材料力学复习重点
材料力学总复习重点

y
M x
Mechanic of Materials
M、 Iz ——所求应力点所 在横截面的弯矩、惯性矩 。 y ——点到所在横截面的中 性轴的距离 ①应力随离中性层的距离线 性变化
z
中性轴
M
x
②正应力沿高度线性分布,同一y 值,y 相同;中性轴上正 应力等于 0,离中性轴最远的上下边缘,应力 达到最大。
1.6 杆件变形的基本形式 杆件变形的四种基本形式: 1.轴向拉压
Mechanic of Materials
2.剪切与挤压
3.扭转
4.弯曲
二、轴向拉伸与压缩 2.2 轴向拉伸或压缩时的应力
Mechanic of Materials
1、杆横截面上的内力 1)求轴力。
2)内力的正与负是如何规定的?
3)如何画轴力图?
M max
10kN (a)
Engineering Mechanics
A C
4m 26kN 2m
50kN
B
4m 34kN
z
D
max =
Wz
Wz
2
(b )
26 +
16 34
104 136 +
M max
6
2
3
136 103
FS(kN)
170 106
3
2
3
400 10 m 400 10 mm
(5)正应力强度校核:由于拉压强度不同,必须同 时考虑B、C这两个具有最大正负弯矩的截面。
B截面 :
B ,max
yC=139
Engineering Mechanics
材料力学复习知识点

1、构件尺寸与形状的变化,称为变形。
2、外力解除后能消失的变形,称为弹性变形(刚度);外力解除后不能消失的变形,称为塑性变形或残余变形(强度)。
3、承载能力指标:(1)、构件应具备足够的强度(即抵抗破坏的能力)
(2)、构件应具备足够的刚度(即抵抗变形的能力)
(3)、构件应具备足够的稳定性(即保持原有平衡形式的能力)
4、材料在外力作用下所表现的性能,称为力学性能或机械性能。
5、随时间变化极缓慢或不变化的载荷,称为静载荷;随时间显著变化或使构件各质点产生
明显加速度的载荷,称为动载荷。
材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
“材料力学”重点归纳

“材料力学”重点归纳
第一章静力学基础
掌握:静力学基本概念和定理:力、力偶、平衡力系、等效力系、合力投影定理、合力矩定理、力线平移定理、静力学的基本任务等。
重点掌握:掌握各种力系的简化和平衡方程应用。
了解材料力学的发展沿革,理解本课程的任务、内容、目的。
第二章材料力学绪论
掌握:了解材料力学的基本任务和杆件的基本变形。
重点掌握:材料力学的基本概念:弹性变形、塑性变形、破坏、强度、刚度、稳定性、内力、应力、应变等。
第三章应力分析和应变分析理论
掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应变张量、偏斜应力张量、偏斜应变张量等概念。
应力分析理论、应变分析理论。
重点掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应力分析理论。
第四章固体材料的弹性本构关系和塑性本构关系
掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、主应力空间、屈服函数、常用屈服条件、常用强度理论等。
重点掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、常用屈服条件和强度理论等。
第五章材料力学实验
了解和掌握金属材料单轴拉伸和压缩力学实验的原理和方法。
(完整版)材料力学复习重点汇总

6.有效裂纹长度:将原有的裂纹长度与松弛后的塑性区相重合并得到的裂纹长度【新P74;旧P86】。
五、试述应力场强度因子的意义及典型裂纹 的表达式
答:应力场强度因子 :表示应力场的强弱程度。 在裂纹尖端区域各点的应力分量除了决定于位置外,尚与强度因子 有关,对于某一确定的点,其应力分量由 确定, 越大,则应力场各点应力分量也越大,这样 就可以表示应力场的强弱程度,称 为应力场强度因子。 “I”表示I型裂纹。 几种裂纹的 表达式,无限大板穿透裂纹: ;有限宽板穿透裂纹: ;有限宽板单边直裂纹: 当b a时, ;受弯单边裂纹梁: ;无限大物体内部有椭圆片裂纹,远处受均匀拉伸: ;无限大物体表面有半椭圆裂纹,远处均匀受拉伸:A点的 。
六、试述冲击载荷作用下金属变形和断裂的特点。
冲击载荷下,瞬时作用于位错的应力相当高,结果使位错运动速率增加,因为位错宽度及其能量与位错运动速率有关,运动速率越大,则能量越大,宽度越小,故派纳力越大。结果滑移临界切应力增大,金属产生附加强化。
由于冲击载荷下应力水平比较高,将使许多位错源同时开动,增加了位错密度和滑移系数目,出现孪晶,减少了位错运动自由行程的平均长度,增加了点缺陷的浓度。这些原因导致金属材料在冲击载荷作用下塑性变形极不均匀且难以充分进行,使材料屈服强度和抗拉强度提高,塑性和韧性下降,导致脆性断裂。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
材料力学复习资料

一基本概念1.工程构件正常工作必须满足强度、刚度和稳定性的要求。
杆件的强度代表了杆件抵抗破坏的能力;杆件的刚度代表了杆件抵抗变形的能力;杆件的稳定性代表了杆件维持原有平衡形态的能力。
2.变形固体的基本假设是连续性假设、均匀性假设、各向同性假设。
连续性假设认为固体所占据的空间被物质连续地充满而毫无空隙;均匀性假设认为材料的力学性能是均匀的;各向同性假设认为材料沿各个方向具有相同的力学性质。
3.截面法的三个步骤是截取、代替和平衡。
4.杆件变形的基本形式有:拉压,扭转,剪切,弯曲。
5.截面上一点处分布内力的集度,称为该截面该点处的应力。
6.截面上的正应力方向垂直于截面,切应力的方向平行于截面。
7.在卸除荷载后能完全消失的变形称为弹性变形,不能消失而残留下来的变形称为塑性变形。
8.低碳钢受拉伸时,变形的四个阶段为弹性阶段、屈服阶段、强化阶段和局部变形阶段。
9.由杆件截面骤然变化而引起的局部应力骤增的现象称为应力集中。
10.衡量材料塑性的两个指标是伸长率和断面收缩率。
11.受扭杆件所受的外力偶矩的作用面与杆轴线垂直。
12.低碳钢圆截面试件受扭转时,沿横截面破坏;铸铁圆截面试件受扭转时,沿45度角截面破坏。
13.梁的支座按其对梁在荷载作用平面的约束情况,可以简化为三种基本形式,即固定端、固定铰支座、可(活)动铰支座。
14.工程上常用的三种基本形式的静定梁是:简支梁、悬臂梁、外伸梁。
15.平面弯曲梁的横截面上有两个内力分量,分别为剪力和弯矩。
16.拉(压)刚度、扭转刚度和弯曲刚度的表达式分别是EA、GI p和EI z。
17.当梁上有横向力作用时,梁横截面上既有剪力又有弯矩,该梁的弯曲称为横力弯曲。
梁横截面上没有剪力(剪力为0),弯矩为常数,该梁的弯曲称为纯弯曲。
18.在弯矩图发生拐折处,梁上必有集中力的作用。
19.在集中力偶作用处,剪力图将不变。
20.梁的最大正应力发生在最大弯矩所在截面上离中性轴最远的点处。
材料力学性能复习重点

期末复习资料一 名词解释1. 弹性比功:又称弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。
金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3. 循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力。
也叫金属的内耗。
4. 包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服强度)增加;反向加载,规定残余伸长应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象。
5. 应力状态软性系数:金属所受的最大切应力τmax 与最大正应力σmax 的比值大小。
即:()32131max max 5.02σσσσσστα+--== 6. 缺口效应:绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。
缺口第一效应:引起应力集中,改变了缺口前方的应力状态,使缺口试样所受的应力由原来的单向应力状态改变为两向或三向应力状态。
缺口第二效应:缺口使塑性材料强度增高,塑性降低。
7. 缺口敏感度:缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即:8. 缺口试样静拉伸试验:轴向拉伸、偏斜拉伸两种。
9. 布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。
10. 洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度11. 维氏硬度——以两相对面夹角为136°的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。
材料力学复习资料全

材料力学复习资料全材料力学复习资料一、填空题K为了保证机器或结构物正常地工作,要求每个构件都有足够的抵抗破坏的能力,即要求它们有足够的强度:冋时要求他们有足够的抵抗变形的能力?即要求它们有足够的刚度:另外,对于受压的细长直杆,还要求它们工作时能保持原有的平衡状态,即要求其有足够的稳定性「2、材料力学是研究构件强度、刚度、稳定性的学科。
3、强度是指构件抵抗破坏的能力:冈帔是指构件抵抗变形的能力:稳左性是指构件维持其原有的平衡状态的能力。
4、在材料力学中,对变形固体的基本假设是连续性假设、均匀性假设、各向同性假设5、随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫舉性变形。
6、截面法是计算力的基本方法。
7、应立是分析构件强度问题的重要依据。
8、线应变和切应变是分析构件变形程度的基本量。
9、轴向尺寸远大于横向尺寸,称此构件为枉。
10、构件每单位长度的伸长或缩短,称为线应变°11、单元体上相互垂直的两根棱边夹角的改变量.称为切应变-12、轴向拉伸与压缩时直杆横截而上的力,称为轴力,13、应力与应变保持线性关系时的最大应力,称为比例极限14、材料只产生弹性变形的最大应力,称为弹性极根:材料能承受的最大应力,称为强度极限。
15、弹性模量E是衡量材料抵抗弹性变形能力的指标。
16、延伸率6是衡量材料的塑性指标。
6 M5%的材料称为塑性材料:§ V5%的材料称为脆性材料。
17、应力变化不大,而应变显著增加的现象,称为屈服或流动18、材料在卸载过程中,应力与应变成线性关系。
19、在常温下把材料冷拉到强化阶段,然后卸载,当再次加载时,材料的比例极限提高,而塑性降低,这种现象称为冷作硬化20、使材料丧失正常工作能力的应力,称为极限应力,21、在工程计算中允许材料承受的最大应力,称为许用应力。
22、当应力不超过比例极限时,横向应变与纵向应变之比的绝对值,称为泊松比一23、胡克定律的应力适用恫是应力不超过材料的比例极限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学复习重点
(本人自己根据复习课所上内容简单的整理,若有不妥请见谅)
第一章绪论
1.强度要求、刚度要求、稳定性要求的概念p1
2.内力的概念p3
3.掌握截面法p4
4.应力的概念及应力分为正应力、切应力p6-p7 (注:正应力引起线应变、切应力引起角应变)
5.杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲的概念理解p8-p9
第二章拉伸、压缩与剪切
1.拉伸与压缩的共同特点p12
2.直杆轴向拉伸或压缩时横截面上的内力(注:内力的合力为轴力)及轴力的正负判断p13
3.掌握轴力图的画法(结合例2.1掌握利用截面法求内力及轴力图的规范画法)p13-p14
4. 直杆轴向拉伸或压缩时横截面上的应力公式p15
5.低碳钢拉伸时的力学性能(四个阶段)及压缩时的力学性能(掌握图2.18即掌握拉伸时与压缩时的不同之处)p19-p22 p25
6.铸铁拉伸时的力学性能(掌握图2.17)与压缩时的力学性能(图2.19)p24 p25-p26
7.如何划分塑性材料与脆性材料(注:低碳钢是典型的塑性材料铸铁是典型的脆性材料了解塑性材料与脆性材料力学性能的不同只要掌握低碳钢与铸铁力学性能的不同)p22
8.构件轴向拉伸或压缩时的强度条件p29 (会出计算题)
9.杆件轴向拉伸或压缩时的变形公式(EA为杆件抗拉或抗压刚度)p33 (会出计算题)
10.应力集中的概念p46
11.剪切的特点、强度条件及挤压的强度条件p48-p49 p51
第三章扭转
1.扭转变形的概念p71
2.掌握扭矩图的画法(例
3.1掌握截面法求扭矩及扭矩图的规范画法)p73-p74
3.剪切胡克定律及三个弹性模量常数E、G、u之间的关系p77
4.圆轴扭转时的应力分布图(掌握图3.10)p80
5.掌握求横截面上任意一点切应力的公式(3.9)及求最大切应力的公式(3.11)p81
6.实心轴及空心轴的抗扭截面系数及极惯性矩公式p81
7.圆轴扭转时的强度条件p82(注:等截面轴最大扭矩处便是最大切应力处,但是对于变截面轴,要综合考虑扭矩和抗扭截面系数,即最大切应力不一定在扭矩最大的界面上)p82 8.圆轴扭转时的变形公式及刚度条件(公式3.20)p83-p84
第四章弯曲内力
1.掌握剪力图与弯矩图的画法(看一下例 4.2、4.3)p116-p118(会出画图题,与课后题4.2类似)
第五章弯曲应力
1.纯弯曲时的正应力分布图(图5.4d)p139
2.纯弯曲时梁横截面上弯曲正应力的计算公式5.2 p141
3.横力弯曲时最大正应力的计算式5.3、5.5式p142
4.掌握弯曲时矩形截面和实心圆截面的惯性矩和抗弯截面系数(注与扭转时的区别)p142
5.提高弯曲强度的措施p158-p161
第五章弯曲变形
1.向上的绕度和逆时针方向的转角为正,反之为负p175
第六章应力和应变分析、强度理论
1.掌握主平面、主应力、单向应力状态、二向应力状态的概念p210-p211
2.最大及最小正应力的求解公式(看一下例题7.3)p216-p217
3.四种常用的强度理论及其使用范围(要着重理解第三强度理论)P241-p245
第七章组合变形
1.掌握扭转与弯曲组合的解法(例题8.5着重看一下)p270-p274(会出计算题)
第八章压杆稳定
1.临界压力及失稳的概念p291
2.欧拉公式的普遍形式及压杆的长度因数p297
3.掌握柔度公式、经验公式、直线公式p300-p302
4.压杆稳定的解题方法及步骤(仔细看一下例题9.4、9.5)p303-p304(会出计算题)
5.提高压杆稳定的措施p305-p308
(着重掌握的大方向:掌握拉伸、压缩、扭住、弯曲这几种基本变形再结合作业题复习)
祝大家考试成功!。