误导致的复位失败。

四、单片机复位的过程当单片机接收到复位信号时,会进行一系列的复位操作,使其从非工作状态进入到初始状态,具体的复位过程如下:1.断电复位:当单片机接收到复位信号时,会关闭电源,断开与外部设备的连接,以确保能够重新初始化。

2.清除寄存器:单片机会将所有的寄存器内容清零,将其恢复到初始状态,以确保程序的正确执行。

3.初始化外设:根据单片机的具体设计,可能会有多个外设(如时钟、定时器等),这些外设也需要进行初始化,以确保它们能够正常工作。

4.跳转到复位向量:单片机在复位过程中会根据预定的复位向量跳转到特定的地址,从该地址开始执行程序。

五、单片机复位的应用单片机复位在各个领域都有广泛的应用。

51单片机复位电路工作原理

51单片机复位电路工作原理

51单片机复位电路工作原理
51单片机复位电路是用来保证单片机系统在通电或者复位操作后能够正常工作的电路。

其工作原理如下:
1. 在通电或复位时,复位电路会将单片机的复位端(RST)拉低,强制单片机进入复位状态。

2. 复位电路通常由一个电源电压检测电路(电源复位)和一个外部复位电路(手动复位)组成。

3. 电源复位电路用来检测电源电压是否稳定,一旦电源电压达到稳定值,复位电路会解除对单片机复位端的拉低。

4. 外部复位电路可以由用户手动按下复位按钮来实现,按下复位按钮会使复位电路将单片机的复位端拉低。

5. 在单片机复位状态下,单片机的所有寄存器被清零,并且程序从复位向量地址处重新开始执行。

6. 当复位电路将复位端解除拉低后,单片机开始执行复位之后的程序。

综上所述,51单片机复位电路的工作原理是通过控制复位端的状态来实现单片机的复位和正常工作。

单片机复位电路工作原理

单片机复位电路工作原理

单片机复位电路工作原理在单片机系统中,复位电路是一个非常重要的部分,它能够确保单片机在启动和运行过程中始终处于正常的工作状态。

复位电路的主要作用是在单片机系统上电、复位或异常情况下,将单片机的内部逻辑电路恢复到初始状态,以保证系统的可靠性和稳定性。

复位电路通常由复位电路芯片、电源监控芯片、电容、电阻等元器件组成。

其中,复位电路芯片是复位电路的核心部分,它能够监测电源电压,并在电源电压低于一定数值时生成复位信号,将单片机复位。

电源监控芯片则能够监测电源电压的稳定性,以确保单片机在电源电压异常时能够及时地进行复位。

复位电路的工作原理可以简单描述如下,当单片机系统上电或复位时,电源电压会逐渐上升,复位电路芯片会监测电源电压,并在电源电压达到一定数值后生成一个复位信号,将单片机复位。

在单片机系统正常工作时,复位电路会持续监测电源电压,以确保系统在电源异常时能够及时地进行复位,从而保证系统的稳定性和可靠性。

除了电源异常情况下的复位外,复位电路还可以监测单片机系统的工作状态,当系统出现异常情况时,复位电路也能够及时地将单片机复位,以确保系统能够恢复到正常工作状态。

这种功能对于单片机系统的稳定性和可靠性至关重要,尤其是在一些对系统稳定性要求较高的应用中,如工业控制、汽车电子等领域。

在设计单片机系统时,复位电路的设计是至关重要的。

合理的复位电路设计能够确保单片机系统在各种异常情况下能够及时地进行复位,从而保证系统的稳定性和可靠性。

因此,在设计复位电路时,需要充分考虑系统的工作环境、电源电压的波动范围、单片机的工作状态等因素,以确保复位电路能够可靠地工作。

总之,复位电路作为单片机系统中的重要组成部分,其工作原理是确保单片机在启动和运行过程中始终处于正常的工作状态。

合理的复位电路设计能够确保系统在各种异常情况下能够及时地进行复位,从而保证系统的稳定性和可靠性。

因此,在单片机系统的设计中,复位电路的设计是非常重要的,需要充分考虑系统的工作环境、电源电压的波动范围、单片机的工作状态等因素,以确保复位电路能够可靠地工作。

单片机复位电路分析

单片机复位电路分析

单片机复位电路分析单片机是一种高度集成的电子器件,具有处理和控制电子信号的能力。

在单片机工作中,复位电路是非常重要的一部分,它确保单片机启动和工作的可靠性。

本文将分析单片机复位电路的原理、设计和应用。

一、复位电路的原理复位电路是单片机系统中的一个重要电路,其主要功能是在单片机上电时将其内部各个逻辑单元置于初始状态,使单片机能够从设计好的程序的第一步开始执行。

复位电路主要用于以下几个方面:1.启动时复位:当单片机上电时,由于各个逻辑单元的初始状态不确定,复位电路将所有逻辑单元复位到初始状态,确保单片机从正确的程序入口开始执行。

2.系统异常复位:当系统出现异常情况,例如主频异常、IO端口错误等情况时,复位电路可以将单片机复位到初始状态,以恢复系统的正常工作。

3.软件复位:单片机内部通常有一些特殊指令可以触发软件复位,使单片机从程序的第一步开始执行。

复位电路通常由复位源、复位信号检测和复位控制三个基本部分组成。

复位源是指导致单片机复位的异常电子信号,常见的复位源有电源电压异常、晶振频率异常等。

复位信号检测是判断复位源信号的有效性,通常采用复位信号检测电路和复位信号延时电路。

复位控制是根据复位源和复位信号检测的结果,控制单片机逻辑单元的复位。

二、复位电路的设计复位电路的设计需要考虑以下几个因素:1.复位源的选择:根据具体应用需求选择复位源,常见的复位源有电源电压、晶振频率等。

复位电源通常采用稳压电源,并通过滤波电路和限流电路保证稳定的复位电压。

2.复位信号检测:复位信号检测电路用于检测复位源信号的有效性,并产生复位信号。

常见的复位信号检测电路有电压比较电路、门电路等。

复位信号延时电路用于保证在复位信号稳定后再进行复位操作,通常采用RC延时电路或者门延时电路。

3.复位控制:复位控制电路根据复位信号检测的结果,控制单片机各个逻辑单元的复位。

通常采用门电路实现复位控制,可以通过AND门或者OR门的连接实现复位控制逻辑。

单片机复位电路参数计算

单片机复位电路参数计算

单片机复位电路参数计算单片机复位电路是保证单片机在电源上电或者复位时能够稳定工作的重要部分。

其主要功能就是在单片机上电或者复位时,将器件的各个内部逻辑电路恢复到初始状态,以确保其正常工作。

下面将详细介绍单片机复位电路的参数计算。

1.复位电源的电平和时间单片机的复位电源一般使用电源电压来提供。

根据单片机的规格书或者数据手册,可以确定单片机的复位电源电平。

一般来说,单片机的复位电源电平为低电平,即当复位电源电压小于复位电源电平时,单片机进入复位状态。

同时,单片机复位电源的电平稳定时间也很重要。

它表示电源电压从低电平到达复位电平需要的时间,一般以毫秒为单位。

根据单片机的规格书或者数据手册,可以确定单片机复位电源的电平稳定时间。

2.复位电路的电阻和电容在单片机复位电路中,通常会串联一个电阻和一个电容。

电阻的作用是限制电流,保护电源和单片机;电容的作用是存储电荷,提供复位电源的稳定性和持续性。

通过分析复位电路的参数计算公式,我们可以根据单片机的规格书或者数据手册给出的复位电源电平和时间,来计算电阻和电容的取值。

首先,计算电阻的取值。

根据 Ohm's Law (欧姆定律),电流等于电压除以电阻,即 I = V/R。

假设我们选择的复位电路电流为 I,复位电源电压为 V,电阻的取值为 R,则有 R = V/I。

其次,计算电容的取值。

根据RC时间常数公式,时间常数等于电容乘以电阻,即τ=R*C。

根据复位电源电平稳定时间的要求,我们可以计算出电容的取值。

3.复位电路的外部连接在设计单片机复位电路时,还需要考虑到复位引脚和其他引脚的连接。

复位引脚一般需要与复位电源、开关电源等连接,以实现复位功能。

此外,还需要考虑复位引脚和其他引脚的布线和布局,以保证信号传输的稳定性和可靠性。

总结起来,单片机复位电路参数的计算主要涉及复位电源的电平和时间、电阻和电容的取值以及复位电路的外部连接。

根据单片机的规格书或者数据手册给出的参数要求,我们可以通过公式计算出合适的电阻和电容取值,从而设计出稳定可靠的单片机复位电路。

单片机复位电路工作原理

单片机复位电路工作原理

单片机复位电路工作原理
复位电路是单片机系统中非常重要的一部分,其作用是在系统出现故障或其他异常情况时,将整个系统恢复到初始状态,重新开始执行程序。

复位电路由复位触发器、复位信号发生电路和复位延时电路组成。

复位触发器是一个同步触发器,当复位信号为高电平时,触发器的输出被强制置为低电平,将整个单片机系统从任何状态强制恢复到初始状态。

复位信号发生电路通常由一个降压稳压芯片提供电源电压监测功能。

当供电电压低于一定的阈值时,复位信号发生电路会检测到,并产生一个复位信号。

复位信号发生电路还能够在供电电压恢复正常后保持产生复位信号一段时间,以确保电源电压稳定后系统能够正常工作。

复位延时电路的作用是延迟复位信号发生电路产生的复位信号,以确保系统在复位信号发生后稳定一段时间后才正式开始工作。

这是为了避免在复位信号产生瞬间系统电压尚未完全稳定而导致的异常操作。

当系统发生故障或其他异常情况时,复位信号发生电路会检测到并产生复位信号,驱动复位触发器将整个系统恢复到初始状态。

复位延时电路会延迟一段时间后,系统电源电压稳定后才会停止产生复位信号,系统才会开始正常工作。

复位电路的设计是单片机系统中必不可少的一部分,它能够保证系统在异常情况下能够可靠地重新开始工作,提高了系统的可靠性和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机各种复位电路原理
复位电路的作用
在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。

无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。

而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。

许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。

基本的复位方式
单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。

89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。

当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。

单片机系统的复位方式有:手动按钮复位和上电复位
1、手动按钮复位
手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。

一般采用的办法是在RST 端和正电源Vcc之间接一个按钮。

当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。

手动按钮复位的电路如所示。

由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。

图1
图2
2、上电复位
AT89C51的上电复位电路如图2所示,只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。

对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至1µF。

上电复位的工作过程是在加电时,复位电路通过电容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。

为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。

上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。

在图2的复位电路中,当Vcc掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。

另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。

如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU 可能会从一个未被定义的位置开始执行程序。

2、积分型上电复位
常用的上电或开关复位电路如图3所示。

上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。

当单片机已在运行当中时,按下复位键K后松开,也能使RST 为一段时间的高电平,从而实现上电或开关复位的操作。

根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。

图3中:C:=1uF,Rl=lk,R2=10k
图3 积分型上电复位电路
专用芯片复位电路:
上电复位电路在控制系统中的作用是启动单片机开始工作。

但在电源上电以及在正常工作时电压异常或干扰时,电源会有一些不稳定的因素,为单片机工作的稳定性可能带来严重的影响。

因此,在电源上电时延时输出给芯片输出一复位信号。

上复位电路另一个作用是,监视正常工作时电源电压。

若电源有异常则会进行强制复位。

复位输出脚输出低电平需要持续三个(12/fc s)或者更多的指令周期,复位程序开始初始化芯片内部的初始状态。

等待接受输入信号(若如遥控器的信号等)。

图4 上电复位电路原理图
上电复位电路原理分析
5V电源通过MC34064的2脚输入,1脚便可输出一个上升沿,触发芯片的复位脚。

电解
电容C13是调节复位延时时间的。

当电源关断时,电解电容C13上的残留电荷通过D13和MC34064内部电路构成回路,释放掉电荷。

以备下次复位启用。

四、上电复位电路的关键性器件
关键性器件有:MC34064 。

图6 内部结构框图
输入输出特性曲线:
上电复位电路关键点电气参数
MC34064的输出脚1脚的输出(稳定之后的输出)如下图所示:
三极管欠压复位电路
欠压复位电路工作原理(图6)w 接通电源,+5V电压从“0V”开始上升,在升至3.6V之前,稳压二极管DH03都处于截止状态,QH01(PNP管)也处于截止状态,无复位电压输出。

w 当+5V电源电压高于3.6V以后,稳压二极管DH03反向击穿,将其两端电压“箝位”于3.6V。

当+5V电源电压高于4.3V以后,QH01开始导通,复位电压开始形成,当+5V电源电压接近+5V时,QH01已经饱和导通,复位电压达到稳定状态。

图6 欠压复位电路图
看门狗型复位电路
看门狗型复位电路主要利用CPU正常工作时,定时复位计数器,使得计数器的值不超过某一值;当CPU不能正常工作时,由于计数器不能被复位,因此其计数会超过某一值,从而产生复位脉冲,使得CPU恢复正常工作状态。

典型应用的Watchdog复位电路如图7所示。

此复位电路的可靠性主要取决于软件设计,即将定时向复位电路发出脉冲的程序放在何处。

一般设计,将此段程序放在定时器中断服务子程序中。

然而,有时这种设计仍然会引起程序走飞或工作不正常。

原因主要是:当程序“走飞”发生时定时器初始化以及开中断之后的话,这种“走飞”情况就有可能不能由Watchdog复位电路校正回来。

因为定时器中断一真在产生,即使程序不正常,Watchdog也能被正常复位。

为此提出定时器加预设的设计方法。

即在初始化时压入堆栈一个地址,在此地址内执行的是一条关中断和一条死循环语句。

在所有不被程序代码占用的地址尽可能地用子程序返回指令RET代替。

这样,当程序走飞后,其进入陷阱的可能性将大大增加。

而一旦进入陷阱,定时器停止工作并且关闭中断,从而使Watchdog复位电路会产生一个复位脉冲将CPU复位。

当然这种技术用于实时性较强的控制或处理软件中有一定的困难
图7 看门狗型复位电路
比较器型复位电路
比较器型复位电路的基本原理如图8所示。

上电复位时,由于组成了一个RC低通网络,所以比较器的正相输入端的电压比负相端输入电压延迟一定时间。

而比较器的负相端网络的时间常数远远小于正相端RC网络的时间常数,因此在正端电压还没有超过负端电压时,比较器输出低电平,经反相器后产生高电平。

复位脉冲的宽度主要取决于正常电压上升的速度。

由于负端电压放电回路时间常数较大,因此对电源电压的波动不敏感。

但是容易产生以下二种不利现象:(1)电源二次开关间隔太短时,复位不可靠;(2)当电源电压中有浪涌现象时,可能在浪涌消失后不能产生复位脉冲。

为此,将改进比较器重定电路,如图9所示。

这个改进电路可以消除第一种现象,并减少第二种现象的产生。

为了彻底消除这二种现象,可以利用数字逻辑的方法与比较器配合,设计如图9所示的比较器重定电路。

此电路稍加改进即可作为上电复位与看门狗复位电路共同复位的电路,大大提高了复位的可靠性。

图8 比较器型复位电路
图9 改进型比较器型复位电路。

相关文档
最新文档