北师大版八下数学《图形的平移与旋转》专题专练

合集下载

北师大版数学八年级下册:第三章 图形的平移与旋转 专题练习(附答案)

北师大版数学八年级下册:第三章 图形的平移与旋转  专题练习(附答案)

专题1旋转构造等腰(边)及等腰直角三角形类型1旋转构成等腰(等边)三角形1.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°第1题图第2题图2.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1 cm,将Rt△ABC绕点A逆时针旋转得到Rt △AB′C′,使点C′落在AB边上,连接BB′,则BB′的长度是()A.1 cm B.2 cmC. 3 cm D.2 3 cm3.如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC 边上,且AB′=CB′,则∠C′的度数为()A.18°B.20°C.24°D.28°第3题图第4题图4.如图,在△ABC中,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE.若AB=2,∠ACB=30°,则线段CD的长度为.5.如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE.若AB=6,BC=8,则BD=.6.如图,已知等边三角形ABC,O为△ABC内一点,连接OA,OB,OC,将△BAO绕点B旋转至△BCM.(1)依题意补全图形;(2)若OA=2,OB=3,OC=1,求∠OCM的度数.类型2旋转后构成直角(等腰直角)三角形7.如图,在△ABC中,AB=6,AC=3,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.3B.23C.22D.48.如图,在等边△ABC内有一点D,AD=4,BD=3,CD=5,将△ABD绕A点逆时针旋转,使AB与AC 重合,点D旋转至点E,则四边形ADCE的面积为()A.12 B.12+4 3 C.6+4 3 D.6+83第8题图变式图【变式】如图,在△ABC中,∠ACB=90°,BC=AC,点P是△ABC内的一点.如果AP=3,BP=1,CP=2,那么∠BPC的度数是.9.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点.若∠CAE=90°,BD=2,则AB 的长为.专题2利用旋转理解几何模型模型1特殊三角形中的“手拉手”模型错误!1.如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE,连接AE,BD交于点O,则∠AOB 的度数为_ .2.如图1,在△ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接DE,现将△ADE绕点A逆时针旋转一定角度(如图2),连接BD,CE,延长BD交CE于点F.连接AF.若AD⊥BD,BD=6,CF=4,则DF=.3.两块等腰直角三角尺AOB与COD(不全等)如图1放置,则有结论:①AC=BD;②AC⊥BD.若把三角尺COD绕着点O逆时针旋转一定的角度后,如图2所示,判断结论:①AC=BD;②AC⊥BD是否都还成立?若成立请给出证明,若不成立请说明理由.模型2“对角互补”模型4.如图,在Rt△ABC中,∠C=90°,AC=BC,AB=8,点D为AB的中点.若直角EDF绕点D旋转,分别交AC于点E,交BC于点F,则下列说法:①AE=CF;②EC+CF=2AD;③DE=DF;④若△ECF的面积为一个定值,则EF的长也是一个定值,其中正确的有.5.如图,点P为∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M,N两点,则以下结论:①PM=PN恒成立;②OM-ON的值不变;③△OMN的周长不变;④四边形PMON的面积不变.其中正确的序号为.模型3“半角”模型6.(1)如图1,在△ABC中,∠BAC=90°,AB=AC,D,E在BC上,∠DAE=45°,为了探究BD,DE,CE之间的等量关系,现将△AEC绕A顺时针旋转90°后成△AFB,连接DF,经探究,你所得到的BD,DE,CE 之间的等量关系式是;图1 图2(2)如图2,在△ABC中,∠BAC=120°,AB=AC,D,E在BC上,∠DAE=60°,∠ADE=45°,试仿照(1)的方法,利用图形的旋转变换,探究BD,DE,CE之间的等量关系,并证明你的结论.模型4“倍长中线”(旋转180°)模型7.课外兴趣小组活动时,老师提出了如下问题:(1)如图1,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使得DE=AD,再连接BE(或将△ACD 绕点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.[感悟]解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)解决问题:受到(1)的启发,请你证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①求证:BE+CF>EF;②若∠A=90°,探索线段BE,CF,EF之间的等量关系,并加以证明.参考答案:专题1旋转构造等腰(边)及等腰直角三角形1.D2.B3.C4.2.5.10.6.如图,已知等边三角形ABC,O为△ABC内一点,连接OA,OB,OC,将△BAO绕点B旋转至△BCM.(1)依题意补全图形;(2)若OA=2,OB=3,OC=1,求∠OCM的度数.解:(1)依题意补全图形,如图所示.(2)连接OM.∵△ABC为等边三角形,∴∠ABC=60°.∵△BAO旋转得到△BCM,OA=2,OB=3,∴MC=OA=2,MB=OB=3,∠OBM=∠ABC=60°.∴△OBM为等边三角形.∴OM=OB= 3.∵在△OMC中,OC=1,MC=2,OM= 3.∴OC2+MC2=OM2.∴∠OCM=90°.7.A8.C【变式】135°.9.专题2利用旋转理解几何模型1._120°_.2.23.解:①②都还成立.证明:∵∠AOB=∠COD=90°,∴∠AOB+∠DOA=∠COD+∠DOA.∴∠COA =∠DOB. 在△ACO 和△BDO 中,⎩⎨⎧CO =DO ,∠COA =∠DOB ,OA =OB ,∴△ACO ≌△BDO (SAS ). ∴AC =BD ,∠OBD =∠OAC.设AO 与BD 交于点E ,AC 与BD 交于点N ,则∠BEO =∠AED. ∴∠AOB =∠ANE =90°. ∴AC ⊥BD.综上所述:①AC =BD ,②AC ⊥BD 都还成立. 4.①②③④. 5.①④.6.(1)BD 2+CE 2=DE 2;图1 图2(2)如图2,在△ABC 中,∠BAC =120°,AB =AC ,D ,E 在BC 上,∠DAE =60°,∠ADE =45°,试仿照(1)的方法,利用图形的旋转变换,探究BD ,DE ,CE 之间的等量关系,并证明你的结论.解:仿照(1)将△AEC 绕点A 顺时针旋转120°后为△AFB ,连接DF ,则△AEC ≌△AFB. ∴BF =CE ,AE =AF ,∠EAC =∠FAB. ∵∠BAC =120°,∠DAE =60°,∴∠BAD +∠EAC =60°,即∠FAD =∠DAE =∠FAB +∠BAD =60°. ∴△AFD ≌△AED (SAS ). ∴∠ADF =∠ADE ,FD =DE.∵∠ADE =45°,∴∠ADF =45°.∴∠BDF =90°. 在Rt △BDF 中,由勾股定理,得BF 2=BD 2+DF 2. ∴CE 2=BD 2+DE 2.7.课外兴趣小组活动时,老师提出了如下问题:(1)如图1,在△ABC 中,若AB =5,AC =3,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使得DE =AD ,再连接BE (或将△ACD 绕点D 逆时针旋转180°得到△EBD ),把AB ,AC ,2AD 集中在△ABE 中,利用三角形的三边关系可得2<AE <8,则1<AD <4.[感悟]解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)解决问题:受到(1)的启发,请你证明下列命题:如图2,在△ABC 中,D 是BC 边上的中点,DE ⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①求证:BE+CF>EF;②若∠A=90°,探索线段BE,CF,EF之间的等量关系,并加以证明.解:①延长FD到点G,使得DG=DF,连接BG,EG.(或把△CFD绕点D逆时针旋转180°得到△BGD),∴CF=BG.∵DE⊥DF,∴EF=EG.在△BEG中,BE+BG>EG,即BE+CF>EF.②BE2+CF2=EF2.证明:若∠A=90°,则∠EBC+∠FCB=90°,由①知∠FCD=∠DBG,EF=EG,∴∠EBC+∠DBG=90°,即∠EBG=90°,∴在Rt△EBG中,BE2+BG2=EG2,∴BE2+CF2=EF2.。

(精练)北师大版八年级下册数学第三章 图形的平移与旋转含答案

(精练)北师大版八年级下册数学第三章 图形的平移与旋转含答案

北师大版八年级下册数学第三章图形的平移与旋转含答案一、单选题(共15题,共计45分)1、下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.2、下列图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.3、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4、下列各网格中的图形是用其图形中的一部分平移得到的是()A. B. C.D.5、下列图形中,是轴对称图形但不是中心对称图形的是()A. B.C. D.6、下列交通标志图案中,是中心对称图形的是()A. B. C. D.7、下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.8、下列图形是中心对称图形的是()A. B. C. D..9、下列图形中可以由一个基础图形通过平移变换得到的是()A. B. C. D.10、如图,将△ABC沿边BC向右平移2个单位长度得到△DEF,若AC的长为3个单位长度,则四边形ACFD的周长为()A.6B.10C.8D.1211、如图,将正方形图案绕中心O旋转180°后,得到的图案是()A. B. C. D.12、如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB 为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格13、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.14、下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形15、将点 A( 2, -1) 向左平移 3 个单位长度,再向上平移 4 个单位长度得到点 B ,则点B 的坐标是()A.(5, 3)B.( -1, 3)C.( -1, -5)D.(5, -5)二、填空题(共10题,共计30分)16、在直角坐标系中,△ABC的顶点坐标是A(﹣1,2)、B(﹣3,1)、C (0,﹣1).(1)若将△ABC向右平移2个单位得到,画出△A′B′C′,A点的对应点A′的坐标是________ .(2)若将△A′B′C′绕点C′按顺时针方向旋转90°后得到△A1B1C′,则A′点的对应点A1的坐标是________ .(3)直接写出两次变换过程中线段BC扫过的面积之和为________ .17、将一个自然数旋转180°后,可以发现一个有趣的现象,有的自然数旋转后还是自然数.例如,808,旋转180°后仍是808.又如169旋转180°后是691.而有的旋转180°后就不是自然数了,如37.试写一个五位数,使旋转180°后仍等于本身的五位数________.(数字不得完全相同)18、如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,则tanα=________.19、如图,已知面积为1的正方形ABCD的对角线相交于点O,过点O任作一条直线分别交AD,BC于E,F,则阴影部分的面积是________20、一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是________.21、如图所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=________度.22、中,,,,将此三角形绕点旋转,当点落在直线上的点处时,点落在点处,此时点到直线的距离为________.23、如图,已知在矩形0ABC中,0A=3,OC=2,以边OA,OC所在的直线为轴建立平面直角坐标系xOy,反比例函数y= (x>0)的图象经过点B,点P(t,0)是x轴正半轴上的动点,将点B绕点P顺时针旋转90°,使点B恰好落在反比例y= (x>0)的图象上,则t的值是________。

北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案

北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案

北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如左图是新疆维吾尔自治区第十四届运动会的会徽.平移此会徽中的图形,可以得到的是()A.B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.在平面直角坐标系中,将点A(3,−2)向右平移4个单位长度后的对应点的坐标是()A.(−1,−2)B.(7,−2)C.(3,−6)D.(3,2)4.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为14cm,则四边形ABFD的周长为()A.14cm B.17cm C.20cm D.23cm5.在平面直角坐标系中,以原点为中心,若将点Q(4,5)按逆时针方向旋转90°得到点P,则P的坐标是()A.(−5,4)B.(−4,−5)C.(−5,−4)D.(5,−4)6.如图,在△ABD中∠BAD=90°,将△ABD绕点A逆时针旋转后得到△ACE,此时点C恰好落在BD边上.若∠BAC=48°,则∠E的度数为()A.20°B.24°C.28°D.32°7.如图,△ABC的边BC长为5cm.将△ABC向上平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为()A.50cm2B.25cm2C.20cm2D.10cm28.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上.将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(3,0),B(0,4),点B2024的坐标为()A.(12132,0)B.(12144,4)C.(12140,4)D.(12152,0)二、填空题9.在平面直角坐标系中,已知点A(2a−b,−8)与点B(−2,a+3b)关于原点对称,a+b=.10.为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为600m,且桥宽忽略不计,则小桥总长为m.11.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置AB=9,DO=4阴影部分面积为35,则平移距离为.12.在平面直角坐标系中,已知线段AB的两个端点分别是A(1,2),B(2,0),将线段AB平移后得到线段CD,其中,点A的对应点为点C,若C(3,a),D(b,1),则a−b的值为.13.如图,将△ABC沿BA方向平移得到△DEF.若DB=15,AE=2则平移的距离为.14.如图,在Rt△ABC中∠ACB=90°,AC=4,BC=5将△ABC绕点A逆时针旋转α(0°<α<90°)得到△ADE,延长BC交ED于点F.若∠EAB=90°,则线段EF的长为.15.如图,在△ABC,∠C=90°,将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上,连接BB′,若∠BB′C′=35°,则∠BAC=°.16.如图,△ABC的顶点坐标分别为A(2,4),B(0,1),C(0,4),将△ABC绕某一点旋转可得到△A′B′C′,△A′B′C′的三个顶点都在格点上,则旋转中心的坐标是.三、解答题17.如图,在4×4的方格中,有4个小方格被涂黑成“L形”.(1)在图1中再涂黑4格,使新涂黑的图形与原来的“L形“关于对称中心点O成中心对称;(2)在图2和图3中再分别涂黑4格,使新涂黑的图形与原来的“L形”所组成的新图形既是轴对称图形又是中心对称图形(两个图各画一种).18.如图,在△ABC中∠B=40°,∠BAC=80°将△ABC绕点A逆时针旋转一定角度后得到△ADE.(1)求∠E的度数;(2)当AB∥DE时,求∠DAC的度数.19.如图,在12×8的正方形网格中,每个小正方形的边长都是1个单位长度,点A,B,C,O都在格点上.按下列要求画图:(1)画出将△ABC向右平移8个单位长度后的△A1B1C1;(2)画出将△ABC以点O为旋转中心、顺时针旋转90°后的△A2C2B2(3)△A1B1C1与△A2C2B2是否成轴对称?若是,请画出对称轴.20.如图,在△ABC中∠BAC=80°,三个内角的平分线交于点O.(1)∠BOC的度数为________.(2)过点O作OD⊥OB交BC于点D.①探究∠ODC与∠AOC之间的数量关系,并说明理由;②若∠ACB=60°,将△BOD绕点O顺时针旋转α得到△B′OD′(0°<α<90°),当B′D′所在直线与OC平行时,求α的值.21.如图,在平面直角坐标系中,已知A(−1,0),B(3,0),M为第三象限内一点.(1)若点M(2−a,2a−10)到两坐标轴的距离相等.①求点M的坐标;②若MN∥AB且MN=AB,求点N的坐标.(2)若点M为(n,n),连接AM,BM.请用含n的式子表示三角形AMB的面积;(3)在(2)的条件下,将三角形AMB沿x轴方向向右平移得到三角形DEF(点A,M的对应点分别为点D,E),若三角形AMB的周长为m,四边形AMEF的周长为m+4,求点E的坐标(用含n的式子表示).22.如图,在锐角△ABC中∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,K为射线CD上一点CK=BE.①求证:BD=BK;②求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.参考答案1.解:根据平移的性质可知:能由如图经过平移得到的是B.故选:B2.解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形又是中心对称图形,故符合题意;C、是轴对称图形,但不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选B.3.解:将点A(3,−2)向右平移4个单位长度后的对应点的坐标是(3+4,−2),即(7,−2)故选:B.4.解:由平移的性质得:AD=BE=CF=3cm,AC=DF∵△ABC的周长为14cm∵AB+BC+AC=14cm∵四边形ABFD的周长为AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=14+3+3=20cm.故选:C.5.解:如图,过点Q作QM⊥x轴,过点P作PN⊥x轴∴∠PNO=∠QMO=90°∵Q(4,5)∴OM=4由旋转的性质可知OQ=OP,∠POQ=90°∴∠PON+∠QOM=90°∵∠PON+∠OPN=90°∴∠OPN=∠QOM∴△PON≌△OQM(AAS)∴ON=QM=5,PN=OM=4∵点P在第二象限∴点P的坐标是(−5,4)故选:A.6.解:∵△ABD旋转得到△ACE∵AB=AC,∠ABC=∠ACE,∠E=∠D∵∠BAC=48°∴∠ABD=∠ACD=180°−∠BAC=66°2∵∠BAD =90°∵∠D =180°−∠ABC −∠BAD =24°∵∠E =∠D =24°.故选:B .7.解:三角形ABC 的边BC 的长为5cm .将三角形ABC 向上平移2cm 得到三角形A ′B ′C ′,且BB ′⊥BC 则:S △ABC =S △A ′B ′C ′,四边形BCC ′B ′是长方形,BB ′=2∵S 阴影=S △A ′B ′C ′+S 长方形BB ′C ′C −S △ABC =S 长方形BB ′C ′C =BC ×BB ′=5×2=10(cm 2)故选D .8.解:∵点A(3,0),B(0,4)∵OA =3,OB =4∵AB =√32+42= 5∵OA +AB 1+B 1C 2=3+5+4=12观察图象可知B 、B 2、B 4…每偶数之间的B 的横坐标相差12个单位长度,点B 2n 的纵坐标为4∵2024÷2=1012∵点B 2024的横坐标为1012×12=12144,点B 2024的纵坐标为4∵点B 2024的坐标为(12144,4).故选:B .9.解:依题意可得:{2a −b =−(−2)a +3b =−(−8)∴{a =2b =2∴a +b =2+2=4故答案为:4.10.解:由平移的性质得,小桥总长=长方形周长的一半∵600÷2=300m∵小桥总长为300m .故答案为:300.11.解:∵Rt △ABC ,沿着点B 到C 点的方向平移到△DEF 的位置∵△ABC≌△DEF∵AB =DE ,S △ABC =S △DEF∵S阴影=S梯形ABEO=35∵AB=9,DO=4∵OE=DE−OH=9−4=5∵12(5+9)×BE=35解得:BE=5,即为平移的距离;故答案为:5.12.解:由题意得,线段AB向右平移2个单位,向上平移1个单位得到线段CD∴2+2=b,2+1=a∴a=3,b=4∴a−b=3−4=−1故答案为:−1.13.解:平移的性质可得:AD=BE又∵DB=15,AE=2∵AD=BE=DB−AE2=6.5即平移的距离为6.5故答案为:6.5.14.解:连接AF∵∠ACB=90°,AC=4,BC=5∵AB=√42+52=√41由旋转的性质得AE=AC,∠E=∠ACB=90°∵∠E=∠ACF=90°∵AF=AF∵Rt△AFE≌Rt△AFC(HL)∵EF=FC,∠EFA=∠CFA∵∠EAB=90°∵DE∥AB∵∠EFA=∠FAB∵∠BFA=∠FAB∵BF=AB=√41∵EF=FC=BF−BC=√41−5故答案为:√41−5.15.解:∵将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上∵AB=AB′,∠BC′B′=90°,∠B′AC′=∠BAC∵∠ABB′=∠AB′B而∠BB′C′=35°∵∠ABB′=90°−35°=55°∵∠B′AC′=∠BAC=180°−55°×2=70°.故答案为:70.16.解:如图所示:连接AA′,BB′,然后作AA′,BB′的垂直平分线,这两条垂直平分线交于一点,记为点P,为旋转中心,此时旋转中心的坐标是(−1,0)故答案为:(−1,0)17.解:(1)所求图形,如图所示.(2)所求图形,如图所示.18.(1)解:由旋转可得:∠E=∠C.∵∠B=40°,∠BAC=80°∵∠C=180°−∠B−∠BAC=60°∵∠E=60°.(2)如图1,当DE在AB下方时.由旋转可得:∠D=∠B=40°.∵AB∥DE∵∠BAD=∠D=40°∵∠DAC=∠BAC−∠BAD=80°−40°=40°.如图2,当DE在AB上方时.∵AB∥DE∵∠BAD+∠D=180°∵∠BAD=180°−∠D=180°−40°=140°∵∠DAC=360°−∠BAC−∠BAD=360°−80°−140°=140°.综上所述,∠DAC的度数为40°或140°.19.(1)解:如图,∴△A1B1C1为所求画的三角形;(2)解:如图∴△A2C2B2为所求画的三角形;(3)解:成轴对称,如图∴直线OD为所求画的对称轴.20.(1)解:∵三个内角的平分线交于点O,(∠ABC+∠ACB)∵∠OBC+∠OCB=12∵∠BAC=80°∵∠ABC+∠ACB=180°−∠BAC=100°∵∠OBC+∠OCB=50°∵∠BOC=180°−(∠OBC+∠OCB)=180°−50°=130°故答案为:130°;(2)解:①∠ODC=∠AOC,理由如下:∵三个内角的平分线交于点O,(∠BAC+∠ACB)∵∠OAC+∠OCA=12∵∠BAC+∠ACB=180°−∠ABC∵∠OAC+∠OCA=12(180°−∠ABC)=90°−12∠ABC∵∠AOC=180°−(∠OAC+∠OCA)=180°−(90∘−12∠ABC)=90°+12∠ABC∵OD⊥OB∵∠BOD=90°∵∠ODC=∠BOD+∠OBD=90°+12∠ABC∵∠ODC=∠AOC;②如图∵OC平分∠ACB,∠ACB=60°∵∠OCD=12∠ACB=30°由(1)知∠BOC=130°∵∠BOD=90°∵∠COD=40°∵∠BDO=∠COD+∠OCD=70°由旋转性质可知:∠BDO=∠B′D′O=70°∵B′D′∥OC∵∠COD′=∠B′D′O=70°∵∠DOD′=∠COD′−∠COD=30°,即此时旋转角度α=30°∵α的值为30°.21.(1)解:①∵M(2−a,2a−10)到两坐标轴的距离相等,且在第三象限∵−(2−a)=−(2a−10)∵a=4∵M(−2,−2);②∵A A(−1,0),B(3,0)∵AB=4∵MN∥AB,MN=AB,M(−2,−2)∵N(−6,−2)或(2,−2);(2)解:∵M(n,n)在第三象限∵n<0∵三角形AMB的面积为12×4×(−n)=−2n;(3)解:∵△AMB沿x轴方向向右平移得到△DEF ∵BM=EF,AD=ME=BF.∵△AMB的周长为m∵AM+MB+AB=m.∵四边形AMEF的周长为m+4∵AM+ME+EF+AF=m+4,即2ME=4∵解得ME=2∵点E的坐标为(n+2,n).22.(1)解:①证明:在△BCE与△CBK中{BE=CK ∠BCK=∠CBE BC=CB∵△BCE≌△CBK(SAS)∵CE=BK∵BD=CE∵BD=BK;②由①知:BD=BK,∵∠BKD=∠BDK∵△BCE≌△CBK(SAS)∵∠BKC=∠CEB∵∠BDK=∠CEB∵∠BDK=∠ADC∴∠ADC=∠CEB∵∠CEB+∠AEF=180°∴∠ADF+∠AEF=180°∴∠A+∠EFD=180°∵∠A=60°∴∠EFD=120°∴∠CFE=180°−∠EFD=180°−120°=60°;(2)解:结论:BF+CF=2CN.理由:如图2中∵AB=AC,∠A=60°∴△ABC是等边三角形∴AB=CB=AC,∠A=∠CBD=∠ACB=60°∵AE=BD∴△ABE≌△BCD(SAS)∴∠BCF=∠ABE∴∠FBC+∠BCF=60°∴∠BFC=120°∵∠BFD=60°由旋转可得:AC=CM∵BC=CM,∠BCM=∠ACB+∠ACM=120°如图2中,延长CN到Q,使得NQ=CN,连接FQ∵NM=NF,∠CNM=∠FNQ,CN=NQ∴△CNM≌△QNF(SAS)∴CM=QF,∠MCN=∠NQF∴CM=BC延长CF到P,使得PF=BF∵PF=BF∵△PBF是等边三角形∵∠BPC=60°∴∠PBC+∠PCB=∠PCB+∠FCM=120°∴∠FCM=∠PBC∵∠PFQ=∠FCQ+∠CQF=∠FCQ+∠MCN=∠FCM∵∠PFQ=∠PBC∵PB=PF∴△PFQ≌△PBC(SAS)∴PQ=PC,∠CPB=∠QPF=60°∴△PCQ是等边三角形∴BF+CF=PC=QC=2CN.。

北师大版数学专题复习之《图形的平移与旋转》综合训练

北师大版数学专题复习之《图形的平移与旋转》综合训练

北师大版数学专题复习之《图形的平移与旋转》综合训练一.选择题(共10小题)1.在平面直角坐标系中,将点A(5,1)向下平移3个单位,再向右平移2个单位,则平移后A的对应点A′的坐标为()A.(2,3)B.(2,8)C.(7,﹣2)D.(5,﹣1)2.在平面直角坐标系中,将点A(1,m2)沿着y轴的正方向向上平移(m2+4)个单位后得到点B.有四个点E(1,﹣m2),F(m2+4,m2),M(1,m2+3),N(1,4m2),一定在线段AB上的是()A.点E B.点F C.点M D.点N3.已知等边△ABC的边长为4,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是()A.B.C.2D.4.如图,在△ABC中,BC=9,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF=5,则下列结论中错误的是()A.BE=5B.DF=9C.AB∥DE D.∠F=30°5.将某图形的各顶点的横坐标都减去3,纵坐标保持不变,则该图形()A.沿x轴向右平移3个单位B.沿x轴向左平移3个单位C.沿y轴向上平移3个单位D.沿y轴向下平移3个单位6.如图,在平面直角坐标系中,△ABC与△A'B'C'关于D(﹣1,0)成中心对称.已知点A 的坐标为(﹣3,﹣2),则点A'的坐标是()A.(1,3)B.(1,2)C.(3,2)D.(2,3)7.在平面直角坐标系中,将点(﹣1,﹣3)向左平移2个单位长度得到的点的坐标是()A.(﹣1,﹣5)B.(﹣3,﹣3)C.(1,﹣3)D.(﹣1,1)8.如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM =PN;②OM+ON的值不变;③MN的长不变;④四边形PMON的面积不变,其中,正确结论的是()A.①②③B.①②④C.①③④D.②③④9.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次向右跳动3个单位至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次向右跳动5个单位至点A4(3,2),…,以此规律跳动下去,点A第2020次跳动至点A2020的坐标是()A.(1012,1011)B.(1009,1008)C.(1010,1009)D.(1011,1010)10.如图,边长为8的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动过程中,DF的最小值是()A.4B.3C.2D.1二.填空题(共10小题)11.如图,已知线段AB=6,O为AB的中点,P是平面内的一个动点,在运动过程中保持OP=1不变,连结BP,将PB绕点P逆时针旋转90°到PC,连结BC、AC,则线段AC 的取值范围是.12.如图,在Rt△ABC中,∠ACB=90°,AC=1,∠ABC=30°,点O为Rt△ABC内一点,连接AO、BO、CO.且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC的值为(提示:以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A'O'B).13.如图,在直角坐标系中,已知点A(4,0),点B为y轴正半轴上一动点,连接AB,以AB为一边向下作等边△ABC,连接OC,则OC的最小值为.14.如图,已知△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点B逆时针旋转一定的角度α,若0°<α<90°,直线A1C1分别交AB,AC于点G,H,当△AGH为等腰三角形时,则CH的长为.15.如图,Rt△ABC中,∠C=90°,AC=10,BC=16.动点P以每秒3个单位的速度从点A开始向点C移动,直线l从与AC重合的位置开始,以相同的速度沿CB方向平行移动,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P移动到与点C重合时,点P和直线l同时停止运动.在移动过程中,将△PEF绕点E逆时针旋转,使得点P的对应点M落在直线l上,点F的对应点记为点N,连接BN,当BN∥PE时,t的值为.16.如图,在△ABC中,AB=AC=2,∠BAC=120°,P为BC边上一动点,连接AP,将线段AP绕点A顺时针旋转120°至AP′,则线段PP′的最小值为.17.定义:有一组对角互余的四边形叫做对余四边形,如图,在对余四边形ABCD中,AB =BC,AD=2,CD=5,∠ABC=60°,则线段BD=.18.△ABC为边长为6的等边三角形,点E为边BC上一点,将BE绕B点逆时针旋转120°到BD,点F为边AC上一点,AE交DF于点K,且∠DKE=60°,若=,则BE =.19.如图,在△ABC中,AC=BC=9,∠C=120°,D为AC边上一点,且AD=6,E是AB边上一动点,连接DE,将线段DE绕点D逆时针旋转30°得到DF,若F恰好在BC 边上,则AE的长为.20.Rt△ABC中,∠ACB=90°,BC=a,AC=b(b>a),将△ABC绕点B顺时针旋转90°得到△EBD,连接AE,射线CD分别交AB,AE于点F、G,则=.(用含a,b的代数式表示)三.解答题(共10小题)21.已知等边△ABC,D为BC边上一点,点E在线段AD上,且∠EBD=∠BAD.将△ABE 绕着点A逆时针旋转至△ACF,连接EF,交AC于点G.(1)求证:B,E,F三点共线;(2)记△CGF的面积为S1,△BDE的面积为S2,若BD=DE,求的值.22.在如图的网格中建立平面直角坐标系,△ABC的顶点坐标分别为A(1,7)B(8,6)C(6,2),D是AB与网格线的交点,仅用无刻度尺的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,并完成下列问题:(1)直接写出△ABC的形状;(2)画出点D关于AC的对称点E;(3)在AB上画点F,使∠BCF=0.5∠BAC;(4)线段AB绕某个点旋转一个角度得到线段CA(A与C对应,B与A对应),直接写出这个旋转中心的坐标.23.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°.若固定△ABC,将△DEC绕点C旋转.(1)当△DEC绕点C旋转到点D恰好落在AB边上时,如图2.①当∠B=∠E=30°时,此时旋转角的大小为;②当∠B=∠E=α时,此时旋转角的大小为(用含a的式子表示).(2)当△DEC绕点C旋转到如图3所示的位置时,小杨同学猜想:△BDC的面积与△AEC的面积相等,试判断小杨同学的猜想是否正确,若正确,请你证明小杨同学的猜想.若不正确,请说明理由.24.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.25.如图,P是正三角形ABC内的一点,且P A=6,PB=8,PC=10,将△APB绕点B逆时针旋转一定角度后,可得到△CQB.(1)求点P与点Q之间的距离;(2)求∠APB的度数.26.如图,在等边△ABC中,点D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.(1)求证:AD=DE;(2)求∠DCE的度数;(3)若BD=1,求AD,CD的长.27.如图,在30°的直角三角形ABC中,∠B=30°,D是直角边BC所在直线上的一个动点,连接AD,将AD绕点A逆时针旋转60°到AE,连接BE,DE.(1)如图①,当点E恰好在线段BC上时,请判断线段DE和BE的数量关系,并结合图①证明你的结论;(2)当点E不在直线BC上时,如图②、图③,其他条件不变,(1)中结论是否成立?若成立,请结合图②、图③选择一个给予证明;若不成立,请直接写出新的结论.28.如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(Ⅰ)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(Ⅱ)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称.29.阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若P A=PB,则点P在线段AB的垂直平分线上.请根据阅读材料,解决下列问题:如图②,直线CD是等边△ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连接AE、BE,△ABE经顺时针旋转后与△BCF重合.(I)旋转中心是点,旋转了(度);(II)当点E从点D向点C移动时,连接AF,设AF与CD交于点P,在图②中将图形补全,并探究∠APC的大小是否保持不变?若不变,请求出∠APC的度数;若改变,请说出变化情况.30.综合应用题:如图,有一副直角三角板如图①放置(其中∠D=45°,∠C=30°),P A、PB与直线MN重合,且三角板P AC,三角板PBD均可以绕点P逆时针旋转.(1)∠DPC=;(2)如图②,若三角板PBD保持不动,三角板∠P AC绕点P逆时针旋转,转速为10°/秒,转动一周三角板P AC就停止转动,在旋转的过程中,当旋转时间为多少时,有PC ∥DB成立;(3)如图③,在图①基础上,若三角板P AC的边P A从PN.处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,(当PC转到与PM重合时,两三角板都停止转动),在旋转过程中,当∠CPD=∠BPM,求旋转的时间是多少?。

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (18)

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (18)

一、选择题1.世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是( )A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量2.一本笔记本4.5元,买x本共付y元,则4.5和y分别是( )A.常量,常量B.变量,变量C.变量,常量D.常量,变量3.一列火车从兰州出发,加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达酒泉车站减速停下,下列图形中,能刻画火车在这段时间内速度随时间变化情况的是( )A.B.C.D.4.小明在6月份的某一天倒了一杯开水,水太烫,他将这杯开水晾在桌上,则这杯水的水温(∘C)与时间(t)之间的关系图象大致是( )A.B.C.D.5.一辆货车从A地开往B地,一辆小汽车从B地开往A地,同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t之间的函数关系如图所示.下列说法中:① A,B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶60千米;⑤出发2小时,小货车离终点还有80千米.其中正确的有( )A.5个B.4个C.3个D.2个6.如图,AB是半圆O的直径,点P从点O出发,沿线段OA−弧AB−线段BO的路径运动一周.设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是( )A.B.C.D.7.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子得意洋洋地躺在一棵大树下睡起觉来,乌龟一直坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程随时间变化情况的是( )A.B.C.D.8.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是( )A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米9.如图所示的图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是( )A.第3min时汽车的速度是40km/hB.第12min时汽车的速度是0km/hC.从第3min到第6min,汽车行驶了120kmD.从第9min到第12min,汽车的速度从60km/h减少到0km/h10.如图1,⊙O过正方形ABCD的顶点A,D,且与边BC相切于点E,分别交AB,DC于点M,N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为( )A.从D点出发,沿弧DA→弧AM→线段MB→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从C点出发,沿线段CN→弧ND→弧DA→线段ABD.从A点出发,沿弧AM→线段MB→线段BC→线段CN二、填空题11.已知函数f(x)=x,那么f(−2)=.x+112.某品牌汽车每千米的耗油量是0.1L,用s(km)表示行驶的路程,p(L)表示耗油量.在此过程中,变量是,常量是;p关于s的函数表达式是,当s=200km时,函数p的值是L.13.自2020年1月1日延庆区开展创城以来,积极推广垃圾分类,在垃圾分类指导员的帮助下,居民的投放正确率不断提升,分类习惯正在养成.尤其是在5月1日新版《北京市生活垃圾管理条例》实施以来,延庆区城管委为全区从源头上规范垃圾投放,18个街乡镇新配备户用分类垃圾桶20万个,助力推进垃圾分类.下面两张图表是某小区每个月的厨余垃圾量和其他垃圾量.(1)3月份厨余垃圾量比其他垃圾量多吨;(2)月份两类垃圾量(单位:吨)的差距最大.14.已知甲乙两地之间的距离为810米,小明和小天分别从甲乙两地出发,匀速相向而行,已知小明先出发1分钟后,小天再出发,两人在甲乙之间的丙地相遇,此时,小明发现有小学同学也在丙地,于是聊了一会儿,随后以原来速度的4倍返回甲地,小天相遇后继续以原速向甲地前行,到3达甲地后立即原速返回,直至再次与小明相遇.已知在整个过程中,小明、小天两人之间的距离y(米)与小明出发的时间x(分钟)之间的关系如图所示,则在第二次相遇时两人距离乙地米.15.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙继续骑分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚分钟到达B地.16.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有个.17.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是.三、解答题18.人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐遗忘,为提升记忆的效果,需要有计划的按时复习巩固,图中的实线部分是记忆保持量(%)与时间(天)之间的关系图.请根据图回答下列问题:(1) 图中的自变量是,因变量是;(2) 如果不复习,3天后记忆保持量约为;(3) 图中点A表示的意义是;(4) 图中射线BC表示的意义是;(5) 经过第1次复习与不进行复习,3天后记忆保持量相差约为;(6) 10天后,经过第2次复习与从来都没有复习的记忆保持量相差约为.19.从甲城向乙城打长途电话,通话时间不超过3分钟收费2.4元,超过3分钟后每分钟加收1元,写出通话费用y(元)关于通话时间x(分)的函数关系式,如果通话10.5分钟,需要多少话费?(本题中x取整数,不足1分钟按1分钟计算)20.回答下列问题:(1) 某礼堂共有25排座位,第一排有20个座位,后面每一排都比前一排多1个座位,写出每排的座位数m与这排的排数n的函数关系式并写出自变量n的取值范围.本题中,在其他条件不变的情况下请探究下列问题:(2) 当后面每一排都比前一排多2个座位时,则每排的座位数m与这排的排数n的函数关系式是,其中1≤n≤25,且n是正整数;(3) 当后面每一排都比前一排多3个座位、4个座位时,则每排的座位数m与这排的排数n的函数关系式分别是,,其中1≤n≤25,且n是正整数;(4) 某礼堂共有p排座位,第一排有a个座位,后面每一排都比前一排多b个座位,试写出每排的座位数m与这排的排数n的函数关系式,并写出自变量n的取值范围.21.某中学九年级甲、乙两班商定举行一次远足活动,A,B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1,y2千米,y1,y2与x的函数关系图象如图所示.根据图象解答下列问题.(1) 直接写出,y1,y2与x的函数关系式;(2) 求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?(3) 甲、乙两班首次相距4千米时所用时间是多少小时?22.在某次大型的活动中,用无人机进行航拍,在操控无人机时根据现场状况调节高度,已知无人机在上升和下降过程中速度相同.设无人机的飞行高度ℎ(m)与操控无人机的时间t(min)之间的关系如图中的实线所示,根据图象回答下列问题:(1) 图中的自变量是,因变量是;(2) 无人机在75m高的上空停留的时间是min;(3) 在上升或下降过程中,无人机的速度为m/min;(4) 图中a表示的数是;b表示的数是;(5) 求第14min时无人机的飞行高度是多少米?23.A,B两地相距60km,甲、乙二人分别骑自行车和摩托车沿相同路线匀速行驶,由A地到达B地,他们行进中的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示.(1) 乙比甲晚出发几小时?比甲早到几小时?(2) 分别写出甲走的路程s1(km)、乙走的路程s2(km)与时间t(h)之间的函数解析式.(3) 乙在甲出发后几小时追上了甲,追上甲的地点离A地多远?24.如图1,四边形ABCD为矩形,曲线L经过点D.点Q是四边形ABCD内一定点,点P是线段AB上一动点,作PM⊥AB交曲线L于点M,连接QM.小东同学发现:在点P由A运动到B的过程中,对于x1=AP的每一个确定的值,θ=∠QMP都有唯一确定的值与其对应,x1与θ的对应关系如下表所示:x1=AP012345θ=∠QMPα85∘130∘180∘145∘130∘小芸同学在读书时,发现了另外一个函数:对于自变量x2在−2≤x2≤2范围内的每一个值,都有唯一确定的角度θ与之对应,x2与θ的对应关系如图2所示:根据以上材料,回答问题:(1) 表格中α的值为.(2) 如果令表格中x1所对应的θ的值与图2中x2所对应的θ的值相等,可以在两个变量x1与x2之间建立函数关系.①在这个函数关系中,自变量是,因变量是;(分别填入x1和x2)②请在网格中建立平面直角坐标系,并画出这个函数的图象;③根据画出的函数图象,当AP=3.5时,x2的值约为.25.已知甲,乙两名自行车骑手均从P地出发,骑车前往距P地60千米的Q地,当乙骑手出发了 1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q地后立即又原路返回P地,甲,乙两名骑手距P地的路程y(千米)与时间x(时)的函数图象如图所示.(其中折线O−A−B−C−D(实线)表示甲,折线O−E−F−G(虚线)表示乙)(1) 甲骑手在路上停留小时,甲从Q地返回P地时的骑车速度为千米/时;(2) 求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;(3) 在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.答案一、选择题1. 【答案】D【知识点】常量、变量2. 【答案】D【知识点】常量、变量3. 【答案】B【知识点】用函数图象表示实际问题中的函数关系4. 【答案】C【解析】∵水很烫,则其温度超过外界温度,∴水的温度会随时间而降低,直到水温与外界温度相同.【知识点】图像法5. 【答案】C【知识点】用函数图象表示实际问题中的函数关系6. 【答案】C【知识点】图像法7. 【答案】C【知识点】用函数图象表示实际问题中的函数关系8. 【答案】D【解析】开始甲,乙两人相距660米,由图可知,前24分钟甲,乙两人相相距的路程在逐渐缩小.24分钟时,乙到达景点,此时甲、乙两人相距420米之后甲又走了6分钟与乙相遇,−70(米/分)甲总共走了30分钟,∴甲的速度=4206∴甲距景点30×70=2100米,由前24分钟甲、乙两人相距660来缩小到420米,得(甲的速度−乙的速度)×24=660−420,得乙的速度=60米/分,乙总共走了24分钟,∴乙距景点60×24=1440米.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】C【知识点】用函数图象表示实际问题中的函数关系10. 【答案】D【知识点】图像法二、填空题11. 【答案】2=2.【解析】当x=−2时,f(−2)=−2−2+1【知识点】函数的概念12. 【答案】s,p;0.1L/km;p=0.1s;20【知识点】解析式法13. 【答案】1;5【解析】(1)5−4=1(吨);(2)2月的差距约是:6.2−5.6=0.6(吨);3月分的差距是:5−4=1(吨);4月份的差距约是:4.3−2.3=2(吨);5月份的差距约是:3.8−1.3=2.5(吨);6月份的差距是:3−1=2(吨);7月份的差距约是:2.2−1.2=1(吨).【知识点】用函数图象表示实际问题中的函数关系14. 【答案】738【解析】设小明、小天速度分别为V1,V2米/分钟.A到B阶段:V1×1=810−750,∴V1=60米/分钟.B到C阶段:(V1+V2)(3.7−1)=750−345,∴V2=90米/分钟.第一次相遇在丙地,即B到D阶段,(V1+V2)(t D−1)=750,∴t D=6,∴甲地到丙地距离为V1t D=60×6=360米,=4分钟,小天从丙地到甲地用时:360V2D到E阶段小明停留在丙地,F点状态是小天到达甲地,小明速度为43V1=80米/分钟,43V1[4−(7.2−6)]=80×2.8=224米,小天到达甲地,小明、小天相距360−224=136米,F到G阶段,小天从甲地返回与小明相遇,136V2+43V1=13690+80=0.8分钟,第二次相遇地点距离甲地:0.8V2=72米,810−72=738米,故第二次相遇地两人距离乙地738米.【知识点】用函数图象表示实际问题中的函数关系15. 【答案】12【解析】由图及题意易乙的速度为300米/分,甲原速度为250米/分.当x=25后,甲提速为400米/分;当x=86时,甲到达B地,此时乙距B地为250(25−5)+400(86−25)−300×86=3600.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】1【解析】在两人出发后0.5小时之前,甲的速度小于乙的速度;0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,乙的路程为15千米,甲的路程为12千米,甲的行程比乙少3千米,故③错误;乙到达终点所用的时间较少,因此乙比甲先到达终点,故④错误.【知识点】用函数图象表示实际问题中的函数关系17. 【答案】①②③【知识点】用函数图象表示实际问题中的函数关系三、解答题18. 【答案】(1) 时间;记忆的保持量(2) 40%(3) 经过第1次复习,第10天时的记忆保持量约为55%(4) 经过第5次复习,记忆保持量为100%(或经过第5次复习,能保持长久记忆;或经过第5次复习,不会再遗忘;⋯⋯)(5) 28%(所有百分数均为近似数,只要相差不大,均可视为正确)(6) 46%(所有百分数均为近似数,只要相差不大,均可视为正确)【知识点】用函数图象表示实际问题中的函数关系、函数的概念19. 【答案】当0<x≤3时,y=2.4;当x>3时,y=2.4+(x−3)=x−0.6,把x=11代入y=x−0.6得:y=11−0.6=10.4.答:如果通话10.5分钟,需要10.4元话费.【知识点】解析式法、分段函数20. 【答案】(1) m=19+n,1≤n≤25,且n是正整数.(2) m=2n+18(3) m=3n+17;m=4n+16(4) m=bn+a−b(1≤n≤p,且n是正整数).【知识点】解析式法21. 【答案】(1) y1=4x,y2=−5x+10.(2) 由图象可知甲班速度为4 km/h,乙班速度为5 km/h,设甲、乙两班学生出发后,x小时相遇,则4x+5x=10,解得x=109.当x=109时,y2=−5×109+10=409,∴相遇时乙班离A地为409千米.(3) 甲、乙两班首次相距4千米,即两班走的路程之和为6 km,故4x+5x=6,解得x=23.∴甲、乙两班首次相距4千米时所用时间是23小时.【解析】(1) 根据图象可以得到甲班 2.5小时走了10千米,则每小时走4千米,则函数关系式是:y1=4x;乙班从B地出发匀速步行到A地,2小时走了10千米,则每小时走5千米,则函数关系式是:y2=−5x+10.【知识点】用函数图象表示实际问题中的函数关系22. 【答案】(1) 时间(或t);飞行高度(或ℎ)(2) 5(3) 25(4) 2;15(5) 75−2×25=25(m).答:第14min时无人机的飞行高度是25m.【解析】(2) 无人机在75m高的上空停留的时间是12−7=5(min).(3) 在上升或下降过程中,无人机的速度75−507−6=25(m/min).(4) 图中a表示的数是5025=2min;b表示的数是12+7525=15(min).【知识点】用函数图象表示实际问题中的函数关系23. 【答案】(1) 乙比甲晚出发1小时;比甲早到2小时.(2) s1=15t(0≤t≤4);s2=60t−60(1≤t≤2).(3) 当s1=s2,乙追上了甲,即15t=60t−60,解得t=43,当t=43时,s1=15×43=20,所以乙在甲出发后43小时追上了甲,追上甲的地点离A地20千米.【知识点】用函数图象表示实际问题中的函数关系、行程问题24. 【答案】(1) 50∘(2) ①x1;x2;②③−1.87.【知识点】函数的概念、图像法、列表法25. 【答案】(1) 1;30(2) 乙出发 1.5 小时,甲走了 20×(2.5−1)=30(千米),甲乙相距 6 千米, ∴ 乙走了:30−6=24(千米), 设 EF 的解析式为 y =k 1+b 1,把 (1,0),(2.5,24) 代入得:{k 1+b 1=0,2.5k 1+b 1=24,解得 {k 1=16,b 1=−16,∴y =16x −16,令 y =60,则 16x −16=60,解得 x =4.75, ∴x 的取值范围为:1≤x ≤4.75.(3) 设 BC 的解析式为 y =kx +b , 由 B (2,20),C (4,60) 得 {2k +b =20,4k +b =60,解得 {k =20,b =−20,∴BC 的解析式为 y =20x −20,当 0≤x ≤2 时,20−(16x −16)=8,解得 x =74; 当 2<x ≤4 时,(20x −20)+(16x −16)=8,解得 x =3;当4≤x≤630时,(x−4)+(16x−16)=60−8,解得x=9423.综上所述,当x=74或3或9423时,甲、乙两骑手相距8千米.【解析】(1) 由图象可知,甲骑手在路上停留1小时,甲从Q地返回P地时的骑车速度为:60÷(6−4)=30(千米/时).【知识点】行程问题、用函数图象表示实际问题中的函数关系。

北师大版数学八年级下册 第三章 图形的平移与旋转 全章练习含答案

北师大版数学八年级下册 第三章 图形的平移与旋转 全章练习含答案

第三章 图形的平移与旋转1.下列图案中,是中心对称图形但不是轴对称图形的是( )2. 下列图形中可由其中的部分图形经过平移得到的是( )3. 如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是( )A .55°B .60°C .65°D .70°4.如图所示,在Rt △ABC 中,BC 是斜边,P 是三角形内一点,将△ABP 绕点A 逆时针旋转后,能与△ACP′重合,如果AP =3,则PP′的长为( ) A . 2 B .3 2 C .2 2 D .35.如图,已知正方形ABCD 的边长为3,点E 、F 分别是AB 、BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM.若AE =1,则FM 的长为( )A .2B .252C .3D .526. 如图,将△ABC 绕点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB的延长线上,连接AD,下列结论一定正确的是( )A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC7. 下列图形中,能由左图经过一次平移得到的图形是()8. 已知某一运动方式为:先竖直向上运动1个单位长度后,再水平向左运动2个单位长度,现有一动点P第一次从原点O出发,按运动方式运动到P1,第2次从点P1出发按运动方式运动到点P2,则此时点P2的坐标是()A.(4,2)B.(-4,2) C.(-4,-2) D.(4,-2)9. 如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.65°B.70°C.75°D.80°10. 在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是( )A.(4n-1,3) B.(2n-1,3) C.(4n+1,3) D.(2n+1,3) 11. 如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转a度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:①∠CDF=a度;②A1E=CF;③DF=FC;④BE=BF.其中正确的有(只填序号).12. 如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是.13. 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为.14. 点A(4,3)向左平移个单位长度后得到A′(-1,3).15. 如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是.16. 将一个正三角形绕其一个顶点按同一方向连续旋转五次,每次转过的角度为60°,旋转前后所有的图形共同组成的图形是正形.17. 如图,△ABC与△DEF关于O点成中心对称,则线段BC与EF的关系是且.18. 下列图形中,能通过旋转得到的有个.19. 如图所示,若A、B、C分别为三个圆的圆心,且圆的半径都是2cm,则圆B可看做是圆A沿水平方向平移cm得到的;圆C可看做圆A沿着与水平方向成°角的方向平移cm得到的,点C到AB的距离是cm.20. 如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=22,将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,求CE′的长.21. 如图,在等腰Rt△ABC中,∠ACB=90°,AB=142,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.如图,若AD=BD,点E与点C重合,AF与DC相交于点O,求证:BD=2DO.22. 如图,△ABC是等边三角形,将△ABC沿直线BC向右平移,使B点与C 点重合,得到△DCE,连接BD,交AC于点F.猜想AC与BD的位置关系,并证明你的结论.23. 如图,点P是等边△ABC内一点,PA=4,PB=3,PC=5,线段AP绕点A逆时针旋转60°得到线段AQ,连接PQ.(1)求PQ的长;(2)求∠APB的度数.答案;1---10 CACBD CCBAC11. ①②④12. (-2,-4)13. 1014. 515. ②④16. 六边17. 平行相等18. 419. 4 60 4 2320.解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=22,∴AB=BC=22,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=22BE′=2,在Rt△BCH中,CH=BC2-BH2=6,∴CE′=2+ 6.21. 解:由旋转的性质得:CD =CF ,∠DCF=90°,∵△ABC 是等腰直角三角形,AD =BD ,∴∠ADO=90°,CD =BD =AD ,∴∠DCF=∠ADC,在△ADO 和△FCO 中,∵⎩⎪⎨⎪⎧∠AOD=∠FOC ∠ADO =∠FCO AD =FC,∴△ADO≌△FCO(AAS),∴DO =CO ,∴BD =CD =2DO.22. 解:垂直.证明:∵△DCE 由△ABC 平移而来,∴△DCE≌△ABC, ∴△DCE 是等边三角形,∴BC=CD ,∠ACB=∠DCE=60°,∴∠ACD=180°-120°=60°,∴∠ACD=∠ACB,∵BC=CD ,∴AC⊥BD.23. 解:(1)∵AP=AQ ,∠PAQ=60°,∴△APQ 是等边三角形,∴PQ=PA =4; (2)连接QC ,∵△ABC,△APQ 都是等边三角形,∴∠BAC=∠PAQ=60°,∴∠BAP=∠CAQ=60°-∠PAC,在△ABP 和△ACQ中,⎩⎪⎨⎪⎧AB =AC ∠BAP=∠CAQAP =AQ,∴△ABP≌△ACQ(SAS),∴BP =CQ =3,∠APB =∠AQC ,∵在△PQC 中,PQ 2+CQ 2=PC 2,∴△PQC 是直角三角形,且∠PQC =90°, ∵△APQ 是等边三角形,∴∠AQP =60°,∴∠APB =∠AQC =60°+90°=150°.。

北师大版八年级数学下册 第三章 练习题 图形的平移与旋转 检测卷

北师大版八年级数学下册 第三章 练习题 图形的平移与旋转 检测卷
A.8 B.16C.16 D.32
二.填空题
8.在直角坐标系中,点A(1,﹣2)关于原点对称的点的坐标是.
9.下列图形中:①圆;②等腰三角形;③正方形;④正五边形,既是轴对称图形又是中心对称图形的有个.
10.如图,将Rt△ABC的斜边AC绕点C顺时针旋转α(0°<α<90°)得到CD,直角边BC绕点C逆时针旋转β(0°<β<90°)得到CE,若AC=5,BC=4,且α+β=∠A,则DE=.
三.解答题
14.(10分)如图,已知点A(﹣2,﹣1)、B(﹣5,﹣5)、C(﹣2,﹣3),点P(﹣6出△A1B1C1,并写出点C的对应点C1的坐标为;
(2)画出△ABC关于原点成中心对称的图形△A2B2C2,并写出点A的对应点A2的坐标为;
(3)把△A2B2C2向下平移6个单位长度得△A3B3C3,画出△A3B3C3,由图可知△A3B3C3可由△A1B1C1绕点Q逆时针旋转90°而得到,则点Q的坐标为;
15.(10分)如图,在直角三角形ABC中,∠ACB=90°,AC=4cm,BC=3cm,△ABC沿AB方向平移至△DEF,若AE=8cm.DB=2cm.
A.110°B.111°C.112°D.113°
第3题图第4题图第5题图
4.如图,将△ABC绕点C按逆时针方向旋转60°后得到△A′B′C,若∠ACB=25°,则∠ACB′的度数为( )
A.25°B.35°C.60°D.85°
5.如图,将△ABC绕点A顺时针旋转,得到△ADE,且点D在AC上,下列说法错误的是( )
(1)求△ABC沿AB方向平移的距离;
(2)求四边形AEFC的周长.
16.(14分)在小正方形构成的网格中,每个小正方形的顶点叫做格点.△ABC的三个顶点都在格点上.

北师大版八年级数学下册第三章 图形的平移和旋转练习(含答案)

北师大版八年级数学下册第三章 图形的平移和旋转练习(含答案)

第三章 图形的平移与旋转一、单选题1.观察下面图案,在四幅图案中,能通过平移得到的是( )A .B .C .D . 2.如图,△CAB 沿射线AB 方向平移2cm 到△DEF 的位置,若AB =5cm ,则EB 的长度为( )A .7cmB .5cmC .4cmD .3cm3.平面直角坐标系中,ABC '∆经过某种变化后得到''A B C ∆,已知点A 的坐标是()23-,,变化后点A 的对应点A '的坐标是()32,.有ABC ∆到''A B C '∆的变化可能是( ) A .绕原点O 逆时针旋转90︒B .关于y 轴对称C .绕原点O 顺时针旋转90︒D .沿射线AA '的方向平移5个单位 4.如图,A B C '''∆是由ABC ∆绕点C 顺时针旋转50︒得到的,其中点A 的对应点A '落在BC 边上,射线B A ''交线段AB 于点D ,则图中一定等于50︒的角有( ).A .2个B .3个C .4个D .5个5.一个图形无论经过平移还是旋转,有以下说法:①对应线段相等;②对应角相等;③对应线段平行;④图形的形状一定没有变化;△图形的位置一定没有变化;⑥图形的大小一定没有变化,其中正确的说法有( )个.A .3B .4C .5D .66.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 7.在平面直角坐标系中,点(﹣3,2)关于原点对称的点是( )A .(2,﹣3)B .(﹣3,﹣2)C .(3,2)D .(3,﹣2) 8.在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O 、A 的对应点分别为点1O 、1A .若点O 的坐标为()0,0,A 的坐标为()1,4,则点1O 、1A 的坐标分别是( )A .()()0,0,1,4B .()()0,0,3,4C .()()2,0,1,4-D .()()2,0,1,4-- 9.如图,将含30°角的直角三角尺ABC 绕点B 顺时针旋转150°后得到△EBD ,连接CD .若AB=4cm .则△BCD 的面积为( )A .B .C .3D .210.如图,在△ABC 中,△ACB=90o ,△B=30o ,AC=1,AB=2,AC 在直线l 上,将△ABC 绕点A 顺时针转到位置△可得到点P 1,此时AP 1=2;将位置△的三角形绕点P 1顺时针旋转到位置△,可得到点P 2,此时AP 2△的三角形绕点P 2顺时针旋转到位置△,可得到点P 3,此时AP 3,按此顺序继续旋转,得到点P 2016,则AP 2016=( )A .B .C .D .二、填空题 11.如图,大矩形长是10厘米,宽是8厘米,阴影部分宽为2厘米,则空白部分面积__________.12.如图所示,在Rt ABC V 中,90ACB ∠=︒,30ABC ∠=︒,将ABC V 绕点C 顺时针旋转至A B C '''V ,使得点A '恰好落在AB 上,则旋转角度为______.(注:等腰三角形的两底角相等)13.已知点M (12-,3m )关于原点对称的点在第一象限,那么m 的取值范围是____________. 14.如图,在平面直角坐标系中,有一个正三角形ABC ,其中B ,C 的坐标分别为()1,0和()2,0C .若在无滑动的情况下,将这个正三角形沿着x 轴向右滚动,则在滚动过程中,这个正三角形的顶点A ,B ,C 中,会过点()2020,1的是点__________.三、解答题15.已知△ABC 在平面直角坐标系中的位置如图所示.将△ABC 向右平移6个单位长度,再向下平移4个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A 1B 1C 1.(2)直接写出△A 1B 1C 1.各顶点的坐标:A 1____;B 1____;C 1____.(3)求出△A 1B 1C 1的面积.16.已知ABC ∆是等边三角形,D 是BC 上一点,ABD ∆绕点A 逆时针旋转到ACE ∆的位置.(1)如图,旋转中心是 ,DAE =∠ ;(2)如图,如果M是AB的中点,那么经过上述旋转后,点M转动了度;的面积为3,那么四边形ADCE的面积(3)如果点D为BC边上的三等分点,且ABD为.17.如图,等腰Rt△ABC中,BA=BC,△ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.(1)求△DCE的度数;(2)若AB=4,CD=3AD,求DE的长.18.在图中网格上按要求画出图形,并回答问题:(1)如果将三角形ABC平移,使得点A平移到图中点D位置,点B、点C的对应点分别为点E、点F,请画出三角形DEF;A B C.(2)画出三角形ABC关于点D成中心对称的三角形111A B C______(填“是”或“否”)关于某个点成中心对称?如果(3)三角形DEF与三角形111是,请在图中画出这个对称中心,并记作点O.19.如图,△OAB和△OCD中,OA=OB,OC=OD,△AOB=△COD=α,AC、BD交于M(1)如图1,当α=90°时,△AMD的度数为°(2)如图2,当α=60°时,△AMD的度数为°(3)如图3,当△OCD绕O点任意旋转时,△AMD与α是否存在着确定的数量关系?如果存在,请你用表示△AMD,并图3进行证明;若不确定,说明理由答案1.B2.D3.C4.B5.B6.C7.D8.D9.C10.B11.48cm2 12.60°13.m<014.C15.(1)如图所示;(2)由图可知,A 1(4,0),B 1(1,-2),C 1(2,1); (3)S △A1B1C1=3×3-12×1×3-12×1×2-12×2×3=9-32-1-3=72. 16.解:(1)△ABC V 是等边三角形△△BAC=60°△ABD △绕点A 逆时针旋转到ACE △的位置 △旋转中心是点A ,DAE =∠△BAC=60°(2)△AB 和AC 是对应边△经过上述旋转后,点M 转到了AC 的中点位置,如图△,MAM ∠=60°△点M 转动了60°.(3)△ABD △绕点A 逆时针旋转到ACE △的位置 △ABD △△ACE △△BD=13BC或BD=23BC△CD=2BD或CD=12 BD△S△ABC=3S△ABD=3×3=9或S△ABC=32S△ABD=3×32=92△S四边形ADCE= S△ABC=9或9 2 .故答案为(1)点A,60°;(2)60;(3)9或9 2 .17.(1)△△ABCD为等腰直角三角形,△△BAD=△BCD=45°.由旋转的性质可知△BAD=△BCE=45°.△△DCE=△BCE+△BCA=45°+45°=90°.(2)△BA=BC,△ABC=90°,=△CD=3AD,,.由旋转的性质可知:.=18.解:(1)如图所示,DEF∆即为所求.(2)如图所示,111A B C ∆即为所求; (3)是,如图所示,DEF ∆与111A B C ∆是关于点O 成中心对称. 19.(1)如图1中,设OA 交BD 于K .△OA =OB ,OC =OD ,△AOB =△COD =α, △△BOD =△AOC ,△△BOD △△AOC ,△△OBD =△OAC ,△△AKM =△BKO ,△△AMK =△BOK =90°.故答案为90.(2)如图2中,设OA交BD于K.△OA=OB,OC=OD,△AOB=△COD=α,△△BOD=△AOC,△△BOD△△AOC,△△OBD=△OAC,△△AKM=△BKO,△△AMK=△BOK=60°.故答案为60.(3)如图3中,设OA交BD于K.△OA=OB,OC=OD,△AOB=△COD=α,△△BOD=△AOC,△△BOD△△AOC,△△OBD=△OAC,△△AKO=△BKM,△△AOK=△BMK=α.△△AMD=180°﹣α。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《图形的平移与旋转》专题专练专题一:确定图形变换后的坐标把图形放在平面直角坐标系中,利用点的坐标,可进行图形的变换或确定图形的位置与形状,解答这类问题,是数与形结合的体现,有利于提高综合运用知识的能力.现以坐标系中的平移与旋转的图形变换为例加以说明.例1 如图1,在△AOB中,AO=AB.在直角坐标系中,点A的坐标是(2,2),点O的坐标是(0,0),将△AOB平移得到△A′O′B′,使得点A′在y轴上,点O′、B′在x轴上.则点B′的坐标是.析解:因为△AOB是等腰三角形,容易得到B点坐标为(4,0),将△AOB 平移得到△A′O′B′,使得点A′在y轴上,是将图形向左平移2个单位长度.根据平移特点,平移后对应线段相等,因此点B也向左平移2个单位长度,所以点B′的坐标为(2,0).例2 已知平面直角坐标系上的三个点O(0,0),A(-1,1),B(-1,0),将△ABO绕点O按顺时针方向旋转135°,则点A,B的对应点坐标为A1(,),B1(,).析解:建立如图2所示的直角坐标系,则OA2,所以OA1=OA2,所以点A120).因为∠AOB=45°,所以△AOB是等腰直角三角形,所以△A1OB1是等腰直角三角形,且OA12,所以B122⎝⎭,.练习一:1.如图3,若将△ABC绕点C顺时针旋转90°后得到△A′B′C′,则A点的对应点A′的坐标是().(A)(-3,-2)(B)(2,2)(C)(3,0)(D)(2,1)2.如图4,在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图案中左眼的坐标是(3,4),则右图案中右眼的坐标是.3.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O 按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.4.如图5,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形,并写出点B1的坐标;(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C 的图形,并写出点B2的坐标.专题二:图形的变换分析分析图形的变换一般选择合适的“基本图形”,然后由平移、旋转的定义考查这一基本图形变换到另一个基本图形的运动方式是平移还是旋转,以及运动的距离或角度是多少,并由性质进行检验判断的正确性.例1将图1方格纸中的图形绕O点顺时针旋转90°得到的图形是().析解:注意图案中的每一个直角三角形顺时针旋转90°后相对应的直角边是否垂直即可判断哪个正确,故选择(B).例2将如图2中的正方形图案绕中心O旋转180°后,得到的图案是().析解:注意观察图2中两个等腰直角三角形相应的直角边在同一条直线上(或观察斜边间关系),显然选项(B),(D)是错误的;又因为图2中的两个等腰直角三角形成中心对称图形,则旋转后能互相重合,则选项(A)是错误的,故选择(C).练习二:1.将如图3的叶片图案旋转180°后,得到的图形是().图32.如图4,8×8方格纸上的两条对称轴EF、MN相交于中心点O,对△ABC分别作下列变换:①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°;③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中,能将△ABC变换成△PQR的是().(A)①②(B)①③(C)②③(D)①②③专题三:平移与旋转变换作图平移与旋转的作图要抓住两个关键点:(1)平移(旋转)的方向;(2)平移(旋转)的数量(指距离、角度).基本方法是选取图形中的关键点作出它们的对应点,利用“局部带整体”得到变换后的图形.典例:如图1,在网格中有一个四边形图案.(1)请你画出此图案绕点O 顺时针方向旋转90°,180°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;(2)若网格中每个小正方形的边长为1,旋转后点A 的对应点依次为A 1、A 2、A 3,求四边形AA 1A 2A 3的面积;(3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论. 析解:只要同学们动手画图,即可得到答案.(1)正确画出图案,如图2;(2)如图2,3123123214(35)435342BAA AA A A BB B B S S S =-=+-⨯⨯⨯=△四边形四边形,故四边形AA 1A 2A 3的面积为34;(3)结论:AB 2+BC 2=AC 2(或勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方).由(2)中的面积计算公式,可知(AB +BC )2=4×12×AB ×BC +AC 2.整理后,可得到上面的结论.练习三:1.如图3所示,画出三角形ABC 绕点C 逆时针旋转90°后的图形是(画在图上).2.观察如图4网格中的图形,解答下列问题:(1)将网格中图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形;(2)在(1)中移动后的图形上再增加适当的线,组成一个新的图形,使这个新图形是中心对称图形,或是轴对称图形.专题四:聚焦旋转中的角度问题旋转总是某一个图形绕着一个固定点按圆形或弧形轨道运动.旋转变换位置发生变化,形状、大小不发生变化.旋转前后对应线段、对应角分别相等;旋转过程中,每一个点都绕旋转中心沿相同的方向旋转相同的角度,任意一对对应点与旋转中心的连线所成的角都等于旋转角,对应点到旋转中心的距离相等.例1绕一定点旋转180°后能与原来的图形重合的图形是中心对称图形,正六边形就是这样的图形,小明发现将正六边形绕着它的中心旋转一个小于180°的角,也可以使它与原来的正六边形重合,请你写出小明发现的一个旋转角的度数:.析解:正六边形是中心对称图形,若把正六边形的各顶点与对称中心连接起来,易看出正六边形是由一个正三角形连续旋转5次,其旋转角度为60°而得到的或是相邻两个等边三角形连续旋转2次,其旋转角为120°而得到的.故小明发现的一个旋转角的度数为60°或120°.例2如图1所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.(1)三角尺旋转了多少度?(2)连接CD,试判断△CBD的形状;(3)求∠BDC的度数.析解:(1)因为旋转后点A与CB的延长线上的点E重合,∠ABC=30°,所以根据旋转的意义知,∠ABE=180°-30°=150°,即旋转了150°;(2)由旋转的性质知BC=BD,故△CBD为等腰三角形;(3)因为BD=BC,所以∠BCD =∠BDC.又∠DBE=∠ABC=30°,∠DBE=∠BCD+∠BDC,故∠BDC=12∠DBE=15°.例3如图2,△ABE和△ACD都是等边三角形,△EAC旋转后能与△ABD重合,EC与BD相交于点F.则∠DFC的度数为.析解:由旋转图形的对应角相等,得∠ADB=∠ACE,根据对顶角相等,得∠AMD=∠FMC.借助三角形内角关系,得∠DFC=∠DAC.再把已知条件中的等边三角形转化为角度关系,容易得到∠DFC=∠DAC=60°.练习四:1.如图3,△ABC,△ACD,△ADE是三个全等的正三角形,那么△ABC绕着顶点A沿逆时针方向至少旋转,才能与△ADE完全重合.2.如图4,在等腰直角三角形ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′则∠BAC′等于().(A)60°(B)105°(C)120°(D)135°专题五:图形变换中的线段问题通过各种图形的平移和旋转可知图形平移的主要因素是移动的方向和移动的距离;旋转中对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角相等,从而寻找图形变换过程中的一些隐含关系.例1如图1,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP =3,那么PP ′的长等于 . 析解:由旋转的性质及题意可知,AP =AP ′, ∠P AP ′=90°,所以△APP ′是等腰直角三角形.由勾股定理可知:2222331832PP AP AP ''=+=+==.例2 如图2,桌面上直线l 上摆放着两块大小相同的直角三角板,它们中较小直角边的长为6cm ,较小锐角的度数为30°.(1)将△ECD 沿直线l 向左平移到图3(1)的位置,使E 点落在AB 上,你能求出平移的距离吗?试试看.(2)将△ECD 绕点C 逆时针方向旋转到图3(2)的位置,使E 点落在AB 上,请求出旋转角的度数.析解:(1)根据平移的性质可知CC ′的长为平移的距离.在Rt △E ′BC ′中,因为∠BE ′C ′=30°,设BC ′=x ,由30°角所对的直角边等于斜边的一半,可知BE ′=2x ,由勾股定理可求x =BC ′=23,所以CC ′=(623-)cm .即平移的距离为(623-)cm .(2)根据旋转的性质可知,BC =CE ′,而∠ABC =60°,所以△BCE ′为等边三角形,而∠ECE ′为旋转角,所以旋转角∠ECE ′为30°.练习五:1.如图4,在等腰直角三角形ABC 中,∠C =90°,BC =2cm ,如果以AC 的中点O 为旋转中心,将这个三角形旋转180°,点B 落在B ′处,则BB ′的长度为 .2.如图5,P是正三角形ABC内的一点,且P A=6,PB=8,PC=10.若将△P AC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为,∠APB=.3.如图6,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转与△CBP′重合,若PB=3,则PP′的长为.专题六:利用图形变换求面积利用图形变换的特征(即平移、旋转前后图形的的形状、大小都不发生变化)求解有关面积问题,可以收到事半功倍之效,现举例如下.例1如图1,矩形内有两个相邻的正方形,面积分别为9和4,那么图中阴影部分的面积为.析解:将图1中两阴影部分平移到一起,如图2,得长方形ABCD,易知该长方形的长AD为小正方形边长,宽CD为两个正方形边长之差.因此,只需求出两个正方形边长,则阴影部分面积就不难求出了.因为大正方形的面积为9,小正方形的面积为4,所以,大正方形的边长为3,小正方形的边长为2,所以图中阴影部分的面积为2×(3-2)=2.例2如图3,矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形,依照图中标注的数据,计算图中空白部分的面积,其面积是().(A)2--+ab bc ac cbc ab ac c-++(B)2(C)2-+-b bc a abbc ab ac c+-+(D)22析解:让我们先看这样一个事实:图4中阴影部分的平行四边形和长方形的宽都是c ,大长方形的宽是b ,依据平行四边形、长方形的面积公式,显然阴影部分的平行四边形和长方形的面积都是bc .这样可以发现,只要把图3中两个阴影部分平移成图5所示的图形,则空白部分面积就可求出来.这样图3中四块空白图形可组成长为(a -c ),宽为(b -c )的矩形.因此,空白部分的面积为2()()a c b c ab bc ac c --=--+,故选(B ).例2 如图6,三个圆是同心圆(圆心相同),则图中阴影部分的面积为 .析解:将最里面的阴影部分按顺时针旋转180°,再把第二层的阴影部分按顺时针旋转90°后,与最外层的阴影部分组成了一个四分之一的圆的面积,即如图7,所以图中阴影部分的面积为:211ππ44r =. 练习六:如图8,长方形ABCD 中表示一块草坪,点E 、F 分别在边AB 、CD 上,BF ∥DE ,四边形EBFD 是一条水泥小路,若AD =12米,AB =7米,且BE =2米,则草坪的面积为 .参考答案:练习一:1.C 2.(5,4) 3.(13)-,4.作图略.(1)1B 的坐标(91)--,;(2)2B 的坐标(5,5) 练习二:1.D 2.D练习三:1.作图略.2.(1)如下图所示:(2)新图形是轴对称图形.答案不惟一.练习四:1.120 2.B练习五:1.25(提示:22215OB =+=,所以225BB OB '==)2.6,150(提示:连接PP ',可说明APP '△为等边三角形,所以6AP PP '==,又利用勾股定理可得BPP '△为直角三角形,且90BPP '=∠,可求9060150APB =+=∠)3.32练习六:60平方米.。

相关文档
最新文档