第三章 钢结构的连接(螺栓)02

合集下载

钢结构螺栓连接

钢结构螺栓连接
1.高强度螺栓预拉力的控制方法 预拉力是通过拧紧螺帽来实现的。其常用的控制方法为: ⑴转角法(用于大六角型螺栓):通过工艺试验,确定满足预
拉力要求所需角度,在实际工程中采用固定转角,不精确; ⑵扭矩法(用于大六角型螺栓):通过工艺试验,确定满足预
拉力要求所需扭矩,制做特殊扳手,如机械扳手,光电扳手等; ⑶扭剪法(用于扭剪型螺栓):用特殊扳手拧断其梅花头为
Nt
N
b t
2、螺栓群弯矩受拉
N
H
V
N
刨平顶紧 承托(板)
a)
b)
螺栓群承受轴心拉力
基本假定:
1)在弯矩作用下,板件绕最边缘的螺栓旋转 ;
2)每个螺栓受力大小与其到旋转中心的距离成正比。
3.7 普通螺栓连接的工作性能和计算
第三章 钢结构的连接
3.7.2 普通螺栓抗拉连接
V N1
N2
N3
M
o'
中和轴
第三章 钢结构的连接
3.7.2 普通螺栓抗拉连接
规范中考虑杠杆效应的方法: 1)降低螺栓的抗拉强度,即取 ftb 0.8 f ;
2)设计中采取构造措施以减少不利影响,如设置加劲肋。
抗拉连接螺栓的破坏形式:螺杆被拉断。
3.7.2.2 单个螺栓的抗拉承载力
式单中个Ae螺—栓—的螺抗栓拉的承有载效力面N设t积b计,值A可e为查f:tb表;πd4e2 ftb
形小,耐疲劳,特别适于承受动力荷载的结构. d0 d 1.5-
2.0mm。
承压型连接——允许接触面滑移,以连接达到破坏的极限承载
力作为设计准则.其承载力高于摩擦型,连接紧凑,但剪切变形
比摩擦型大,故不得用于承受动力荷载的结构。d
1.5mm。

钢结构螺栓连接.pdf

钢结构螺栓连接.pdf

第三章钢结构螺栓连接第一节概述螺栓作为钢结构主要连接紧固件,通常用于钢结构中构件间的连接、固定、定位等,钢结构中使用的连接螺栓一般分普通螺栓和高强度螺栓两种。

选用普通螺栓作为连接的紧固件,或选用高强度螺栓但不施加紧固轴力,该连接即为普通螺栓连接,也即通常意义下的螺栓连接;选用高强度螺栓作为连接的紧固件,并通过对螺栓施加紧固轴力而起到连接作用的钢结构连接称高强度螺栓连接。

图!"#"$为两种螺栓连接工作机理的示意,其中图!"#"$(%)为摩擦型高强度螺栓连接的工作机理,通过对高强度螺栓施加紧固轴力,将被连接的连接钢板夹紧产生摩擦效应,当连接节头受外力作用时,外力靠连接板层接触面间的摩擦来传递,应力流通过接触面平滑传递,无应力集中现象。

普通螺栓连接在受外力后,节点连接板即产生滑动,外力通过螺栓杆受剪和连接板孔壁承压来传递,如图!"#"$(&)。

图!"#"$螺栓连接工作机理示意图!"#"’为典型螺栓连接拉伸曲线,从曲线上可以把螺栓连接工作过程分为四个阶段:阶段$为静摩擦抗滑移阶段,即为摩擦型高强度螺栓连接的工作阶段,对普通螺栓连接,阶段$不明显,可忽略不计,连接接头直接进入阶段’;阶段’为荷载克服摩擦阻力,接头产生滑移,螺栓杆与连接板孔壁接触进入承压状态,此阶段为摩擦型高强度螺栓连接的极限破坏状态;阶段#为螺栓和连接板处于弹性变形阶段,荷载—变形曲线呈现线性关系;阶段!为螺栓和连接板处于弹塑性变形阶段,最后螺栓剪断或连接板破坏(拉脱、承压和净截面拉断),整个连接接头破坏,曲线的终点即为普通螺栓连接的极限破坏状态;若采用高强度螺栓,则为承压型高强度螺栓连接的极限破坏状态。

图!"#"$螺栓连接的典型拉伸曲线对于高强度螺栓连接,阶段#和阶段!中连接板面间的摩擦效应仍然存在,该两阶段通称摩擦—承压型高强度螺栓连接,连接的设计计算应采用变形准则方法进行,即给定一个连接接头变形量(!),可以通过连接拉伸曲线(%&’(!))得到相应接头承载力,对于允许连接接头有一定变形的结构,可以采用摩擦—承压型高强度螺栓连接,其优点是比摩擦型连接提高了连接的承载力,避免了接头发生极限破坏(承压型连接)。

(钢结构设计原理)第三章钢结构的连接

(钢结构设计原理)第三章钢结构的连接
按构造分:对接焊缝、角焊缝。
按工作性质分:强度焊缝(只作为传递内力)、密强焊缝 (除传递内力外,还须保证不使气体或液体渗漏)。
按施焊位置分:俯焊(平焊)、立焊、横焊和仰焊。应尽量避 免采用仰焊焊缝。
焊缝(hàn fénɡ)连接形式
第二十四页,共一百五十七页。
焊缝 形式 (hàn fénɡ)
对接焊缝连接(liánjiē)形式
钢结构的实际连接图片 第二页,共一百五十七页。
钢结构的连接(liánjiē)方法
焊缝(hàn fénɡ)连接
第三页,共一百五十七页。
焊缝(hàn 连接 fénɡ)
20世纪初开始在工程结构上较广泛应用。焊接是现代钢结构 最主要的连接(liánjiē)方法之一。
优点
*构造简单,任何形式的构件都可直接相连(xiānɡ lián);
第三十三页,共一百五十七页。
焊缝 代 (hàn fénɡ) 号
对接焊缝连接的构造(gòuzào)要求
第三十四页,共一百五十七页。
对接焊缝连接的构造要求
对接(duì jiē)焊缝的坡口形式 对接焊缝的焊件常需做成坡口,又叫坡口焊缝。坡口形式与焊件厚度(hòudù)有关。
对接焊缝的坡口形式
a)直边缝:适合(shìhé)板厚t 10mm b)单边V形、c)双边V形:适合板厚t =10~20mm
缺点:施工条件受限制,不
适用于在风较大(jiào dà)的 地方施焊。
电阻焊
第二十二页,共一百五十七页。
电阻 焊 (diànzǔ)
焊缝(hàn fénɡ)类型
第二十三页,共一百五十七页。
焊缝(hàn 类型 fénɡ)
按被连接构件间的相对(xiāngduì)位置分为对接、搭接 、T形连 接和角接四种。

第三章 钢结构连接(螺栓)

第三章 钢结构连接(螺栓)

但在重要的连接中,例如:制动梁或吊车梁上翼缘与
施工图中螺栓及其孔眼图例
螺栓及其孔眼图例见表3.3,
3.7 普通螺栓连接的工作性能和计算
普通螺栓连接按受力情况可分为三类
①螺栓只承受剪力; ②螺栓只承受拉力; ③螺栓承受拉力和剪力的共同作用。

下面将分别论述这三类连接的工作性能和计算
方法。
3 钢结构的连接
3.6 螺栓连接的构造
3.6.1 螺栓的排列

规范规定的钢板上螺栓的容许距离见表3.5(p62)。 在角钢、普通工字钢、槽钢截面上排列螺栓的线距应满 足表3.6、表3.7、表3.8的要求。
螺栓或铆钉的最大、最小容许距离 名称 位置和方向
表 3.4 最大容许距离 (取两者的较小值) 最小容许 距 离

1
外排(垂直内力方向或顺内力方向) 中 垂直内力方向 压力 顺内力方向 排 拉力
8d0 或 12t 16d0 或 24t 12d0 或 18t 16d0 或 24t 3d0
中 心 间 间 距 顺内力方向 中心至 垂直 构件边 内力 缘距离 方向 气割或锯割边 其他螺栓或铆钉 1.2d0 注:(1) d0 为螺栓或铆钉孔直径,t 为外层较薄板件的厚度; (2)钢板边缘与刚性构件(如角钢、槽钢等)相连的螺栓或铆钉的最大间距,可按 中间排的数值采用。 轧制边自动精密 高强度螺栓 剪切边或手工气割边 4d0 或 8t 1.5d0
距≥2d0来保证,第⑤种破坏形式通过限制夹紧长度在(4~6)d内 来保证。因此,抗剪螺栓连接的计算只考虑第①、②种破坏形式。
1 1
(a) e
(b)
(c)
(d)
1-1 剖面 图 3-12 抗剪螺栓的破坏性式
(e)

钢结构戴国欣主编课后习题答案

钢结构戴国欣主编课后习题答案

第三章 钢结构的连接3。

1 试设计双角钢与节点板的角焊缝连接(图3。

80)。

钢材为Q235B,焊条为E43型,手工焊,轴心力N=1000KN (设计值),分别采用三面围焊和两面侧焊进行设计。

解:(1)三面围焊 2160/w f f N mm = 123α=213α= 确定焊脚尺寸:,max min 1.2 1.21012f h t mm ≤=⨯=, ,min min 1.5 1.512 5.2f h t mm ≥==, 8f h mm =内力分配:30.7 1.2220.78125160273280273.28w f f f N h b f N KN β=⋅⋅⋅=⨯⨯⨯⨯⨯==∑ 3221273.281000196.69232N N N KN α=-=⨯-= 3112273.281000530.03232N N N KN α=-=⨯-=焊缝长度计算:11530.032960.720.78160w wf fN l mm h f ≥==⋅⨯⨯⨯∑, 则实际焊缝长度为 1296830460608480wf l mm h mm '=+=≤=⨯=,取310mm 。

22196.691100.720.78160w wf f N l mm h f ≥==⋅⨯⨯⨯∑, 则实际焊缝长度为 2110811860608480wf l mm h mm '=+=≤=⨯=,取120mm 。

(2)两面侧焊确定焊脚尺寸:同上,取18f h mm =, 26f h mm = 内力分配:22110003333N N KN α==⨯=, 11210006673N N KN α==⨯= 焊缝长度计算:116673720.720.78160w wf f N l mm h f ≥==⋅⨯⨯⨯∑,则实际焊缝长度为:mm h mm l f w48086060388283721=⨯=<=⨯+=',取390mm 。

钢结构第三章 钢结构的连接(螺栓)

钢结构第三章 钢结构的连接(螺栓)

排列因素:
受力要求:钢板端部剪断,端距不应小于2d0;受拉时,栓
距和线距不应过小;受压时,沿作用力方向的栓距不宜过大。 构造要求:栓距和线距不宜过大 施工要求:有一定的施工空间
3.6螺栓的构造
3.6.2 螺栓的排列
螺栓排列和最小距离:
3.6螺栓的构造
3.6.2 螺栓的排列
螺栓排列最大距离: 对于角钢、工字钢和 槽钢的螺栓排列见附 录四(型钢的螺栓准 线表)
3.7 普通螺栓连接的构造和强度计算
普通螺栓连接按其受力方式分类:
抗剪螺栓 抗拉螺栓 同时抗剪抗拉螺栓
3.7.1普通螺栓的抗剪连接
3.7.1.1抗剪连接工作性能
抗剪螺栓连接的受力性能:静摩擦力阶段、相对滑移阶段、螺杆与 孔壁挤压传力的弹塑性阶段、破坏阶段。
3.7 普通螺栓连接的构造和强度计算
3.7.1普通螺栓的抗剪连接
4x100=400 50 30 50
M Fe 280 0.21 58.8kN m
2. 单个螺栓的抗拉承载力:
N tb Ae f t b 244 .8 170 41620 N 41.62 kN
3.螺栓群强度验算 由前述可知1号螺栓受力最大,为设计控制点, 则对其进行强度验算:
3). 螺栓群同时承受剪力和弯矩(轴心拉力) 的计算
螺栓群同时承受剪力和拉力
3.7 普通螺栓连接的构造和强度计算
3.7.2普通螺栓的抗拉连接
3). 螺栓群同时承受剪力和拉力的计算 支托仅起安装作用:螺栓群承受弯矩M和剪力V
N t N1M My1
m y
2 i
Nv V n
螺栓不发生拉剪破坏
20 12 305 73200 N 73.2 kN

钢结构设计手册

钢结构设计手册

不适于风大的地方施焊。
4、电阻焊等 利用电流通过焊件接触点表面的 电阻所产生的热量来熔化金属, 再通过压力使其焊合。 适用于薄壁型钢的焊接,板叠厚 度不超过12mm。焊点主要承受剪 力,抗拉能力较差。
2 3
6 1
4
5
电阻焊
1 电源 2 导线 3 夹头 4 焊件 5 压力 6 焊逢
第二节 焊接方法和焊缝连接形式
第二节 焊接方法和焊缝连接形式
五、焊缝质量检验 • 焊缝质量等级:《钢结构工程施工质量验收规范》
(GB50205)对焊缝依其质量检查标准分为一级、二级和三 级。 • 焊缝质量检验方法: 外观检查(外部尺寸和缺陷) 内部检查(内部缺陷):超声波探伤检验(主要) 、X射线、 γ射线等(x射线应用广)检验、磁粉(辅助)、荧光检验 (辅助) 。 三级焊缝只要求进行外观检验并符合标准,即检查焊缝实际 尺寸是否符合设计要求和有无看得见的裂纹,咬边等缺陷 ;
• 材料等级:采用45号钢、40B和20MnTiB钢(热处理),材料 等级为 8.8级或10.9级。
• 孔径:摩擦型高强螺栓孔径比螺栓大1.5~2.0mm;承压型高 强螺栓孔径比螺栓大1.0~1.5mm。
4、射钉、自攻螺栓、焊钉连接 灵活,安装方便,构件无须予先处理,适用于轻钢、薄板结
构,不能受较大集中力 。焊钉用于混凝土和钢板的连接。
•搭接:不同厚度的两构件,传力不均匀,费材料
•T形连接(顶接):组合截面
•角部连接:箱形截面
盖板对接
第二节 焊接方法和焊缝连接形式
三、焊缝形式 按焊缝和两个被连接件间的相对位置分类。 对接焊缝:焊缝和两个被连接件的平行面相连。 角焊缝:焊缝和两个被连接件的相交面相连。
第二节 焊接方法和焊缝连接形式

钢结构第3章(螺栓连接计算)

钢结构第3章(螺栓连接计算)

2
2
当螺栓群分布在一个狭长带内,如y1>3x1时,可近似取xi=0,这时
N N
T 2
1x
V 1y
2
Ty1 y2 i
V 2 b N min n
2
例3.11 设计两块钢板用普通螺栓连接的盖板拼接,构件受轴拉力设计值 为 N=325kN,钢材Q235A,粗制螺栓直径d=20mm,板宽360mm,盖板 厚6mm,杆件板厚8mm。
n
1.1n
(2)搭接接头或用拼接板单面连接的,由于容易弯曲,螺栓联接 数(不包括摩擦型连接的高强度螺栓),应按计算增加10%。 1.1n
1.1n 1.1n (3)在构件端部连接中,当利用短角钢与型钢(角钢、槽钢等)的外 伸肢相连以缩短连接长度时,在短角钢两肢中的任一肢上所用的螺栓数 目应当增加计算数的50%。
连接处接触面连接处接触面处理方法处理方法q235q235钢钢q345q345和和q390q390钢钢q420q420喷喷喷砂后涂无机富锌漆喷砂后涂无机富锌漆喷砂后生赤绣喷砂后生赤绣用钢丝刷清除浮锈或未用钢丝刷清除浮锈或未经处理的干净轧制表面经处理的干净轧制表面045045035035045045030030050050040040050050035035050050040040050050040040摩擦面抗滑移系数值表311当表面有水或漆或其它污物表面的摩擦系数将大幅下降
a) B A b) B A c)
A
d) e)
35º 35º
A
A
综上所述:在普通螺栓的抗剪连接中需要计算的内容主要有三项: (1)保证螺栓杆不被剪断; (2)保证螺栓孔壁不会因承压而破坏; (3)构件有足够的净截面强度,不被拉断。(实质上属于构件破坏 ) 当有螺栓孔削弱,除上述构件被拉断外,还有一种使构件破坏的可能 性,如图所示:这类破坏方式被成为块状拉剪破坏(block shear failure )。这类破坏在过去并不注意,现在在设计规范中已经明确要求计算。 (《钢结构设计规范》7.5.1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

显然,T作用下‘1’号螺 栓所受剪力最大(r1最大)。
由力的平衡条件得:
T N 1T r1 N 2T r2 N nT rn (3 38)
y
1 r1
N1Tx N1T
x
N1Ty
T
由假定‘(2)’得 N nT N 1T N 2T N 3T r1 r2 r3 rn
( 3 39)
c1
1 1’
t1 t
1’--1’截面:
N
b
N
c4
c3 c2
对于1 1截面:An b m d 0 t ;
1 1’
2 2 对于1’ 1’ 截面:An 2c 4 m 1 c1 c 2 m d 0 t; 式中:f 钢材强度设计值; d 0 螺栓孔直径;
由式3-39得: N 1T N 1T N 1T N 2T r2;N 3T r3; N nT rn r1 r1 r1
C级
4.6级和4.8级 单个零件上一次冲成 螺杆与栓孔直径之差为 1.5~3mm
抗剪性能 经济性能 用途
好 价格高
较差 价格经济
构件精度很高的结构(机械 沿螺栓杆轴受拉的连接 结构);在钢结构中很少采 ;次要的抗剪连接;安 用,已被高强钢替代。 装的临时固定
2.高强度螺栓 由45号、40B和20MnTiB钢加工而成,并经过热处理 45号-8.8级; 40B和20MnTiB-10.9级 (a)大六角头螺栓 (b)扭剪型螺栓
N/3 N/3 N/3
N/2
N/2
N
双剪:nv 2
N/2
N/2
四剪:nv 4
(三)普通螺栓群抗剪连接计算
1、普通螺栓群轴心力作用下抗剪计算 试验证明,栓群在轴力作用下各个螺栓的内力 沿栓群长度方向不均匀,两端大,中间小。
N
l1 N/2 N/2
螺栓的内力分布 平均值
当l1≤15d0(d0为孔径)时,连接进入弹塑性工作状 态后,内力重新分布,各个螺栓内力趋于相同,故设 计时假定N有各螺栓均担。 所以,连接所需螺栓数为:


(3 34)
nv—剪切面数目; d—螺栓杆直径; fvb、fcb—螺栓抗剪和承压强度设计值; ∑t—连接接头一侧承压构件总厚度的较小值。
假定挤压力沿栓杆直径平面(实际上是相应于栓杆直径平面的孔壁 部分)均匀分布.
t
——同一方向承压板较小总厚度
d
fc
b
剪切面数目nv
N N
单剪:nv 1
fv 2
b
202
4
140 88.0kN
Nc dfc
b
b
2 6) 61.6kN t 20 385 min( 8,
(4)所需螺栓数n=350/61.6 =5.3个
(5)6个螺栓3排 布臵,中间距 100(90)mm, 端距60mm, 边距80mm。 (6)连接长度验算l1=15do=15〓22 =330mm =100+60+10+60+100=330mm l
承压两种情况.
【因为】由破坏形式可知抗剪螺栓承载力取决于螺栓杆受剪和孔壁
【所以】单栓抗剪承载力由以下两式决定: 抗剪承载力:
N vb nv
b c
d 2
4
f vb
b c
(3 32)
承压承载力:
N d t f
(3 33)
b 【单栓抗剪承载力】 N min min N vb,N cb
椭圆形螺栓孔
备注:“十”线表示定位线;必须注明孔、螺栓直径。
§3-7 普通螺栓连接计算
一、螺栓连接的受力形式
F N F
A 只受剪力
B 只受拉力
C 剪力和拉力共同作用
[螺栓连接受力] 1)连接可传递弯矩、剪力和轴力,单个螺栓只能受拉或受剪; 2)受剪螺栓—作用力与螺杆垂直,受拉螺栓—作用力与螺 杆平行。
N n b N min
当l1>15d0(d0为孔径)时,连接进入弹塑性工作状 态后,即使内力重新分布,各个螺栓内力也难以均匀, 端部螺栓首先破坏,然后依次破坏。由试验可得连接的 抗剪强度折减系数η与l1/d0的关系曲线。
当15d 0 l1 60d 0时: l1 1.1 150d 0 (3 35)
C级---粗制螺栓,性能等级为4.6或4.8级; 4表示fu≥400N/mm2, 0.6或0.8表示fy/fu=0.6或0.8;Ⅱ 类孔,孔径(do)-栓杆直径(d) =1~3mm。
精制螺栓
粗制螺栓
代号
强度等级 加工方式 加工精度
A级和B级
5.6级和8.8级 车床上经过切削而成 螺杆与栓孔直径之差为 0.25~0.5mm
100
I
50 80 80 50
10 50 80 80 50
10
50
100
100
N
N
N
N
18 10
5/10/2014
解:①螺栓强度计算: 单个螺栓抗剪承载力设计值: 2 2 22 d NVb=nv 130 =98.8kN f bv =2 4 4 单个螺栓承压承载力设计值: NCb= d t f cv =22〓18〓305=120.8kN 故取Nminb=98.8kN 每侧12个螺栓承载力为12〓98.8= 1185.6kN>1181kN N 1181 10 N / m m2 ②被连接板强度计算: 214.4 N / m m A 400 18 4 23.5 18 >f=215 5/10/2014
N 计 算 解 (2)孔壁的挤压破坏(栓杆较粗而板件较薄时) 决 N N
(3)板件被拉断(截面削弱过多时) N/2
N
N
(4)板件端部被剪坏(拉豁) 端矩过小时;端矩不应小于2dO 这 N N 两 种 破 坏 (5)栓杆弯曲破坏 构 螺栓杆过长;栓杆长度不应大于5d 造 解 N/2 决 N
N/2
(二)抗剪螺栓的单栓承载力设计值
【受压构件】为防止连接板件发生鼓曲,中距不能太大。
中心距太大
(2)构造要求
螺栓的边距和中距不宜太大,以免板件间贴合 不密,潮气侵入腐蚀钢材。
(3)施工要求
为了便于扳手拧紧螺母,螺栓中距应不小于 3do(do为孔径)。 根据以上要求,规范给定了螺栓的容许间距。
1.5d0 1.5d0 3d0 2d0 3d0 3d0 2d0
3 2 n
2、普通螺栓群偏心力作用下抗剪计算
e
F T F
F
1
N1F
y
1 N 1Tx
r1
N1T
x
N1Ty
T
N 1F F n ( 3 37)
★F作用下每个螺栓受力:
★T作用下连接按弹性设计,其假定为: (1)连接板件绝对刚性,螺栓为弹性; (2) T作用下连接板件绕栓群形心转动,各螺栓剪 力与其至形心距离呈线形关系,方向与ri垂直。
解: 螺栓抗剪强度 f 140 N/mm 2 v
b
板件承压强度 fc 385N/mm 2 板件抗拉强度 f 310 N/mm 2
(1)双盖板的厚度t2≥拼接板的厚度t1/2=8/2=4mm 取t2=6mm (2)单个螺栓抗剪承载力 双剪 N 2 v (3)孔壁承压
b
b
d 2
4
第一,为了保证连接的可靠性,每个杆件 的节点或拼接接头一端不宜少于两个永久 螺栓,但组合构件的缀条除外; 第二,直接承受动荷载的普通螺栓连接应 采用双螺帽,或其他措施以防螺帽松动;
第三,C级螺栓宜用于沿杆轴方向的受拉连接
,以下情况可用于抗剪连接:
1、承受静载或间接动载的次要连接;
2、承受静载的可拆卸结构连接;
端 距 中距 端距
边距
边距
2d0 端距
2d0
端距
1.5d0 (1.2d0)
1.5d0
3d0
线距
根据规范规定(P86表3.5.1)的螺栓最大、最小容许间距, 排列螺栓时宜按最小容许间距取用,且宜取5mm的倍数,并按 等距离布置,以缩小连接的尺寸。最大容许间距一般只在起连 系作用的构造连接中采用。
三、螺栓连接的构造要求
二、螺栓的排列
1.并列—简单、整齐、紧凑所用连接板尺寸小,但构
件截面削弱大; 2.错列—排列不紧凑,所用连接板尺寸大,但构件截
面削弱小;
端距 中距
中距 边距 边距
A 并列

B 错列
3.螺栓排列的要求
(1)受力要求
【垂直受力方向】为了防止螺栓应力集中相互影响、截 面削弱过多而降低承载力,螺栓的边距和端距不能太小; 【顺力作用方向】为了防止板件被拉断或剪坏,端距 不能太小;
= 1.1
1
(7)拼接净截面积An=(360 - 3〓22 )〓8 =2352mm2 净截面拉应力n=350000/2352=149N/mm2<f (毛截面拉应力=350000/(360〓8) =121N/mm2 )
150d 0
1.1 0.1 1.0
例题: 两钢板截面为—18mm〓400mm,两面用盖板连接 ,钢材Q235,承受轴心力设计值N=1181kN,采用M22 普通C级螺栓连接,d 0 =23.5mm,按下图连接。试验算节 b b 点是否安全。( f v =130N/mm2, f c =305N/mm2, f=215N/mm2)。 I
3、临时固定构件的安装连接。
第四,型钢构件拼接采用高强螺栓连接时, 为保证接触面紧密,应采用钢板而不能采用型 钢作为拼接件;
四、螺栓符号
(1) 普通螺栓,安装螺栓,高强度螺栓; (2) 孔径do=d+1.5~2,用f表示,如孔径f22; (3) 设计说明:螺栓类型,等级,直径,孔径。
相关文档
最新文档