电路分析课件第7章
高频电路原理和分析课件第7章_频率调制和解调

第7章 角度调制与解调
7.1 角度调制信号分析 7.2 调频器与调频方法 7.3 调频电路 7.4 鉴频器与鉴频方法 7.5 鉴频电路 7.6 调频收发信机及附属电路 7.7 调频多重广播
第7章 角度调制与解调
概述
在无线通信中,频率调制和相位调制是又一类重要的 调制方式。
1、频率调制又称调频(FM)——模拟信号调制,它是使 高频振荡信号的频率按调制信号的规律变化(瞬时频率变化 的大小与调制信号成线性关系),而振幅保持恒定的一种调 制方式。调频信号的解调称为鉴频或频率检波。
些边频对称地分布在载频两边,其幅度取决于调制指数mf ;
(2) 由于mf=Δ ωm/Ω=Δ fm/F,且Δ ωm=kfUΩ,因此调制指 数mf既取决于最大频偏,又取决于调制信号频率F。 (3) 由于相邻两根谱线的间隔为调制信号频率,因此调制信 号频率越大,谱线间隔越大,在相同的调制指数mf时,最 大频偏也越大。
(7-3)
第7章 角度调制与解调
式中, m
m f 为调频指数。FM波的表示式为
u F M ( t ) U C c o s (c t m fs i n t ) R e [ U C e j e t e j m fs i n t ]
(7-4)
图7-1画出了频率调制过程中调制信号、调频信号及 相应的瞬时频率和瞬时相位波形。
J
2 n
(mf
)
1
n
PFM
1 2RL
Uc2
Pc
(7-14) (7-15)
第7章 角度调制与解调
(7-15)式说明,调频波的平均功率与未调载波的平均 功率相等。当调制指数mf由零增加时,已调制的载波功 率下降,而分散给其他边频分量。这就是说,调频的过 程就是进行功率的重新分配,而总功率不变,即调频器 可以看作是一个功率分配器。
《电路第七章》课件

诺顿定理
总结词
诺顿定理是电路分析中的另一个重要定 理,它与戴维南定理类似,可以将一个 有源二端网络等效为一个电流源和一个 电阻并联的形式。
VS
详细描述
诺顿定理的应用与戴维南定理类似,它也 可以简化复杂电路的分析过程。通过将有 源二端网络等效为简单的等效电路,我们 可以更容易地计算出电路中的电流和电压 。与戴维南定理不同的是,诺顿定理将网 络等效为一个电流源和电阻的形式,适用 于分析和计算动态响应和瞬态电流的情况 。
电路的作用与分类
总结词
电路的作用是实现电能的传输和转换,根据不同的分类标准,电路可分为多种类 型。
详细描述
电路的主要作用是实现电能的传输和转换,即将电能转换为其他形式的能量,如 机械能、光能等。根据不同的分类标准,电路可分为交流电路和直流电路、开路 和闭路、串联和并联等类型。
电路的基本物理量
总结词
叠加定理
总结词
叠加定理是线性电路的一个重要性质,它表明在多个独立电 源共同作用下,电路中某支路的电流或电压等于各个独立电 源单独作用于该支路产生的电流或电压的代数和。
详细描述
叠加定理是线性电路分析中常用的一个定理,它简化了多个 电源作用下的电路分析过程。通过应用叠加定理,我们可以 分别计算各个独立电源对电路的影响,然后将结果相加得到 最终结果。
电感元件
电流滞后电压90度相位, 相量模型为复数,虚部为 感抗。
电容元件
电压滞后电流90度相位, 相量模型为复数,虚部为 容抗。
复杂交流电路的分析与计算
串联电路
复杂电路的分析方法
各元件电流相同,总电压等于各元件 电压之和。
利用基尔霍夫定律和相量法进行电路 的分析与计算。
并联电路
电路分析第7章 二阶电路1

根据 uC(0-) = uC(0+) =10V
i(0-) = i(0+) = 0
uC (0) K sin 10 i(0) duC K ( sin d cos ) 0 t=0 = dt C
arctan(
uC 10.33e 0.5t sin( .94t 75.5)V t 0 1
d 1.94 ) arctan( ) 75.5 K 10.33, 0.5
i 2.6e 0.5t [1.94cos( .94t 75.5) 0.5 sin( .94t 75.5)]A20 t 0 1 1
t1 t2 t3 iL uC
欠阻尼衰减振荡
电量
uC
t1时间段 减小 增大
uC ( K 1 K 2t )e s1t ( K 1 K 2t )e 2t
根据 uC(0-) = uC(0+)= 10V i(0-) = i(0+) = 0 duC dt i(0) t=0 = C
duC K 2e 2 t 2( K1 K 2 t )e 2 t dt
K1=10
s1.2 0.5 0.5 4 0.5 j1.94
L R 1 Rd 2 4 C
两个共轭复根 欠阻尼
19
解:(3)R = 1 s1, s2 0.5 j0.5 15 0.5 j1.94 uC(t) = e-t [K1cosd t + K2sind t] uC Ke t sin( d t ) Ke 0.5t sin( .94t ) 1 – 衰减因子 d – 衰减振荡角频率
uC uL uR 0
1 2 1 2 w( t ) Li ( t ) CuC ( t ) 2 2
电路(第七章 二阶电路)

uC (t ) e 3t (3 cos 4t 4 sin 4t ) 5e3t cos(4t 53.1o )V (t 0)
返 回 上一页 下一页
电路分析基础
电容电压和电感电流的表达式分别为:
duC iL (t ) C 0.04e 3t (7 cos 4t 24 sin 4t ) dt 3t o
uC (0 ) K1 3
t 0
3 3 5 3 j4 2L 2 L LC
利用初始值uC(0+)=3V和iL(0+)=0.28A得:
解得 K1=3和K2=4。 电容电压和电感电流的表达式分别为:
duC (t ) dtຫໍສະໝຸດ i L (0 ) 3K1 4 K 2 7 C
Im
iL(t)
T 4 T 2
3T 4
o t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 Im
返 回
T
t
上一页 下一页
电路分析基础
LC振荡回路的能量
LC回路的总瞬时储能
LC回路的初始储能
1 2 1 2 w(t ) Li (t ) Cu (t ) 2 2 1 1 2 2 (sin t cos t ) (J) 2 2
LC d 2 uC dt2
d uC RC uC uOC dt
返 回 上一页 下一页
电路分析基础
LC
d 2 uC dt2
d uC RC uC uOC dt
这是一个常系数非齐次线性二阶微分方程。 求解该方程必须有条件: d uC i t i 0 uC 0 0 0 dt C C 为了得到电路的零输入响应,令uOC=0,得二阶齐次微分方程 d 2 uC d uC 根据一阶微分方程的求解 LC RC u 0 C 经验可假定齐次方程的解 dt dt2
电路分析第7章 动态电路分析法-文档资料

y ( t ) Tx [ { ( 0 ) } ,ft ( ) ]
t 0
(7.2-3)
起始状态/条件
初始状态/条件
f (t )
T
{x(0 )}
y (t )
x ( i ) (0 )
起始时刻
x ( i ) (0 )
0
0
0 初始时刻
t
y(t ) T [{x(0 )}, f (t )]
动态电路分析的主要任务就是列写动态电路的激励与响应之间满足的数学模型并求解。
7.2 电路的状态与响应
换路定律告诉我们:“电感的电流不能突变,电容的电压不能突变”。
iL (0 ) iL (0 ) uC (0 ) uC (0 )
系统状态是指:一组必须知道的最少数据,利用这组数据和 的激励,就能够完全确定
(b)系统响应示意图
(a)系统状态示意图
图7-2 系统状态及响应示意图
7.2 电路的状态与响应
电路模型为
d u() t R C C u () t E 0 C d t
电路全解为
u ( t ) E ( E E ) e E e Ee ( 1 ) C 1 1
t0
“系统”是指:能够对信号进行某种特定处理的电路、设备或算法的总称。
7.1 动态电路及相关概念
开关闭合后三个灯泡的亮度表现之所以不同,是因为每个灯泡串联的不同元件 造成的。这个例子说明,在相同的激励下,含有电容或电感的动态电路与纯电 阻电路(即时电路)所产生的响应是不同的。
S
R
L
C
US
LP1
LP2
LP3
1.
RL
电路的零状态响应
电路基本分析(第5版_石生)教学资源50650 课件 第7章

i
i1
i2 R1
R2
uS
C
L
第7章 非正弦周期电流电路
解:(1)直流分量作用下
i(0)
i1(0)
i2 (0)
R1
R2
u
S(0)
C
L
uS (0) 10V i1( 0 ) 0
i2(0)
10 2
5A
i(0) i1(0) i2(0) 5A
第7章 非正弦周期电流电路
第7章 非正弦周期电流电路
工程实例
• 在工业实践中常用到半波和全波整流电路。这种电路可 将正弦交流电压和电流整流为直流的电压和电流。
T A VD
ui
uV
u2
RL u o
ui
B
半波整流电路
TA
VD1
VD
4
u2
VD3
RL u o
VD 2 B
全波整流电路
负载上的电压电流既不是前面的直流信号,也不是正 弦交流信号。本章的内容可以解决分析此类电路的问题。
解: U
U
2 0
U12
U
2 3
102 (141.4)2 ( 70.7 )2V
2
2
102 1002 502V 112.2V
第7章 非正弦周期电流电路
二、平均值
1.定义:一个非正弦周期量的平均值为:
Aav
1 T
T 0
f (t)dt
即一个周期内函数绝对值的平均值。
以电流为例,其定义式为:
例7-1 求图7-5(b)所示三角波f2(t)的傅里叶级数展开式 。
f1(t)
f2(t)
Am
电路分析基础第七章__二阶电路

第七章二阶电路重点要求:1. 理解二阶电路零输入响应过渡过程的三种情况;2. 了解二阶电路的阶跃响应和冲击响应。
3.学习数学中的拉普拉斯变换的定义、性质及反变换的方法;4.掌握用拉普拉斯变换求解电路的过渡过程的方法。
1§7-1 二阶电路的零输入响应二阶电路:由二阶微分方程描述的电路。
典型的二阶电路是RLC串联电路。
求全响应方法:1.经典法(时域分析法)全响应= 稳态分量(强制分量) + 暂态分量(自由分量)2.拉普拉斯变换法(频域分析法)2响应曲线:U 0u C , u L , i 0ωtiu Cu L§7-1 二阶电路的零输入响应220p ααω=−±−一. 问题的提出经典法解动态电路过渡过程存在的问题:对较复杂的电路,联立求解微分方程特别是定积分常数比较困难。
若激励不是直流或正弦交流时,特解不容易求得。
二. 拉氏变换法用积分变换的原理简化求解电路过渡过程时域电路解微分方程时域响应f(t)取拉斯变换复频域电路解代数方程复频域响应F(s)取拉斯反变换7.2 动态电路的复频域分析应用拉氏变换法进行电路分析称为电路的一种复频域分析方法,也叫运算法!是数学中的一种积分变换.优点:对复杂电路﹑无稳态情况﹑换路时出现强迫跃变等用拉氏变换法较经典法方便。
三. 拉普拉斯变换的定义设函数f(t)在0≤t ≤∞时有定义,则积分称为原函数f(t)的拉普拉斯变换(象函数)。
()dte tf s F st∫∞−−=0)(式中s=σ+ j ω----复频率。
单位:熟悉的变换:相量法⎩⎨⎧=∫∞+∞−)s (21)(ds e F j t f stj c j c π反变换正变换ZH1.象函数F (s)存在的条件:∞<∫∞−−dt et f st0)(说明:电路分析中的函数都能满足上述条件。
2. 在电路中积分的下限定义为“0-”, 更有实际意义(将奇异函数也包括在内)。
[][]⎩⎨⎧==−)( )()( )( S F t f t f S F 1简写正变换反变换在电路分析中通常直接查表得到。
简明电路分析基础 第七章 一阶电路jat7

vC ke
vCp是非齐次微分方程
vCp
dvCp dt
t≥0
RC
vCp E
的任意一个特解。方程等式右边的函数称为强制函数。该方 程所描述的电路状态称为强制状态,而特解vCp称为vC的强制 分量,它与强制函数或输入波形有关。若电路中的独立电源 是周期函数或常量,则此时的强制状态称为稳定状态,或简 称稳态;相应地称强制分量为稳态分量或稳态响应。
L R
u 、i Io RI o uR 0 uL iL t
-RI o
对于一阶线性定常电路来说,零输入响应可以看作是在 0≤t<≦区间内定义的一个波形,它是初始状态的一个线性 函数。即零输入响应是初始状态的线性函数。 从前面的分析可知,零输入响应是在电路输入为零时,仅 由初始状态引起的响应,它取决于电路的初始状态和电路的 元件参数和拓扑结构,对于线性定常的一阶RC电路和RL电路 来说,它们的零输入响应分别为
+ u C -
则:
uC (t ) 10 (1 e 100t )V duC iC (t ) C 5e 100t m dt uC (t ) 5 iC (t ) (1 e 100t )m 6 3
二、 RL电路的零状态响应
如图,S闭合后,根据KVL,有:
+ S(t=0) R
第七章 一阶电路
在实际工作中,常遇到只含一个
动态元件的线性定常电路,这种电路
是用线性、常系数一阶常微分方程来
描述。
7-1 分解方法在动态电路分析中的运用 7-3 一阶电路的零输入响应 7-4 一阶电路的零状态响应 7-5 线性动态电路的叠加原理 7-6 分解方法和叠加方法的综合运用----- 三要 素方法 7-7 阶跃响应和分段常量信号响应 7-8 冲激响应 7-9 卷积积分 7-10 瞬态和稳态 正弦稳态的概念 7-11 子区间分析 方波激励的过渡过程和稳态
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1 动态电路的方程及其初始条件 7.2 一阶电路的零输入响应 7.3 一阶电路的零状态响应 7.4 一阶电路的全响应 7.5 二阶电路的零输入响应 7.6 二阶电路的零状态响应和全响应 7.7 一阶电路和二阶电路的阶跃响应 7.8* 一阶电路和二阶电路的冲激响应 7.9* 卷积积分 7.10* 状态方程 7.11* 动态电路时域分析中的几个问题
t 0
0+ 换路后一瞬间
f (0 ) lim f (t ) t 0
t 0
f (0 ) f (0 )
0- 0 0+ t
注意 初始条件为 t = 0+时u ,i 及其各阶导数
的值。
返 回 上 页 下 页
dt 特征根方程: RCp 1 0
通解:
pt
图示为电容放电电路,电容原先带有电压Uo,求 例 开关闭合后电容电压随时间的变化。 (t=0) Ri uc 0 (t 0) 解 + C uC duc R RC uc 0 i -
pt
1 t RC
RCp+1=0 1 p RC
代入初始值
uC (0+)=uC(0-)=U0
A=U0
(t >0) + Us -
R i + uC –
C
Ri uC uS (t ) duC iC dt
若以电流为变量:
duC RC uC uS (t ) dt 1 Ri idt uS (t ) C
di i duS (t ) R dt C dt
返 回 上 页 下 页
RL电路 应用KVL和电感的VCR得:
?
前一个稳定状态
过渡状态
返 回
上 页
下 页
电感电路 + Us (t = 0) R i + k uL –
L
+ Us -
(t →) R i + uL –
i k未动作前,电路处于稳定状态: i = 0 , uL = 0 US/R 新的稳定状态 US k接通电源后很长时间,电路达到新的稳定 状态,电感视为短路: uL= 0, i=Us /R uL 有一过渡期 t1 t 0
当u为有限值时
返 回
上 页
下 页
LiL
iL(0+)= iL(0-)
L (0+)= L (0-)
磁链 守恒
结论
换路瞬间,若电感电压保持为有限值, 则电感电流(磁链)换路前后保持不变。
返 回
上 页
下 页
④换路定律
qc (0+) = qc (0-)
换路瞬间,若电容电流保持 为有限值,则电容电压(电荷) uC (0+) = uC (0-) 换路前后保持不变。 换路瞬间,若电感电压保持 L (0+)= L (0-) 为有限值,则电感电流(磁链) iL(0+)= iL(0-) 换路前后保持不变。
结论
有源 电阻 电路
一个动 态元件
一阶 电路
含有一个动态元件电容或电感的线性电 路,其电路方程为一阶线性常微分方程,称 一阶电路。
返 回
上 页
下 页
RLC电路
应用KVL和元件的VCR得:
Ri uL uC uS (t )
2
(t >0) R i + + uL Us C – -
di d uC duC uL L LC 2 iC dt dt dt 2 d uC duC LC 2 RC uC uS (t ) dt dt
uc 1 t - C uC (t ) i ( )d C 1 0 1 t i ( )d 0 i ( )d C C
i
+
当i()为有限值时
返 回
上 页
下 页
uC (0+) = uC (0-)
q =C uC
结论
q (0+) = q (0-)
电荷 守恒
Ri uL uS (t )
di uL L dt
(t >0) R i + + uL Us – -
R 若以电感电压为变量: uLdt uL uS (t ) L
R duL duS (t ) uL L dt dt
返 回 上 页 下 页
di Ri L uS (t ) dt
48 / 4 12 A
uC (0 ) uC (0 ) 2 12 24V
iC (0 ) (48 24) / 3 8A
i(0 ) 12 8 20A
uL (0 ) 48 2 12 24V
返 回 上 页 下 页
例5 求k闭合瞬间流过它的电流值
返 回
上 页
下 页
例
电阻电路
(t = 0) R1 R2 0 i
+ i us -
i U S / R2
t 过渡期为零
i U S ( R1 R2 )
返 回
上 页
下 页
电容电路
+ Us -
(t = 0) R i + k uC –
+ C Us -
(t →) R i + uC –
C
uc k未动作前,电路处于稳定状态: i = 0 , uC = 0 US 新的稳定状态 US k接通电源后很长时间,电容充电完毕,电路 R 达到新的稳定状态: i i = 0 , u有一过渡期 C= U s t1 t 0
返 回
上 页
下 页
换路
电路结构、状态发生变化 支路接入或断开 电路参数变化
过渡过程产生的原因 电路内部含有储能元件 L、C,电路在换路时 能量发生变化,而能量的储存和释放都需要一定的 时间来完成。
Δw p Δt
Δt 0
p
返 回 上 页 下 页
2. 动态电路的方程
例 RC电路
应用KVL和电容的VCR得:
1.RC电路的零输入响应
S(t=0)
C
+ uC –
uR uC 0
duC i C dt uR= Ri
返 回 上 页 下 页
S(t=0) C
i + R uR –
+ uC –
duC RC uC 0 dt uC ( 0 ) U 0
特征方程 特征根
则
uC Ae Ae
返 回 上 页 下 页
10 iL (0 ) 2A 1 4
注意 uL (0 ) uL (0 )
小结 求初始值的步骤:
1.由换路前电路(稳定状态)求uC(0-)和iL(0-); 2.由换路定律得 uC(0+) 和 iL(0+)。
3.画0+等效电路。
a. 换路后的电路 b. 电容(电感)用电压源(电流源)替代。 (取0+时刻值,方向与原假定的电容电压、电 感电流方向相同)。 4.由0+电路求所需各变量的0+值。
L iL 10 S C + - uC 10 10 + 20V iL + 1A 10 10 uL - + 10V - uC - 10 iC 1010 + 20V 10 + -20V -
ik
解 ①确定0-值
20 iL (0 ) iL (0 ) 1A 20
uC (0 ) uC (0 ) 10V
注意 ①电容电流和电感电压为有限值是换路定
律成立的条件。 ②换路定律反映了能量不能跃变。
返 回 上 页 下 页
⑤电路初始值的确定
(1) 由0-电路求 uC(0-)
+ 10k 10V 40k + uC 电 容 开 路
例1 求 iC(0+)
i 10k + 40k 10V iC S + uC iC
-
uC(0-)=8V
(2)由换路定律
+ i
-
10k + 8V 10V
-
uC (0+) = uC (0-)=8V
电容用 电压源 替代
0+等效电路
10 8 iC (0 ) 0.2mA 10 注意 iC(0-)=0 iC(0+)
返 回 上 页
(3) 由0+等效电路求 iC(0+)
下 页
例 2 t = 0时闭合开关k ,求 uL(0+)
返 回 上 页 下 页
例4 求k闭合瞬间各支路电流和电感电压
2 + 48V S L 2 + uL iL 3 C + i uL iC 3 3 + 2 + 48V - iL 12A 2 + + 48V uC 24V 2 -- 由0+电路得:
解 由0-电路得:
iL (0 ) iL (0 )
微分方程的特解
dx 直流时 a1 a0 x U S dt dx t 0 a0 x U S dt
返 回 上 页 下 页
3.电路的初始条件
① t = 0+与t = 0-的概念 0- 换路前一瞬间 认为换路在t=0时刻进行
f (0 ) f (0 )
f(t)
f (0 ) lim f (t ) t 0
返 回 上 页 下 页
例3 求 iC(0+) , uL(0+)
iL
iS
L + uL –
S(t=0) R iC C
iS
+ uC –
+
uL
– R
iC + RiS –