三角函数与三角恒等变换-经典测试题-附答案

合集下载

高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析1.ABC中,已知,则ABC的形状为【答案】直角三角形【解析】略2.在中,,.(Ⅰ)求的值;(Ⅱ)设,求的面积.【答案】(1);(2).【解析】(1)利用内角和为,所以,再利用同角基本关系式求;(2),那么利用正弦定理,,求边,最后,试题解析:(1) ,,因为,所以,.(2),那么利用正弦定理,,代入数值,,所以.【考点】1.两角和的三角函数;2.正弦定理.3.(本题满分13分)已知中,点,动点满足(常数),点的轨迹为Γ.(Ⅰ)试求曲线Γ的轨迹方程;(Ⅱ)当时,过定点的直线与曲线Γ相交于两点,是曲线Γ上不同于的动点,试求面积的最大值.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)利用椭圆定义求动点轨迹,注意定义的条件要完整,不要少,另外要注意三角形中三顶点不共线,对轨迹要去杂(Ⅱ)求面积的最大值,首先要表示出面积,这要用到底乘高的一半,其中底为直线与椭圆的弦长,高为点到直线的距离,而由椭圆的几何性质知当直线与平行且与椭圆相切时,切点到直线的距离最大,因此还要求椭圆的切线,其次利用直线方程与椭圆方程联立方程组,再结合韦达定理可得弦长及切线,最后根据面积的表达式求最值,这要用到导数试题解析:(Ⅰ)在中,因为,所以(定值),且, 2分所以动点的轨迹为椭圆(除去与A、B共线的两个点).设其标准方程为,所以, 3分所以所求曲线的轨迹方程为.4分(Ⅱ)当时,椭圆方程为.5分①过定点的直线与轴重合时,面积无最大值.6分②过定点的直线不与轴重合时,设方程为:,,若,因为,故此时面积无最大值.根据椭圆的几何性质,不妨设.联立方程组消去整理得:, 7分所以则.8分因为当直线与平行且与椭圆相切时,切点到直线的距离最大,设切线,联立消去整理得,由,解得.又点到直线的距离, 9分所以, 10分所以.将代入得:,令,设函数,则,因为当时,,当时,,所以在上是增函数,在上是减函数,所以.故时,面积最大值是.所以,当的方程为时,的面积最大,最大值为.13分【考点】椭圆定义,直线与椭圆位置关系4.函数的图象的一条对称轴的方程是( )A.B.C.D.【答案】D【解析】根据余弦函数的图像和性质,可知,解得,,可知当时得到,故选D.【考点】余弦函数的图像和性质.5.已知两灯塔A和B与海洋观测站C的距离相等,灯塔A在观察站C的北偏东400,灯塔B在观察站C 的南偏东600,则灯塔A在灯塔B的()A.北偏东100B.北偏西100C.南偏东100D.南偏西100【答案】B【解析】由题意知, .由数形结合可得灯塔在灯塔的北偏西.故B正确.【考点】数形结合.6.已知函数的图象向左平移个单位长度,所得图象关于原点对称,则的最小值为()A.B.C.D.【答案】C【解析】函数,向左平移个单位长度得:,因为关于原点对称,所以,因此的最小正值为,选C.【考点】三角函数图像与性质7.角的终边上有一点,则()A.B.C.D.【答案】B【解析】【考点】三角函数定义8.三角形ABC中..则A的取值范围是.【答案】【解析】由已知不等式结合正弦定理得则A的取值范围是【考点】正余弦定理解三角形9.已知是锐角的外心,.若,则A.B.C.3D.【答案】A【解析】取AB的中点D,连接OA,OD,由三角形外接圆的性质可得OD⊥AB,∴.,代入已知,两边与作数量积得到由正弦定理可得:,化为cosB+cosCcosA=msinC,∵cosB=-cos(A+C)=-cosAcosC+sinAsinC,∴sinAsinC=msinC,∴m=sinA.∵,∴【考点】1.向量的线性运算性质及几何意义;2.正弦定理;3.三角函数基本公式10.如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射击线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角的大小.若,,,则的最大值是(仰角为直线AP与平面ABC所成角)【答案】【解析】仰角最大时即为面ACM与面ABC所成的角.过B作BC的垂线交CM于点P,过B作连接PN,则为所求的角,【考点】1、二面角的平面角;2、线面垂直的应用.【易错点晴】本题主要考查的是二面角的平面角的应用,属于中档题.本题容易犯的错误是过B作认为为所求角,从而出错.题中说目标P沿线MC运动,面ACM是确定的,仰角的最大值就是二面角M-AC-B的平面角,再应用三垂线法做出二面角的平面角.11.如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数,时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.(1)试确定A,和的值;(2)现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)【答案】(1);(2)造价,,在时取极大值,也即造价预算最大值为()万元.【解析】(1)由“五点法”可求得;(2)由(1)求出点坐标,得半圆的半径,用表示出弦长和弧长,由题意可得造价,,下面用导数的知识求出的最大值.试题解析:(1)因为最高点B(-1,4),所以A=4;,因为代入点B(-1,4),,又;(2)由(1)可知:,得点C即,取CO中点F,连结DF,因为弧CD为半圆弧,所以,即,则圆弧段造价预算为万元,中,,则直线段CD造价预算为万元所以步行道造价预算,.由得当时,,当时,,即在上单调递增;当时,,即在上单调递减所以在时取极大值,也即造价预算最大值为()万元.……16分【考点】“五点法”,的解析式,导数与最值.12.已知面积为,,则BC长为.【答案】【解析】由三角形面积公式可知【考点】三角形面积公式13.在△ABC中,a=3,b=5,sinA=,则sinB=()A.B.C.D.1【答案】A【解析】由正弦定理得【考点】正弦定理解三角形14.△ABC的内角A、B、C的对边分别为a、b、c.若a、b、c成等比数列且c=2a,则cosB =()A. B. C. D.【答案】A【解析】由a、b、c成等比数列且c=2,知:,所以,故选A.【考点】1、等比数列性质;2、余弦定理.15.已知中,角,所对的边分别是,且.(1)求的值;(2)若,求面积的最大值.【答案】(1);(2).【解析】(1)由条件的特点,可以考虑余弦定理求,再由半角公式求解;(2)由面积公式知,需求的最值,利用均值不等式即可.试题解析:(1)(2)又当且仅当时,△ABC面积取最大值,最大值为【考点】1、余弦定理;2、半角公式;3、基本不等式.【方法点晴】本题主要考查的是余弦定理、半角的正弦公式和三角形的面积公式及基本不等式,属于中档题.解题时一定要注意所给条件的结构特征,能主动联想余弦定理得角的余弦值,然后利用半角公式变形求解.由面积公式分析面积的最大值即求的最大值,因为考虑基本不等式来处理,注意等号成立的条件,这是易错点.16.已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=.(1)若△ABC的面积S=,求b+c的值.(2)求b+c的取值范围.【答案】(1)b+c=4,(2)【解析】(1)由已知及余弦定理可求cosA=-,结合范围三角形内角的取值范围A∈(0,π),可求A.又由三角形面积公式可求bc,利用余弦定理即可解得b+c的值.(2)由正弦定理及三角形内角和定理可得b+c=4sin(B+),根据范围0<B<,利用正弦函数的有界性即可求得b+c的取值范围试题解析:(1)∵=(-cos,sin),=(cos,sin),且·=,∴-cos2+sin2=,即-cosA=,又A∈(0,π),∴A=.又由S=bcsinA=,所以bc=4,由余弦定理得:a2=b2+c2-2bc·cos=b2+c2+bc,△ABC∴16=(b+c)2,故b+c=4(2)由正弦定理得:==4,又B+C=π-A=,∴b+c=4sinB+4sinC=4sinB+4sin(-B)=4sin(B+),∵0<B<,则<B+<,则<sin(B+)≤1,即b+c的取值范围是.【考点】正弦定理,余弦定理,三角形面积公式.【方法点睛】(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件(3)解决三角形问题时,根据边角关系灵活的选用定理和公式.(3))在解决三角形的问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.17.要得到函数y = sin的图象,只要将函数y = sin2x的图象A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【答案】B【解析】,因此只需将函数y = sin2x的图象向左平移个单位【考点】三角函数图像平移18.在中,,则边的长为()A.B.3C.D.7【答案】A【解析】由三角形的面积公式,得,解得;由余弦定理,得,即;故选A.【考点】1.三角形的面积公式;2.余弦定理.19.在中,若,则的形状为.【答案】等腰三角形【解析】法一:由正弦定理可将变形为,,即.,.所以三角形为等腰三角形.法二: 由可得,整理可得,解得,即.所以三角形为等腰三角形.【考点】正弦定理,余弦定理.【方法点睛】本题主要考查的是正弦定理、余弦定理,属于容易题,本题利用正弦定理把边转化为角,变形后为正弦的两角和差公式.或是利用余弦定理将角转化为边再变形整理.即解此类题的关键是边角要统一.20.在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.【答案】AB=.【解析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.解:在△ADC中,AD=10,AC=14,DC=6,由余弦定理得cos∠ADC==,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=10,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=.【考点】余弦定理;正弦定理.21.(2015秋•醴陵市校级期末)正弦函数y=sinx在x=处的切线方程为.【答案】【解析】先求导函数,利用导函数在x=处可知切线的斜率,进而求出切点的坐标,即可求得切线方程.解:由题意,设f(x)=sinx,∴f′(x)=cosx当x=时,∵x=时,y=∴正弦函数y=sinx在x=处的切线方程为即故答案为:【考点】利用导数研究曲线上某点切线方程.22.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A= .【答案】30°【解析】已知sinC=2sinB利用正弦定理化简,代入第一个等式用b表示出a,再利用余弦定理列出关系式,将表示出的c与a代入求出cosA的值,即可确定出A的度数.解:将sinC=2sinB利用正弦定理化简得:c=2b,代入得a2﹣b2=bc=6b2,即a2=7b2,∴由余弦定理得:cosA===,∵A为三角形的内角,∴A=30°.故答案为:30°【考点】正弦定理.23.在△ABC中,所对的边分别为,且,则.【答案】【解析】由得【考点】正弦定理24.△ABC的内角A,B,C的对边分别为a,b,c,若,则a等于()A.B.2C.D.【答案】D【解析】先根据正弦定理求出角C的正弦值,进而得到角C的值,再根据三角形三内角和为180°确定角A=角C,所以根据正弦定理可得a=c.解:由正弦定理,∴故选D.【考点】正弦定理的应用.25.在中, 角的对边分别是,且则的形状是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形【答案】C【解析】,三角形为直角三角形【考点】余弦定理及二倍角公式26.已知中,角所对的边分别,且.(Ⅰ)求;(Ⅱ)若,求面积的最大值.【答案】(Ⅰ);(Ⅱ).【解析】对于问题(Ⅰ),首先根据余弦定理把关于边的问题转化为关于角的问题,再结合降次公式以及三角函数的诱导公式,即可求得;对于问题(Ⅱ)可以根据(Ⅰ)的结论并结合基本不等式和三角形的面积公式即可求得面积的最大值.试题解析:(Ⅰ)(Ⅱ)且,,又,,,面积的最大值注:求法不唯一,只要过程、方法、结论正确,给满分。

高二数学三角函数三角恒等变换解三角形试题

高二数学三角函数三角恒等变换解三角形试题

高二数学三角函数三角恒等变换解三角形试题1.若,则.【答案】【解析】【考点】1.二倍角公式;2.同角三角函数2.将函数的图象向右平移个单位,得到函数的图象,若在上为增函数,则的最大值为.【答案】2【解析】由题意得:,因为在上为增函数,所以,即的最大值为2【考点】三角函数图像变换与性质3.函数(其中)的图象如图所示,为了得到的图象,只需把的图象上所有点()A.向左平移个单位长度B.向右平移个单位长度C.向右平移个单位长度D.向左平移个单位长度【答案】C【解析】由图可知则,又,结合可知,即,为了得到的图象,只需把的图象上所有点向右平移个单位长度.【考点】函数图象、图象的平移.4.在中,角所对的边分别为,满足,且.(1)求角的大小;(2)求的最大值,并求取得最大值时角的值.【答案】(1);(2)当时,取到最大值.【解析】本题主要考查余弦定理、正弦定理、两角和的正弦公式、基本不等式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用三角形的内角和定理转化为A的三角函数,利用两角和的正弦公式求解,结合正弦定理把边转化为角,求出表达式,求出结果即可;第二问,由余弦定理以及基本不等式求出的最值,注意等号成立的条件即可.试题解析:(1)由,可得,即,又,所以,由正弦定理得,因为,所以0,从而,即.(2)由余弦定理,得,又,所以,于是,--10当时,取到最大值.【考点】余弦定理、正弦定理、两角和的正弦公式、基本不等式.5.下列各式中,值为的是()A.B.C.D.【答案】C【解析】A,B、,C、, D、,故选择C【考点】三角恒等变换6.在△ABC中,a,b,c分别是角A,B,C所对的边,已知则c=.【答案】【解析】由余弦定理可得【考点】余弦定理解三角形7.已知面积为,,则BC长为.【答案】【解析】由三角形面积公式可知【考点】三角形面积公式8.在锐角△ABC中,a,b,c分别为角A,B,C所对的边,又c=,b=4,且BC边上的高h=2.(1)求角C;(2)求边a的长【答案】(1);(2)5;【解析】(1)角C在直角三角形ADC中,根据定义求解即可;(2)由(1)知的值,利用余弦定理即可.本题注意活用余弦定理.试题解析:(1)由于△ABC为锐角三角形,过A作AD⊥BC于D点,,则.(2)由余弦定理,可知则,即所以或(舍)因此边长为5.【考点】1.正弦的定义;2.余弦定理;9.△ABC中,,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【答案】A【解析】由正弦定理可知,,整理得,所以,则△ABC为等腰三角形.【考点】正弦定理的应用.10.在中,,则边的长为()A.B.3C.D.7【答案】A【解析】由三角形的面积公式,得,解得;由余弦定理,得,即;故选A.【考点】1.三角形的面积公式;2.余弦定理.11.(2011•安徽)已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为.【答案】15【解析】因为三角形三边构成公差为4的等差数列,设中间的一条边为x,则最大的边为x+4,最小的边为x﹣4,根据余弦定理表示出cos120°的式子,将各自设出的值代入即可得到关于x的方程,求出方程的解即可得到三角形的边长,然后利用三角形的面积公式即可求出三角形ABC 的面积.解:设三角形的三边分别为x﹣4,x,x+4,则cos120°==﹣,化简得:x﹣16=4﹣x,解得x=10,所以三角形的三边分别为:6,10,14则△ABC的面积S=×6×10sin120°=15.故答案为:15【考点】余弦定理;数列的应用;正弦定理.12.(2015秋•醴陵市校级期末)正弦函数y=sinx在x=处的切线方程为.【答案】【解析】先求导函数,利用导函数在x=处可知切线的斜率,进而求出切点的坐标,即可求得切线方程.解:由题意,设f(x)=sinx,∴f′(x)=cosx当x=时,∵x=时,y=∴正弦函数y=sinx在x=处的切线方程为即故答案为:【考点】利用导数研究曲线上某点切线方程.13.如图所示,甲船以每小时30海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的南偏西75°方向的B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的南偏西60°方向的B2处,此时两船相距10海里.问:乙船每小时航行多少海里?【答案】【解析】连接,则∴△是等边三角形,求出,在△中使用余弦定理求出的长,除以航行时间得出速度试题解析:如图,连接A1B2,由题意知,A1B1=20,A2B2=10,A1A2=×30=10(海里)又∵∠B2A2A1=180°-120°=60°,∴△A1A2B2是等边三角形,∠B1A1B2=105-60°=45°.在△A1B2B1中,由余弦定理得=202+(10)2-2×20×10×=200,∴B1B2=10(海里).因此乙船的速度大小为×60=30(海里/小时).【考点】解三角形的实际应用;余弦定理14.(2015春•东城区期末)下列三句话按“三段论”模式排列顺序正确的是()①y=cosx(x∈R)是三角函数;②三角函数是周期函数;③y=cosx(x∈R)是周期函数.A.①②③B.②①③C.②③①D.③②①【答案】B【解析】根据三段论”的排列模式:“大前提”→“小前提”⇒“结论”,分析即可得到正确的次序.解:根据“三段论”:“大前提”→“小前提”⇒“结论”可知:①y=cosx((x∈R )是三角函数是“小前提”;②三角函数是周期函数是“大前提”;③y=cosx((x∈R )是周期函数是“结论”;故“三段论”模式排列顺序为②①③故选B【考点】演绎推理的基本方法.15.在△ABC内部有任意三点不共线的2017个点,加上A、B、C三个顶点,共有2020个点,把这2020个点连线,将△ABC分割成以这些点为顶点,且互不重叠的小三角形,则小三角形的个数为()A.4037 B.4035 C.4033 D.4032【答案】B【解析】三个点时,有1个三角形,4个点时有3个三角形,5个点时有5个三角形,每加一个点,三角形的个数加2,因此2020个点时三角形的个数为1+(2020-3)×2=4035.【考点】归纳推理.16.在锐角中,内角的对边分别为,且.(1)求角的大小;(2)若,求的面积.【答案】(1);(2).【解析】(1)由正弦定理得的值,再由题意可得的大小;(2)由已知条件代入余弦定理可求得的值,代入面积公式可得三角形的面积.试题解析:(1)∵中,,∴根据正弦定理,得∵锐角中,,∴等式两边约去,得∵是锐角的内角,∴;(2)∵,,∴由余弦定理,得,化简得,∵,平方得,∴两式相减,得,可得.因此,的面积.【考点】正弦定理、余弦定理.17.设函数,若为奇函数,则= ;【答案】【解析】,函数为奇函数,所以【考点】三角函数性质18.已知的三内角所对的边分别为,且,则.【答案】【解析】由正弦定理及得,所以,所以.【考点】正弦定理与余弦定理.19.函数的部分图像如图所示,则A.B.C.D.【答案】A【解析】由图象可知,,所以,当时,,故选A.【考点】函数的图象.20.在锐角中,分别为角所对的边,且.(1)确定角的大小;(2)若,且的面积为,求的值.【答案】(1);(2).【解析】(1)根据正弦定理化简已知的式子求出,在由锐角三角形的特征求出角的大小;(2)根据余弦定理和条件,可得,利用三角形的面积公式和条件求出和的值,由完全平方公式即可求出的值.试题解析:(1)由及正弦定理得,,∵,∴.∵是锐角三角形,∴.(2)∵,由面积公式得,即....①由余弦定理得,即,∴....②,由①②得,故.【考点】正弦定理与余弦定理.21.已知:f(x)=2cos2x+sin2x﹣+1(x∈R).求:(Ⅰ)f(x)的最小正周期;(Ⅱ)f(x)的单调增区间;(Ⅲ)若x∈[﹣,]时,求f(x)的值域.【答案】见解析【解析】解:f(x)=sin2x+(2cos2x﹣1)+1=sin2x+cos2x+1=2sin(2x+)+1(Ⅰ)函数f(x)的最小正周期为T==π(Ⅱ)由2kπ﹣≤2x+≤2kπ+得2kπ﹣≤2x≤2kπ+∴kπ﹣≤x≤kπ+,k∈Z函数f(x)的单调增区间为[kπ﹣,kπ+],k∈Z(Ⅲ)因为x∈[﹣,],∴2x+∈[﹣,],∴sin(2x+)∈[,1],∴f(x)∈[0,3].【点评】本题考查三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,是基础题.22.在中,三内角的对边分别为,面积为,若,则等于()A.B.C.D.【答案】A【解析】因为,所以,所以,化为,又因为,解得或(舍去),所以.【考点】余弦定理.23.已知函数,(1)求函数的单调递减区间;(2)求函数的极小值和最大值,并写明取到极小值和最大值时分别对应的值.【答案】(1);(2)详见解析.【解析】(1)先求函数的导数,并且根据辅助角公式化简函数,并求导数在的零点,同时讨论零点两侧的单调性,确定函数的单调递减区间;(2)根据(1)的讨论,可求得极值点和极值以及端点值的大小,经比较可得函数的最大值以及极小值.试题解析:(1)f′(x)=cosx+sinx+1=sin(x+)+1 ()令f′(x)=0,即sin(x+)=-,解之得x=π或x=π.x,f′(x)以及f(x)变化情况如下表:(π,π)π(π,2π)-0+∴f(x)的单调减区间为(π,π).=f()=.(2)由(1)知f (x)极小而f(π)=π+2,,所以.【考点】导数的简单应用24.在一个港口,相邻两次高潮发生的时间相距,低潮时水深为,高潮时水深为.每天潮涨潮落时,该港口水的深度()关于时间()的函数图象可以近似地看成函数的图象,其中,且时涨潮到一次高潮,则该函数的解析式可以是()A.B.C.D.【答案】A【解析】由题意分析可知函数的最大值为15,最小值为9,周期T=12,所以,又当t=3时,函数取得最大值,所以答案为A。

三角函数与三角恒等变换-经典测试题-附答案

三角函数与三角恒等变换-经典测试题-附答案

三角函数与三角恒等变换(A)一、填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上)1. 半径是r,圆心角是α(弧度)的扇形的面积为________.2. 若,则tan(π+α)=________.3. 若α是第四象限的角,则π-α是第________象限的角.4. 适合的实数m的取值范围是_________.5. 若tanα=3,则cos2α+3sin2α=__________.6. 函数的图象的一个对称轴方程是___________.(答案不唯一)7. 把函数的图象向左平移个单位,所得的图象对应的函数为偶函数,则的最小正值为___________.8. 若方程sin2x+cosx+k=0有解,则常数k的取值范围是__________.9. 1-sin10°·sin 30°·sin 50°·sin 70°=__________.10. 角α的终边过点(4,3),角β的终边过点(-7,1),则sin(α+β)=__________.11. 函数的递减区间是___________.12. 已知函数f(x)是以4为周期的奇函数,且f(-1)=1,那么__________.13. 若函数y=sin(x+)+cos(x+)是偶函数,则满足条件的为_______.14. tan3、tan4、tan5的大小顺序是________.二、解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤)15. (本小题满分14分)已知,求的值.16. (本小题满分14分)已知函数f(x)=2sinx(sinx+cosx).(1) 求函数f(x)的最小正周期和最大值;(2) 在给出的直角坐标系中,画出函数y=f(x)在区间上的图象.17. (本小题满分14分)求函数y=4sin2x+6cosx-6()的值域.18. (本小题满分16分)已知函数的图象如图所示.(1) 求该函数的解析式;(2) 求该函数的单调递增区间.19. (本小题满分16分)设函数(x∈R).(1) 求函数f(x)的值域;(2) 若对任意x∈,都有|f(x)-m|<2成立,求实数m的取值范围.20. (本小题满分16分)已知奇函数f(x)的定义域为实数集,且f(x)在[0,+∞)上是增函数.当时,是否存在这样的实数m,使对所有的均成立?若存在,求出所有适合条件的实数m;若不存在,请说明理由.三角函数与三角恒等变换(B)一、填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上)1.______.2._______.3. 已知,则的值为_________.4. 已知,则________.5. 将函数y=sin2x的图象向左平移个单位,再向上平移1个单位,所得图象的函数解析式是________.6. 已知函数是R上的偶函数,则__________.7. 函数的单调递减区间为________.8. 已知函数,且,则函数的值域是_________.9. 若,则的值是___________.10. 已知都是锐角,且,则的值是_________.11. 给出下列四个命题,其中不正确命题的序号是_______.① 若,则,k∈Z;② 函数的图象关于对称;③ 函数(x∈R)为偶函数;④ 函数y=sin|x|是周期函数,且周期为2π.12. 已知函数的图象如图所示,,则f(0)=_________.13. 若,且,则______.14. 已知函数(x∈R,ω>0)的最小正周期为π.将y=f(x)的图象向左平移个单位长度,所得图象关于y轴对称,则的最小值是______.二、解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤)15. (本小题满分14分)如图是表示电流强度I与时间t的关系在一个周期内的图象.(1) 写出的解析式;(2) 指出它的图象是由I=sint的图象经过怎样的变换而得到的.16. (本小题满分14分)化简.17. (本小题满分14分)已知函数y=sinx·cosx+sinx+cosx,求y的最大值、最小值及取得最大值、最小值时x的值.18. (本小题满分16分)设,曲线和有4个不同的交点.(1) 求的取值范围;(2) 证明这4个交点共圆,并求圆的半径的取值范围.19. (本小题满分16分)函数f(x)=1-2a-2acosx-2sin2x的最小值为g(a),a∈R.(1) 求g(a)的表达式;(2) 若g(a)=,求a及此时f(x)的最大值.20. (本小题满分16分)已知定义在区间上的函数y=f(x)的图象关于直线对称,当x≥时,函数f(x)=sinx.(1) 求的值;(2) 求y=f(x)的函数表达式;(3) 如果关于x的方程f(x)=a有解,那么在a取某一确定值时,将方程所求得的所有解的和记为Ma,求Ma的所有可能取值及相对应的a的取值范围.三角函数与三角恒等变换(A)1.2. ±3. 三4.5.6. x=【解析】对称轴方程满足2x+=kπ+,所以x=(k∈Z).7.8.9.【解析】∵ sin10°·sin30°·sin50°·sin70°==∴ 原式=1-10. -11.12. -1 【解析】f(5)=-f(-5)=-f(-1)=-1,∴ 原式=sin=-1.13.=kπ+(k∈Z) 14. tan5<tan3<tan415. 2+sinθcosθ-cos2θ=2+=16. (1) f(x)=2sin2x+2sinxcosx=1-cos2x+sin2x=1+(sin2xcos-cos2xsin)=1+sin(2x-).所以函数f(x)的最小正周期为π,最大值为1+.(2)列表.xy 1 1 1 故函数y=f(x)在区间上的图象是17. y=4sin2x+6cosx-6=4(1-cos2x)+6cosx-6 =-4cos2x+6cosx-2 =-4∵ -≤x≤,∴ -≤cosx≤1,∴ y∈.18. (1)由图象可知:T=2=πω==2.A==2,∴ y=2sin(2x+).又∵为“五点画法”中的第二点,∴ 2×+==.∴ 所求函数的解析式为y=2sin(2)∵ 当2x+∈(k∈Z)时,f(x)单调递增,∴ 2x∈x∈(k∈Z).19. (1) f(x)=4sinx·+cos2x=2sinx(1+sinx)+1-2sin2x=2sinx+1.∵ x∈R,∴ sinx∈[-1,1],故f(x)的值域是[-1,3].(2)当x∈时,sinx∈,∴ f(x)∈[2,3].由|f(x)-m|<2-2<f(x)-m<2,∴ f(x)-2<m<f(x)+2恒成立.∴ m<[f(x)+2]min=4,且m>[f(x)-2]max=1.故m的取值范围是(1,4).20. 因为f(x)为奇函数,所以f(-x)=-f(x)(x∈R),所以f (0)=0.所以f(4m-2mcosθ)-f(2sin2θ+2)>0,所以f(4m-2mcosθ)>f(2sin2θ+2).又因为f(x)在[0,+∞)上是增函数,且f(x)是奇函数,所以f(x)是R上的增函数,所以4m-2mcosθ>2sin2θ+2.所以cos2θ-mcosθ+2m-2>0. 因为θ∈,所以cosθ∈[0,1].令l=cosθ(l∈[0,1]). 满足条件的m应使不等式l2-ml+2m-2>0对任意l∈[0,1]均成立. 设g(l)=l2-ml+2m-2=-+2m-2.由条件得解得,m>4-2.三角函数与三角恒等变换(B)1.2.3.【解析】原式=4. 25. y=2cos2x6.7.(k∈Z)【解析】∵ sin>0,且y=是减函数,∴ 2kπ<2x+≤+2kπ,(k∈Z),∴ x∈(k∈Z).8.【解析】y=sinx+cosx=2sin,又≤x+≤∴ sin∈,∴ y∈[-,2].9.【解析】tanθ=,∴ cos2θ+sin2θ=10.【解析】由题意得cosα=,sin(α+β)=.∴ sinβ=sin[(α+β)-α]=sin(α+β)·cosα-cos(α+β)·sinα=.11. ①②④ 12.13.【解析】tanα=tan(α-β+β)=,∴ tan(2α-β)=tan[(α-β)+α]=.∵ β∈(0,π),且tanβ=-∈(-1,0),∴ β∈,∴ 2α-β∈∴ 2α-β=-.14.【解析】由已知,周期为π=,∴ ω=2.则结合平移公式和诱导公式可知平移后是偶函数,sin=±cos2x,故min=.15. (1) I=300sin.(2) I=sintI=sinI=sinI=300sin.16. 原式=sin6°·cos48°·cos24°·cos12°===…=17. 令sinx+cosx=t.由sinx+cosx=sin,知t∈[-,],∴ sinx·cosx=,t∈[-,].所以y=+t=(t+1)2-1,t∈[-,].当t=-1,即2sin=-1,x=2kπ+π或x=2kπ+π(k∈Z)时,ymin=-1;当t=,即sin=, x=2kπ+(k∈Z)时,ymax=.18. (1)解方程组故两条已知曲线有四个不同的交点的充要条件为∵ 0<θ<,∴ 0<θ<.(2)设四个交点的坐标为(xi,yi)(i=1,2,3,4),则+=2cosθ∈(,2)(i=1,2,3,4).故此四个交点共圆,并且这个圆的半径r=.19. f(x)=1-2a-2acosx-2sin2x=1-2a-2acosx-2(1-cos2x)=2cos2x-2acosx-1-2a=2-1-2a-(a∈R).(1)函数f(x)的最小值为g(a).① 当<-1,即a<-2时,由cosx=-1,得g(a)=2-1-2a-=1;。

三角恒等变换(测试题及答案)

三角恒等变换(测试题及答案)

三角恒等变换(测试题及答案)三角恒等变换测试题第I卷一、选择题(本大题共12个小题,每小题5分,共60分)1.求cos24cos36-cos66cos54的值。

A。

0.B。

1/2.C。

1/4.D。

1/82.已知tan(α+β)=3,tan(α-β)=5,则tan(2α)的值为:A。

1/2.B。

2/3.C。

3/4.D。

4/53.函数y=sin(x)+cos(x)的最小正周期为:A。

π。

B。

2π。

C。

4π。

D。

π/24.已知等腰三角形顶角的余弦值等于4/5,则这个三角形底角的正弦值为:A。

3/5.B。

4/5.C。

5/6.D。

5/45.α,β都是锐角,且sin(α)=1/3,cos(α+β)=-1/2,则sin(β)的值是:A。

-2/3.B。

-1/3.C。

1/3.D。

2/36.已知-x<π/3且cos(-x)=-√3/2,则cos(2x)的值是:A。

-7/24.B。

-1/8.C。

1/8.D。

7/247.函数y=sin(x)+cos(x)的值域是:A。

[0,1]。

B。

[-1,1]。

C。

[-1/2,1/2]。

D。

[1/2,√2]8.将y=2sin(2x)的图像向左平移π/4个单位,得到y=3sin(2x)-cos(2x)的图像,只需将y=2sin(2x)的图像:A。

向右平移π/4个单位。

B。

向左平移π/4个单位C。

向右平移π/2个单位。

D。

向左平移π/2个单位9.已知等腰三角形顶角的正弦值等于4/5,则这个三角形底角的余弦值为:A。

3/5.B。

4/5.C。

5/6.D。

5/410.函数y=sin(x)+3cos(2x)的图像的一条对称轴方程是:A。

x=π/4.B。

x=π/6.C。

x=π/2.D。

x=π/3二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)11.已知α,β为锐角,cosα=1/10,cosβ=1/5,则α+β的值为__ π/6 __。

12.在△ABC中,已知tanA,tanB是方程3x^2-7x+2=0的两个实根,则tanC=__ 1/2 __。

高中数学 第五章 三角函数 5.5 三角恒等变换 5.5.2 简单的三角恒等变换精品练习(含解析)新

高中数学 第五章 三角函数 5.5 三角恒等变换 5.5.2 简单的三角恒等变换精品练习(含解析)新

5.5.2 简单的三角恒等变换知识点三 三角恒等变换的应用7.函数y =cos 2ωx -sin 2ωx (ω>0)的最小正周期是π,则函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2B.⎣⎢⎡⎦⎥⎤5π4,9π4C.⎣⎢⎡⎦⎥⎤-π4,3π4D.⎣⎢⎡⎦⎥⎤π4,5π48.在△ABC 中,求证:tan A 2tan B 2+tan B 2tan C 2+tan C 2tan A2=1.9.如图所示,要把半径为R 的半圆形木料截成长方形,应怎样截取,才能使△OAB 的周长最大?关键能力综合练 一、选择题1.设5π<θ<6π,cos θ2=a ,则sin θ4等于( )A.1+a 2 B.1-a2 C .-21+a2D .-21-a22.若2sin x =1+cos x ,则tan x2的值等于( )A.12B.12或不存在学科素养升级练1.(多选题)对于函数f (x )=sin x +3cos x ,给出下列选项其中不正确的是( )A .函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称B .存在α∈⎝⎛⎭⎪⎫0,π3,使f (α)=1C .存在α∈⎝ ⎛⎭⎪⎫0,π3,使函数f (x +α)的图象关于y 轴对称D .存在α∈⎝⎛⎭⎪⎫0,π3,使f (x +α)=f (x +3α)恒成立 2.已知A +B =2π3,那么cos 2A +cos 2B 的最大值是________,最小值是________.3.(学科素养—数学建模)如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,四边形ABCD 是扇形的内接矩形,B ,C 两点在圆弧上,OE 是∠POQ 的平分线,E 在PQ 上,连接OC ,记∠COE =α,则角α为何值时矩形ABCD 的面积最大?并求最大面积.5.5.2 简单的三角恒等变换必备知识基础练1.解析:∵3π<θ<7π2,sin θ=-35,∴cos θ=-1-⎝ ⎛⎭⎪⎫-352=-45,∵3π<θ<7π2,∴3π2<θ2<7π4.则tan θ2=-1-cos θ1+cos θ=-1+451-45=-3. 答案:B2.解析:因为2π<θ<3π,所以π<θ2<3π2.又cos θ=m ,所以sin θ2=-1-cos θ2=-1-m2,故选A. 答案:A3.解析:y =1+cos ⎝ ⎛⎭⎪⎫2x -π62+1-cos ⎝ ⎛⎭⎪⎫2x +π62-1=12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2x -π6-cos ⎝ ⎛⎭⎪⎫2x +π6=12sin 2x ,是奇函数.故选A.答案:A4.解析:f (x )=sin x -cos ⎝⎛⎭⎪⎫x +π6=sin x -32cos x +12sin x =32sin x -32cos x =3sin ⎝⎛⎭⎪⎫x -π6,所以函数f (x )的值域为[-3,3],故选B. 答案:B5.解析:∵f (x )=2⎝ ⎛⎭⎪⎫12sin x -32cos x =2sin ⎝ ⎛⎭⎪⎫x -π3.∴f (x )∈[-2,2]. 答案:[-2,2]6.解析:(1)2(cos x -sin x )=2×2⎝⎛⎭⎪⎫22cos x -22sin x=2⎝ ⎛⎭⎪⎫cos π4cos x -sin π4sin x =2cos ⎝ ⎛⎭⎪⎫π4+x .(2)315sin x +35cos x =65⎝⎛⎭⎪⎫32sin x +12cos x=65⎝ ⎛⎭⎪⎫sin π3sin x +cos π3cos x =65cos ⎝ ⎛⎭⎪⎫x -π3.7.解析:y =cos 2ωx -sin 2ωx =cos 2ωx (ω>0), 因为函数的最小正周期为π,故2π2ω=π,所以ω=1.则f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4=2sin ⎝ ⎛⎭⎪⎫x +π4. 由2k π-π2≤x +π4≤2k π+π2,得2k π-3π4≤x ≤2k π+π4(k ∈Z ),当k =1时,函数的一个单调递增区间是⎣⎢⎡⎦⎥⎤5π4,9π4.答案:B8.证明:∵A ,B ,C 是△ABC 的三个内角, ∴A +B +C =π,从而有A +C 2=π2-B2.左边=tan B 2⎝ ⎛⎭⎪⎫tan A2+tan C 2+tan A 2tan C2=tan B 2tan ⎝ ⎛⎭⎪⎫A 2+C 2⎝ ⎛⎭⎪⎫1-tan A 2tan C 2+tan A 2tan C2=tan B 2tan ⎝ ⎛⎭⎪⎫π2-B 2⎝ ⎛⎭⎪⎫1-tan A 2tan C 2+tan A 2tan C2=1-tan A 2tan C 2+tan A 2tan C2=1=右边, ∴等式成立.9.解析:设∠AOB =α,则0<α<π2,△OAB 的周长为l ,则AB =R sin α,OB =R cos α, ∴l =OA +AB +OB =R +R sin α+R cos α =R (sin α+cos α)+R =2R sin ⎝ ⎛⎭⎪⎫α+π4+R . ∵0<α<π2,∴π4<α+π4<3π4.∴l 的最大值为2R +R =(2+1)R , 此时,α+π4=π2,即α=π4,即当α=π4时,△OAB 的周长最大.关键能力综合练1.解析:若5π<θ<6π,则5π4<θ4<3π2,则sin θ4=-1-cosθ22=-1-a2=-21-a2. 答案:D2.解析:由已知得sin x 1+cos x =12,tan x2=sinx2cosx2=2sin x 2cosx22cos 2x 2=sin x 1+cos x =12.当x =π+2k π,k ∈Z 时,tan x2不存在.答案:B3.解析:由题意可知,a =sin 24°,b =sin 26°,c =sin 25°,而当0°<x <90°,y =sin x 为增函数,∴a <c <b ,故选C.答案:C 4.解析:cos ⎝⎛⎭⎪⎫2π3+2α=2cos 2⎝ ⎛⎭⎪⎫π3+α-1.∵⎝ ⎛⎭⎪⎫π6-α+⎝ ⎛⎭⎪⎫π3+α=π2, ∴cos ⎝ ⎛⎭⎪⎫π3+α=sin ⎝ ⎛⎭⎪⎫π6-α=13.∴cos ⎝⎛⎭⎪⎫2π3+2α=2×⎝ ⎛⎭⎪⎫132-1=-79.故选A.答案:A5.解析:由cos α=-45,α是第三象限角,可得sin α=-1-cos 2α=-35.所以1+tan α21-tan α2=cos α2+sin α2cos α2-sin α2=1+sin αcos α=1-35-45=-12.答案:A6.解析:f (x )=2cos 2x +3sin 2x +a =1+cos 2x +3sin 2x +a =2sin ⎝⎛⎭⎪⎫2x +π6+a +1. 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴f (x )min =2·⎝ ⎛⎭⎪⎫-12+a +1=-4. ∴a =-4. 答案:C7.解析:1+sin 2=sin 21+cos 21+2sin 1cos 1 =sin 1+cos 12=|sin 1+cos 1|,因为1∈⎝⎛⎭⎪⎫0,π2,所以sin 1>0,cos 1>0,则1+sin 2=sin 1+cos 1. 答案:sin 1+cos 18.解析:由25sin 2θ+sin θ-24=0, 又θ是第二象限角,得sin θ=2425或sin θ=-1(舍去).故cos θ=-1-sin 2θ=-725,由cos2θ2=1+cos θ2得cos2θ2=925. 又θ2是第一、三象限角,所以cos θ2=±35.答案:±359.解析:y =sin 2x +sin x cos x +1=1-cos 2x 2+sin 2x 2+1=22sin ⎝⎛⎭⎪⎫2x -π4+32.最小正周期T =2π2=π.令-π2+2k π<2x -π4<π2+2k π,k ∈Z ,解得-π8+k π<x <3π8+k π,k ∈Z .所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫k π-π8,k π+3π8(k ∈Z ).答案:π ⎝ ⎛⎭⎪⎫k π-π8,k π+3π8,k ∈Z10.证明:左边=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x1+cos x =sin 2x 1+cos 2x ·cos x 1+cos x =2sin x cos x 2cos 2x ·cos x1+cos x =sin x 1+cos x =2sin x 2cosx22cos2x 2=tan x2=右边. 所以原等式成立.学科素养升级练1.解析:函数f (x )=sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3,对于A :函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3,当x =π6时,2sin ⎝ ⎛⎭⎪⎫π6+π3=2,不能得到函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称.∴A 不对.对于B :α∈⎝ ⎛⎭⎪⎫0,π3,可得α+π3∈⎝ ⎛⎭⎪⎫π3,2π3,f (α)∈(3,2],不存在f (α)=1.∴B 不对.对于C :函数f (x +α)的对称轴方程为:x +α+π3=π2+k π,可得x =k π+π6-α(k ∈Z ),当k =0,α=π6时,可得图象关于y 轴对称.∴C 对.对于D :f (x +α)=f (x +3α)说明2α是函数的周期,函数f (x )的周期为2π,故α=π,∴不存在α∈⎝⎛⎭⎪⎫0,π3,使f (x +α)=f (x +3α)恒成立,∴D 不对.故选A ,B ,D.答案:ABD2.解析:∵A +B =2π3,∴cos 2A +cos 2B =12(1+cos 2A +1+cos 2B )=1+12(cos 2A +cos 2B )=1+cos(A +B )cos(A -B )=1+cos 2π3·cos(A -B )=1-12cos(A -B ),∴当cos(A -B )=-1时, 原式取得最大值32;当cos(A -B )=1时,原式取得最小值12.答案:32123.word - 11 - / 11解析:如图所示, 设OE 交AD 于M ,交BC 于N ,显然矩形ABCD 关于OE 对称,而M ,N 分别为AD ,BC 的中点,在Rt△ONC 中,=sin α,ON =cos α,OM =DM tan π6=3DM =3=3sin α, 所以MN =ON -OM =cos α-3sin α,即AB =cos α-3sin α,而BC =2=2sin α,故S 矩形ABCD =AB ·BC =()cos α-3sin α·2sin α=2sin αcos α-23sin 2α=sin 2α-3(1-cos 2α)=sin 2α+3cos 2α-3=2⎝ ⎛⎭⎪⎫12sin 2α+32cos 2α- 3=2sin ⎝ ⎛⎭⎪⎫2α+π3- 3.因为0<α<π6,所以0<2α<π3,π3<2α+π3<2π3.故当2α+π3=π2,即α=π12时,S 矩形ABCD 取得最大值,此时S 矩形ABCD =2- 3.。

高二数学三角函数三角恒等变换解三角形试题

高二数学三角函数三角恒等变换解三角形试题

高二数学三角函数三角恒等变换解三角形试题1.已知⊿ABC和⊿BCD均为边长等于的等边三角形,且,则二面角的大小为()A.30°B.45°C.60°D.90°【答案】C【解析】略2.锐角中,已知,则的取值范围是()A.B.C.D.【答案】C【解析】由正弦定理可得,所以.因为为锐角三角形,所以.即.故C正确.【考点】1正弦定理;2三角函数化简求值.3.在中,三内角、、的对边分别是、、.(1)若求;(2)若,,试判断的形状.【答案】(1)或;(2)等边三角形【解析】(1)由题根据正弦定理得到,因为,所以,可得或;(2)根据正弦定理化简可得,结合条件,得到,判断三角形为等边三角形.试题解析:(1)由正弦定理得:又∴∴或(2)由得又是等边三角形.【考点】正弦定理;余弦定理4.圆锥的表面积是底面积的3倍,则该圆锥的侧面展开图扇形的圆心角的弧度数为.【答案】【解析】设母线长为R,底面半径为r,∴底面周长=,底面面积=,侧面面积,∵侧面积是底面积的3倍,∴,【考点】扇形和圆锥的相关计算5.在中,内角A 、B、C对的边长分别是a、b、c.(1)若c=2,C=,且的面积是,求a,b的值;(2)若,试判断的形状.【答案】(1)a=2, b=2(2)等腰三角形【解析】(Ⅰ)根据余弦定理,得,再由面积正弦定理得,两式联解可得到a,b的值;(Ⅱ)根据三角形内角和定理,得到sinC=sin(A+B),代入已知等式,展开化简合并,得sinBcosA=sinAcosA,最后讨论当cosA=0时与当cosA≠0时,分别对△ABC 的形状的形状加以判断,可以得到结论试题解析:(1)由余弦定理得又的面积为,得ab=4 解得 a=2, b=2(2)得得,为直角三角形;当时,A="B," 为等腰三角形【考点】1.正余弦定理解三角形;2.三角函数基本公式6.在中,,则边的长为()A.B.3C.D.7【答案】A【解析】由三角形的面积公式,得,解得;由余弦定理,得,即;故选A.【考点】1.三角形的面积公式;2.余弦定理.7.在△ABC中,A=60°,,,则B=()A.45°B.135°C.45°或135°D.以上答案都不对【答案】A【解析】由正弦定理,得,即,因为,所以,所以;故选A.【考点】正弦定理.【易错点睛】本题考查正弦定理的应用,属于基础题;在三角形中,若已知两边及其中一边的对角,则选用正弦定理求另一边的对角,但满足该条件的三角形并非唯一,可能一解、两解或无解,要根据题目中的条件合理取舍,如本题中由正弦定理得到后,部分学生会出现选C的错误答案,要注意利用“大边对大角”进行取舍.8.已知的三边长分别为,则的面积为__________.【答案】【解析】的边长由余弦定理得,,所以三角形的面积为.【考点】1、余弦定理的运用;2、三角形的面积公式.9.△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A. B. C. D.【解析】根据等比数列的性质,可得b=a,将c、b与a的关系结合余弦定理分析可得答案.解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.【考点】余弦定理;等比数列.10.(2015秋•河南期末)已知△ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为()A.B.2C.2D.4【答案】A【解析】由A,B,C成等差数列A+B+C=π可求B,利用三角形的面积公式S=bcsinA可求.解:∵△ABC三内角A,B,C成等差数列,∴B=60°又AB=1,BC=4,∴;故选A.【考点】三角形的面积公式.11.边长为5、7、8的三角形的最大角与最小角之和为()A.90°B.120°C.135°D.150°【答案】B【解析】长为7的边对应的角满足,,所以最大角与最小角之和为120°【考点】余弦定理解三角形12.(2015秋•珠海期末)△ABC内角A,B,C的对边分别为a,b,c.已知,则B= .【答案】45°.【解析】由已知及正弦定理可得sinB==,根据大边对大角由b<a可得B∈(0,60°),即可求B的值.解:△ABC中,∵,∴由正弦定理可得:sinB===,∵b<a,∴B∈(0,60°),∴B=45°.故答案为:45°.【考点】正弦定理.13.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=4,b+c=8,求△ABC的面积.【答案】(1)(2)4【解析】(1)由正弦定理将已知等式化成角的正弦的形式,化简解出sinA=,再由△ABC是锐角三角形,即可算出角A的大小;(2)由余弦定理a2=b2+c2﹣2bccosA的式子,结合题意化简得b2+c2﹣bc=16,与联解b+c=8得到bc的值,再根据三角形的面积公式加以计算,可得△ABC的面积.解:(1)∵△ABC中,,∴根据正弦定理,得,∵锐角△ABC中,sinB>0,∴等式两边约去sinB,得sinA=∵A是锐角△ABC的内角,∴A=;(2)∵a=4,A=,∴由余弦定理a2=b2+c2﹣2bccosA,得16=b2+c2﹣2bccos,化简得b2+c2﹣bc=16,∵b+c=8,平方得b2+c2+2bc=64,∴两式相减,得3bc=48,可得bc=16.因此,△ABC的面积S=bcsinA=×16×sin=4.【考点】余弦定理;正弦定理.14.在中,角对边分别是,且满足.(1)求角的大小;(2)若,且的面积为,求.【答案】(1);(2).【解析】(1)利用正弦定理,化边为角,利用两角差的正弦公式,可得进而得,即可求解角的大小;(2)利用三角形的面积公式得,再利用余弦定理得,联立方程组即可求解的值.试题解析:(1);(2)①,利用余弦定理得:即②,联立①②,解得:.【考点】正弦定理、余弦定理及三角形的面积公式.15.在中,内角所对的边分别为,且.(1)求角的大小;(2)如果,求面积的最大值,并判断此时的形状。

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知中,那么角=【答案】π/4【解析】略2.已知f(α)=(1)化简f(α);(2)若α是第三象限角,且cos(α-)=,求f(α)的值.【答案】(1)f(α)==-cosα.(2)∵α是第三象限角,且cos(α-)=-sinα=,∴sinα=-,∴cosα=-=-,∴f(α)=-cosα=.【解析】略3.已知函数为奇函数,且,其中(1)求的值;(2)若,求的值.【答案】(1) , ;(2)【解析】(1)由为奇函数,可得,函数化为,又根据可求;(2)由(1)可得,由得又因为,所以,再根据两角和的正弦可求试题解析:因为为奇函数,所以,,则(2),因为,即又因为,所以,【考点】函数的奇偶性,三角函数的性质4.设命题函数是奇函数;命题函数的图象关于直线对称.则下列判断正确的是()A.为真B.为假C.为假D.为真【答案】C【解析】因为是偶函数,所以命题是假命题,由余弦函数的性质可知命题是假命题,选项C正确.【考点】1.三角函数性质;2.逻辑联结词与命题.5.(本小题满分12分)某同学用五点法画函数在某一个周期内的图像时,列表并填入了部分数据,如下表:5-5(1)请将上表数据补充完整,并直接写出函数的解析式;(2)若函数的图像向左平移个单位后对应的函数为,求的图像离原点最近的对称中心.【答案】(1);(2).【解析】第一问结合三角函数的性质,确定出对应的值,完善表格,从而确定出函数解析式,第二问利用图形的平移变换,将函数的解析式求出来,利用函数的性质,找出函数图像的对称中心,给赋值,比较从而确定出离原点最近的对称中心.试题解析:(1)根据表中已知数据,解得数据补全如下表:050-50函数表达式为(2)函数图像向左平移个单位后对应的函数是,其对称中心的横坐标满足,所以离原点最近的对称中心是.【考点】三角函数的性质,图像的变换.6.(本小题满分10分)已知函数.(1)求的最小正周期;(2)设,求的值域和单调递减区间.【答案】(1);(2)【解析】(1)先根据二倍角公式和两角和与差的公式进行化简,再求出周期即可;(2)先根据x的范围求得,再结合正弦函数的性质可得到函数f(x)的值域,求得单调递减区间.试题解析:(1)(2)∵,,的值域为.的递减区间为.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域;正弦函数的单调性7.(本小题满分12分)在中,角的对边分别为,已知,向量,且∥.(1)求角的大小;(2)若成等差数列,求边的大小.【答案】(1);(2)【解析】(1)利用数量积运算、正弦定理即可得出;(2)由成等差数列,可得,或,即2a=b.再利用直角三角形的边角关系、余弦定理即可得出.试题解析:(1)∥,得,由正弦定理可得,(2)成等差,所以化简整理得:即或得或若若【考点】正弦定理;平面向量数量积运算8.在中,角所对的边为.已知,且.(1)求的值;(2)当时,求的面积.【答案】(1);(2).【解析】(1)根据已知条件中的式子,结合正弦定理,将其化为的方程,即可求解;(2)利用已知条件,结合余弦定理,可求得,的值,再利用三角形面积计算公式即可求得的值.试题解析:(1)∵,∴①,又∵,∴②,联立①②,即可求得,;(2)由(1)结合余弦定理可知,或,由已知易得,∴,∴,.【考点】1.正余弦定理解三角形;2.三角恒等变形.9.(本题满分12分)已知,,函数.(1)求的最小正周期,并求其图像对称中心的坐标;(2)当时,求函数的值域.【答案】(1)的最小正周期为,其对称中心的坐标为()();(2)的值域为.【解析】(1)先用降幂公式和辅助角公式,将进行化简整理得到,然后根据正弦函数的周期公式可得函数的最小正周期,进而求出函数的零点,即为函数的图像对称中心的坐标;(2)根据可得到,最后结合正弦函数的图像与性质可得函数的值域.试题解析:(1)因为=,所以的最小正周期为,令,得,∴故所求对称中心的坐标为()().(2)∵,∴,∴,即的值域为.【考点】1、三角函数中的恒等变换;2、三角函数的周期性及其求法;3、正弦函数的图像及其性质.【方法点晴】本题考查了三角函数中的恒等变换、三角函数的周期性及其求法和正弦函数的图像及其性质,重点考查学生对三角函数的基本概念、基本性质和基本原理,属中档题.解决这类问题最关键的一步是运用降幂公式、倍角公式及三角函数的和差公式等将函数的表达式化简为同角的正弦或余弦形式.因此需要大家应熟练掌握相关公式并结合三角函数的图像及其性质进行求解.10.若函数在上单调递减,且在上的最大值为,则的值为()A.B.C.D.【答案】A【解析】由题意得:,解得,选A.【考点】正切函数性质11.(本小题满分12分)已知向量,.(1)当时,求的值;(2)设函数,已知在中,内角、、的对边分别为、、,若,,,求当时,的取值范围.【答案】(1);(2).【解析】(1)平方关系和商数关系式中的角都是同一个角,且商数关系式中,利用,得出,把转化为的式子,从而求解;(2)熟悉三角公式的整体结构,灵活变换,要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形,把形如化为,研究函数的性质由的取值范围确定的取值范围,再确定的取值范围.试题解析:(1),,,(2)由正弦定理得,得或,,因此,,即.【考点】1、同角三角函数的基本关系;2、三角函数的化简;3、求三角函数的值域.12.(2012秋•泰安期中)已知函数f(x)=2sinωxcosωx﹣2sin2ωx+(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)的单调增区间;(Ⅲ)若f(α)=,求sin(π﹣4α)的值.【答案】(Ⅰ)1;(Ⅱ)见解析;(Ⅲ)﹣.【解析】(I)利用二倍角公式即辅助角公式,化简函数,利用直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为,可得函数的最小正周期为π,根据周期公式,可求ω的值;(II)利用正弦函数的单调性,可得函数f(x)的单调增区间;(III)由f(a)=,可得sin(2a+)=,根据sin(π﹣4a)=sin[﹣2(2a+)]=﹣cos[2(2a+)]=2sin2(2a+)﹣1,即可求得结论.解:(I)∵f(x)=2sinωxcosωx﹣2sin2ωx+=sin2ωx+cos2ωx=2sin(2ωx+)∵直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为,∴函数的最小正周期为π∴=π∴ω=1;(II)由(I)知,f(x)=2sin(2x+)∴﹣+2kπ≤2x+≤+2kπ,k∈Z∴﹣+kπ≤x≤+kπ,k∈Z∴函数f(x)的单调增区间为[﹣+kπ,+kπ],k∈Z;(III)∵f(a)=,∴sin(2a+)=∴sin(π﹣4a)=sin[﹣2(2a+)]=﹣cos[2(2a+)]=2sin2(2a+)﹣1=﹣.【考点】三角函数中的恒等变换应用;由y=Asin(ωx+φ)的部分图象确定其解析式;复合三角函数的单调性.13.已知向量,且函数在时取得最小值.(Ⅰ)求的值;(Ⅱ)在中,分别是内角的对边,若,,,求的值.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)利用向量的数量积公式,结合辅助角公式,求的值;(Ⅱ)先求出,再利用正弦定理,即可求的值.试题解析:(Ⅰ)由于(Ⅱ)由上知,于是由正弦定理得:【考点】正弦定理,余弦定理,两角和与差的三角函数,向量的数量积14.已知,函数在单调递减,则的取值范围是.【答案】【解析】,,由题意,所以,由于,所以只有,.【考点】三角函数的单调性.【名师】求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中A≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“ωx+φ(ω>0)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与y=sin x(x∈R),y=cos x(x∈R)的单调区间对应的不等式方向相同(反).15.(2015秋•南京校级期中)将函数f(x)=2sin(2x﹣)的图象向左平移m个单位(m>0),若所得的图象关于直线x=对称,则m的最小值为.【答案】【解析】由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得m的最小值.解:将函数f(x)=2sin(2x﹣)的图象向左平移m个单位(m>0),可得y=2sin[2(x+m)﹣]=2sin(2x+2m﹣)的图象.∵所得的图象关于直线x=对称,∴2•+2m﹣=kπ+,k∈Z,即 m=+,k∈Z,则m的最小值为,故答案为:.【考点】函数y=Asin(ωx+φ)的图象变换.16.(2015秋•昌平区期末)已知函数.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)的单调递减区间.【答案】(Ⅰ);(Ⅱ)函数f(x)的单调递减区间是.)【解析】(Ⅰ)利用三角函数的倍角公式以及辅助角公式进行化简,即可求函数f(x)的最小正周期;(Ⅱ)利用三角函数的单调性即可求函数f(x)的单调递减区间.解:(Ⅰ)==所以最小正周期.(Ⅱ)由,得.所以函数f(x)的单调递减区间是.)【考点】三角函数中的恒等变换应用;正弦函数的图象.17.已知函数.(1)求的最小正周期和在上的单调递减区间;(2)若为第四象限角,且,求的值.【答案】(1);(2).【解析】(1)对的表达式进行三角恒等变形,利用三角函数的性质即可求解;(2)利用同角三角函数的基本关系求得的值后即可求解.试题解析:(1)由已知,所以最小正周期,由,得,故函数在上的单调递减区间;(2)因为为第四象限角,且,所以,所以.【考点】三角函数综合.18.已知是第二象限角,且,则()A.B.C.D.【答案】C【解析】由,得,又∵是第二象限角,∴,∴原式=;故选C.【考点】1.诱导公式;2.同角三角函数基本关系式.19.在中,角所对的边分别为,且,则的最大值为_____.【答案】【解析】由及正弦定理得,又因为,于是可得,所以,所以,则的最大值为,故答案填.【考点】1、正弦定理;2、两角和与差的三角函数;3、基本不等式.20.将函数图象上各点的横坐标伸长到原来的倍,再向左平移个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.B.C.D.【答案】D【解析】将函数图象上各点的横坐标伸长到原来的倍,得,再向左平移个单位,得,令,解得,令,得,即所得函数图象的一条对称轴的方程是,故选D.【考点】三角函数的图象变换与三角函数的性质.21.设平面向量.(1)若,求的值;(2)若,求的取值范围.【答案】(1);(2).【解析】(1)先利用向量数量积的坐标表示求出,利用商数关系求出得值,再利用二倍角公式求出的值,最后代入到的展开式即可求得;(2)欲求,先求出,再根据求的范围,从而可得的取值范围.试题解析:(1)因为,所以,∴,∴.(2),,.【考点】1、向量数量积的坐标表示;2、二倍角公式;3、三角函数;4、商数关系;5、向量的模.22.设中的内角所对的边长分别为,且.(1)当时,求角的度数;(2)求面积的最大值.【答案】(1);(2).【解析】(1)求出,再由正弦定理求出,求出角;(2)求三角形面积的最大值,即求的最大值,由,,求出,就可以求出面积的最大值.试题解析:解:(1)因为,所以.因为,由正弦定理可得.因为,所以是锐角,所以.(2)因为的面积,所以当最大时,的面积最大.因为,所以.因为,所以,所以(当时等号成立).所以面积的最大值为.【考点】1.正弦定理;2.余弦定理;3.重要不等式.23.在中,内角的对边为,已知.(1)求角的值;(2)若,且的面积为,求.【答案】(1);(2).【解析】根据正弦定理可得,根据内角和定理和两角和的正弦公式整理可得,即得角的值;(2)由的面积为,求得的值,根据余弦定理表示构造的另一个方程,解方程组即可求得.试题解析:(1)∵,∴,∴,即,∴,∴,又∵是三角形的内角,∴(2)∵,∴,∴,又∵,∴,∴,∴【考点】正余弦定理解三角形.24.的三个内角满足:,则()A.B.C.D.或【答案】B【解析】由已知条件以及正弦定理可得:,即,再由余弦定理可得,所以,故选B.【考点】正弦定理、余弦定理.25.在中,角,,的对边分别是,,,已知,.(I)求的值;(II)若角为锐角,求的值及的面积.【答案】(I);(II)【解析】(I)根据题意和正弦定理求出a的值;(II)由二倍角的余弦公式变形求出sin2A,由A 的范围和平方关系求出cosA,由余弦定理列出方程求出b的值,代入三角形的面积公式求出△ABC的面积.试题解析:(I)因为,且,所以.因为,由正弦定理,得.(II)由得.由余弦定理,得.解得或(舍负).所以.【考点】正弦定理;余弦定理26.如图所示的是函数和函数的部分图象,则函数的解析式是()A.B.C.D.【答案】C.【解析】由题意得,,故排除B,D;又∵,故排除A,故选C.【考点】三角函数的图象和性质.27.已知,则=()A.B.C.D.【答案】A【解析】,故选A.【考点】和差倍半的三角函数.28.在中,角所对的边分别为,.(Ⅰ)求的值;(Ⅱ)若,,求的面积.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)先根据正弦定理将边统一成角:,再利用三角形内角关系、诱导公式、两角和正弦公式将三角统一成两角:,最后根据同角三角函数关系将弦化切:(Ⅱ)由(Ⅰ)易得,已知两角一对边,根据正弦定理求另一边:,利用三角形内角关系求第三角的正弦值:,最后根据面积公式求面积:试题解析:解:(Ⅰ)由及正弦定理得.所以,所以.(Ⅱ),所以, ,,所以的面积为.【考点】正弦定理,弦化切【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.29.同时具有性质“①最小正周期是,②图象关于直线对称;③在上是增函数”的一个函数是()A.B.C.D.【答案】C【解析】由题意得,函数的最小周期为,则,又函数图象关于直线对称,则函数为函数的最小值,则只有B、C满足,由当时,,则函数是单调递增函数,故选C.【考点】三角函数的性质.30.若函数的最大值为5,则常数______.【答案】【解析】,其中,故函数的最大值为,由已知得,,解得.【考点】三角函数的图象和性质.【名师】解决三角函数性质问题的基本思路是通过化简得到,结合角的范围求解.. 本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.31.定义在区间[0,]上的函数的图象与的图象的交点个数是 .【答案】7【解析】由,因为,所以故两函数图象的交点个数是7.【考点】三角函数图象【名师】求函数图象的交点个数,有两种方法:一是直接求解,如本题,解一个简单的三角方程,此方法立足于易于求解;二是数形结合,分别画出函数图象,数出交点个数,此法直观,但对画图要求较高,必须准确,尤其是要明确函数的增长幅度.32.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=(A)(B)(C)2 (D)3【答案】D【解析】由余弦定理得,解得(舍去),选D.【考点】余弦定理【名师】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!33.将函数y=2sin(2x+)的图像向右平移个周期后,所得图像对应的函数为A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x–)D.y=2sin(2x–)【答案】D【解析】函数的周期为,将函数的图像向右平移个周期即个单位,所得图像对应的函数为,故选D.【考点】三角函数图像的平移【名师】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减”;二是平移多少个单位是对x而言的,不要忘记乘以系数.34.如图,在Rt△ABC中,AC⊥BC,D在边AC上,已知BC=2,CD=1,∠ABD=45°,则AD=.【答案】5【解析】,,所以,.【考点】解三角形.【名师】在解直角三角形时,直角三角形中的三角函数定义是解题的桥梁,利用它可以很方便地建立边与角之间的关系.35.设函数的部分图象如图所示,直线是它的一条对称轴,则函数的解析式为()A.B.C.D.【答案】C【解析】因为直线是它的一条对称轴,排除B,D,因为图象过点,排除选项A,选C.【考点】三角函数图象与性质.36.在中,角,,的对边分别为,,,且满足,则角等于()A.B.C.D.【答案】A【解析】由正弦定理可得,即,由余弦定理可得,所以,故应选A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数与三角恒等变换(A)一、 填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上) 1. 半径是r ,圆心角是α(弧度)的扇形的面积为________. 2. 若31sin(3)lg10απ+=,则tan(π+α)=________.3. 若α是第四象限的角,则π-α是第________象限的角.4. 适合52sin 23m xm-=-的实数m 的取值范围是_________.5. 若tan α=3,则cos2α+3sin 2α=__________.6. 函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象的一个对称轴方程是___________.(答案不唯一)7. 把函数4cos 13y x π⎛⎫=++ ⎪⎝⎭的图象向左平移ϕ个单位,所得的图象对应的函数为偶函数,则ϕ的最小正值为___________.8. 若方程sin 2x +cos x +k =0有解,则常数k 的取值范围是__________. 9. 1-sin10°²sin 30°²sin 50°²sin 70°=__________.10. 角α的终边过点(4,3),角β的终边过点(-7,1),则si n (α+β)=__________. 13. 若函数y =sin(x +ϕ)+cos(x +ϕ)是偶函数,则满足条件的ϕ为_______. 二、 解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤) 15. (本小题满分14分)已知3tan 4θ=-,求22sin cos cos θθθ+-的值.16. (本小题满分14分)已知函数f (x )=2si nx (si nx +c os x ). (1) 求函数f (x )的最小正周期和最大值;(2) 在给出的直角坐标系中,画出函数y =f (x )在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象.17. (本小题满分14分)求函数y =4si n 2x +6c os x -6(233x ππ-≤≤)的值域.18. (本小题满分16分)已知函数()sin()(0,0)y f x A x ωϕωϕπ==+><<的图象如图所示.(1) 求该函数的解析式;(2) 求该函数的单调递增区间.19. (本小题满分16分)设函数2()4sin sin cos242x f x x x π⎛⎫=++ ⎪⎝⎭(x ∈R ).(1) 求函数f (x )的值域; (2) 若对任意x ∈2,63ππ⎡⎤⎢⎥⎣⎦,都有|f (x )-m |<2成立,求实数m 的取值范围.20. (本小题满分16分)已知奇函数f (x )的定义域为实数集,且f (x )在[0,+∞)上是增函数.当02πθ≤≤时,是否存在这样的实数m ,使2(42cos )(2sin 2)(0)f m m f f θθ--+>对所有的0,2πθ⎡⎤∈⎢⎥⎣⎦均成立?若存在,求出所有适合条件的实数m ;若不存在,请说明理由.第五章三角函数与三角恒等变换(B)一、 填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上) 1.cos 225+tan240+sin(-300)=︒︒︒______. 2.tan 20tan 403tan 20tan 40︒+︒+︒︒=_______.3. 已知tan 2x =-,则2222sin 3cos 3sin cos x xx x+-的值为_________. 4. 已知34παβ+=,则(1tan )(1tan )αβ--=________.5. 将函数y =sin2x 的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是________. 6. 已知函数)0)(2sin(παα≤≤+=x y 是R 上的偶函数,则ϕ=__________.7. 函数12log sin 24y x π⎛⎫=+ ⎪⎝⎭的单调递减区间为________.8. 已知函数sin 3cos y x x =+,且,6x ππ⎡⎤∈⎢⎥⎣⎦,则函数的值域是_________.9. 若3sin cos 0θθ-=,则21cos sin 22θθ+的值是___________.10. 已知,αβ都是锐角,且54sin ,cos()135ααβ=+=-,则sin β的值是_________.11. 给出下列四个命题,其中不正确命题的序号是_______. ① 若cos cos αβ=,则2k αβπ-=,k ∈Z ;② 函数2cos 23y x π⎛⎫=+ ⎪⎝⎭的图象关于12x π=对称;③ 函数cos(sin )y x = (x ∈R )为偶函数;④ 函数y =sin|x |是周期函数,且周期为2π. 12. 已知函数()cos()f x A x ωϕ=+的图象如图所示,223f π⎛⎫=- ⎪⎝⎭,则f (0)=_________.13. 若0,,(0,)4παβπ⎛⎫∈∈ ⎪⎝⎭,且11tan(),tan 27αββ-==-,则2αβ-=______.14. 已知函数()sin 4f x x πω⎛⎫=+ ⎪⎝⎭(x ∈R ,ω>0)的最小正周期为π.将y =f (x )的图象向左平移(0)ϕϕ>个单位长度,所得图象关于y 轴对称,则ϕ的最小值是______.二、 解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤) 15. (本小题满分14分)如图是表示电流强度I与时间t的关系s i n ()(0,0I A t ωϕωϕπ=+><<在一个周期内的图象. (1) 写出sin()IA t ωϕ=+的解析式;(2) 指出它的图象是由I =si nt 的图象经过怎样的变换而得到的.16. (本小题满分14分)化简sin 6sin 42sin 66sin 78︒︒︒︒.17. (本小题满分14分)已知函数y =sin x ²cos x +sin x +cos x ,求y 的最大值、最小值及取得最大值、最小值时x 的值.18. (本小题满分16分)设02πθ<<,曲线22sin sin 1xy θθ+=和22cos sin 1x y θθ-=有4个不同的交点. (1) 求θ的取值范围;(2) 证明这4个交点共圆,并求圆的半径的取值范围.19. (本小题满分16分)函数f (x )=1-2a -2a cos x -2sin 2x 的最小值为g (a ),a ∈R . (1) 求g (a )的表达式;(2) 若g (a )=12,求a 及此时f (x )的最大值.20. (本小题满分16分)已知定义在区间,2ππ⎡⎤-⎢⎥⎣⎦上的函数y =f (x )的图象关于直线4x π=对称,当x≥4π时,函数f (x )=sin x . (1) 求,24f f ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭的值; (2) 求y =f (x )的函数表达式;(3) 如果关于x 的方程f (x )=a 有解,那么在a 取某一确定值时,将方程所求得的所有解的和记为M a ,求M a 的所有可能取值及相对应的a 的取值范围.第五章三角函数与三角恒等变换(A )1.212r α 2. ±243. 三4.10,2⎡⎤⎢⎥⎣⎦5.19106. x =8π【解析】对称轴方程满足2x +4π=k π+2π,所以x =28k ππ+(k ∈Z ).7.23π8.5,14⎡⎤-⎢⎥⎣⎦9.1516【解析】∵ sin10°²sin30°²sin50°²sin70°=sin 20sin 30sin 50cos 202cos10︒︒︒︒︒ =sin 40sin 30cos 40sin 80sin 301,4cos108cos1016︒︒︒︒︒==︒︒ ∴ 原式=1-115.1616= 10. -1725011.732,2,55k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z 12. -1 【解析】f (5)=-f (-5)=-f (-1)=-1,∴ 原式=sin 2π⎛⎫-⎪⎝⎭=-1. 13.ϕ=k π+4π(k ∈Z ) 14. tan5<tan3<tan4 15. 2+sin θcos θ-cos 2θ=2+2222sin cos cos tan 12sin cos tan 1θθθθθθθ--=+++=312242.925116--+=+16. (1) f (x )=2sin 2x +2sin xc os x =1-c os2x +sin2x =1+2(sin2x cos 4π-cos2x sin 4π)=1+2sin(2x -4π).所以函数f (x )的最小正周期为π,最大值为1+2.(2) 列表.x38π-8π- 8π 38π 58π 24x π-π-2π-2π πy 112-112+1故函数y =f (x )在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象是17. y =4sin 2x +6cos x -6=4(1-cos 2x )+6cos x -6 =-4cos 2x +6cos x -2=-4231cos .44x ⎛⎫-+ ⎪⎝⎭ ∵ -3π≤x ≤23π,∴ -12≤cos x ≤1,∴ y ∈16,4⎡⎤-⎢⎥⎣⎦. 18. (1) 由图象可知:T =2388ππ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦=π⇒ω=2T π=2.A =2(2)2--=2,∴ y =2sin (2x +ϕ).又∵,28π⎛⎫-⎪⎝⎭为“五点画法”中的第二点,∴ 2³8π⎛⎫- ⎪⎝⎭+ϕ=2π⇒ϕ=34π.∴ 所求函数的解析式为y =2sin 32.4x π⎛⎫+⎪⎝⎭(2) ∵ 当2x +34π∈2,222k k ππππ⎡⎤-++⎢⎥⎣⎦(k ∈Z )时,f (x )单调递增, ∴ 2x ∈52,244k k ππππ⎡⎤-+-+⇒⎢⎥⎣⎦x ∈5,88k k ππππ⎡⎤-+-+⎢⎥⎣⎦(k ∈Z ).19. (1) f (x )=4sin x ²1cos 22x π⎛⎫-+ ⎪⎝⎭+cos2x =2sin x (1+sin x )+1-2sin 2x =2sin x +1.∵ x ∈R ,∴ sin x ∈[-1,1],故f (x )的值域是[-1,3]. (2) 当x ∈2,63ππ⎡⎤⎢⎥⎣⎦时,sin x ∈1,12⎡⎤⎢⎥⎣⎦,∴ f (x )∈[2,3].由|f (x )-m |<2⇒-2<f (x )-m <2,∴ f (x )-2<m <f (x )+2恒成立. ∴ m <[f (x )+2]min =4,且m >[f (x )-2]max =1. 故m 的取值范围是(1,4).20. 因为f (x )为奇函数,所以f (-x )=-f (x )(x ∈R ),所以f (0)=0.所以f (4m -2m cos θ)-f (2sin 2θ+2)>0,所以f (4m -2m cos θ)>f (2sin 2θ+2). 又因为f (x )在[0,+∞)上是增函数,且f (x )是奇函数, 所以f (x )是R 上的增函数,所以4m -2m cos θ>2sin 2θ+2. 所以cos 2θ-m cos θ+2m -2>0. 因为θ∈0,2π⎡⎤⎢⎥⎣⎦,所以cos θ∈[0,1].令l =cos θ(l ∈[0,1]). 满足条件的m 应使不等式l 2-ml +2m -2>0对任意l ∈[0,1]均成立. 设g (l )=l 2-ml +2m -2=22m l ⎛⎫- ⎪⎝⎭-24m +2m -2.由条件得01,0,1,2220,(0)0,(1)0.2m m m m g g g ⎧≤≤⎧⎧⎪<>⎪⎪⎪⎨⎨⎨⎛⎫⎪⎪⎪>>>⎩⎩ ⎪⎪⎝⎭⎩或或 解得,m >4-22.第五章三角函数与三角恒等变换(B )1.3322- 2.23.711【解析】原式=2222tan 3(2)37.3tan 13(2)111x x +-+==--- 4. 2 5. y =2c os 2x 6.2π7.,88k k ππππ⎛⎫-+⎪⎝⎭(k ∈Z ) 【解析】∵ sin 24x π⎛⎫+⎪⎝⎭>0,且y =12log t 是减函数, ∴ 2k π<2x +4π≤2π+2k π,(k ∈Z ),∴ x ∈,88k k ππππ⎛⎤-+ ⎥⎝⎦(k ∈Z ).8.3,2⎡⎤-⎣⎦ 【解析】y =sin x +3cos x =2sin 3x π⎛⎫+ ⎪⎝⎭,又2π≤x +3π≤4,3π ∴ sin 3x π⎛⎫+⎪⎝⎭∈3,12⎡⎤-⎢⎥⎣⎦,∴ y ∈[-3,2]. 9.65【解析】tan θ=13,∴ cos 2θ+12sin2θ=2222cos sin cos 1tan 6.sin cos tan 15θθθθθθθ++==++ 10.5665【解析】由题意得cos α=1213,sin (α+β)=35.∴ sin β=sin [(α+β)-α]=sin(α+β)²cos α-cos (α+β)²sin α=5665.11. ①②④ 12.2313.34π-【解析】tan α=tan (α-β+β)=11127113127-=+⨯,∴ tan (2α-β)=tan [(α-β)+α]=1123111123+=-⨯.∵ β∈(0,π),且tan β=-17∈(-1,0),∴ β∈3,4ππ⎛⎫⎪⎝⎭,∴ 2α-β∈,,4ππ⎛⎫--⎪⎝⎭∴ 2α-β=-34π.14.8π 【解析】由已知,周期为π=2πω,∴ ω=2.则结合平移公式和诱导公式可知平移后是偶函数,sin()24x πϕ⎡⎤++⎢⎥⎣⎦=±cos2x ,故ϕmin =8π.15. (1) I =300sin 1003t ππ⎛⎫+ ⎪⎝⎭.(2) I =sin t 3π−−−−→向左平移个单位I =sin 3t ππ⎛⎫+−−−−−−−−→ ⎪⎝⎭纵坐标不变1横坐标变为原来的倍100 I =sin 1003t ππ⎛⎫+ ⎪⎝⎭−−−−−−−→横坐标不变纵坐标变为原来的300倍I =300sin 1003t ππ⎛⎫+ ⎪⎝⎭. 16. 原式=sin6°²c os48°²c os24°²c os12°=cos 6sin 6cos12cos 24cos 48cos 6︒︒︒︒︒︒=1sin12cos12cos 24cos 482cos6︒︒︒︒︒=…=1sin 96116.cos616︒=︒17. 令sin x +cos x =t .由sin x +cos x =2sin 4x π⎛⎫+ ⎪⎝⎭,知t ∈[-2,2],∴ sin x ²cos x =212t -,t ∈[-2,2].所以y =212t -+t =12(t +1)2-1,t ∈[-2,2].当t =-1,即2sin 4x π⎛⎫+⎪⎝⎭=-1,x =2k π+π或x =2k π+32π(k ∈Z )时,y min =-1;当t =2,即2sin 4x π⎛⎫+ ⎪⎝⎭=2, x =2k π+4π(k ∈Z )时,y max =122+. 18. (1) 解方程组222222sin cos 1,sin cos ,sin cos 1,cos sin .x y x x y y θθθθθθθθ⎧⎧+==+⎪⎪⎨⎨-==-⎪⎪⎩⎩得 故两条已知曲线有四个不同的交点的充要条件为sin cos 0,cos sin 0.θθθθ+>⎧⎨->⎩∵ 0<θ<2π,∴ 0<θ<4π.(2) 设四个交点的坐标为(x i ,y i )(i =1,2,3,4),则2i x +2i y =2cos θ∈(2,2)(i =1,2,3,4).故此四个交点共圆,并且这个圆的半径r =42cos (2,2)θ∈.19. f (x )=1-2a -2a cos x -2sin 2x =1-2a -2ac os x -2(1-cos 2x )=2cos 2x -2a cos x -1-2a =22cos 2a x ⎛⎫- ⎪⎝⎭-1-2a -22a (a ∈R ).(1) 函数f (x )的最小值为g (a ).① 当2a <-1,即a <-2时,由cos x =-1,得g (a )=2212a ⎛⎫-- ⎪⎝⎭-1-2a -22a =1;② 当-1≤2a ≤1,即-2≤a ≤2时,由cos x =2a,得g (a )=-1-2a -22a ;③ 当2a>1,即a >2时,由cos x =1,得g (a )=2212a ⎛⎫- ⎪⎝⎭-1-2a -22a =1-4a .综上所述,21(2),()12(22),214(2).a a g a a a a a <-⎧⎪⎪=----≤≤⎨⎪->⎪⎩ (2) ∵ g (a )=12,∴ -2≤a ≤2,∴ -1-2a -22a =12,得a 2+4a +3=0,∴ a =-1或a =-3(舍).将a =-1代入f (x )=22cos 2a x ⎛⎫- ⎪⎝⎭-1-2a -22a ,得f (x )=221cos 2x ⎛⎫+ ⎪⎝⎭+12.∴ 当c os x =1,即x =2k π(k ∈Z )时,f (x )max =5.20. (1) f 2π⎛⎫-⎪⎝⎭=f (π)=sin π=0,f 4π⎛⎫- ⎪⎝⎭=f 34π⎛⎫⎪⎝⎭=sin 34π=22.(2) 当-2π≤x <4π时,f (x )=f 2x π⎛⎫- ⎪⎝⎭=sin 2x π⎛⎫- ⎪⎝⎭=c os x . ∴ f (x )=sin ,,,4cos ,,.24x x x x ππππ⎧⎡⎤∈⎪⎢⎥⎪⎣⎦⎨⎡⎫⎪∈-⎪⎢⎪⎣⎭⎩(3) 作函数f (x )的图象(如图),显然,若f (x )=a 有解,则a ∈[0,1].① 当0≤a <22时,f (x )=a 有两解,且1224x x π+=,∴ x 1+x 2=2π,∴ M a =2π;② 当a =22时,f (x )=a 有三解,且x 1+x 2+x 3=2π+4π=34π,∴ M a =34π;③ 当22<a <1时,f (x )=a 有四解,且x 1+x 2+x 3+x 4=x 1+x 4+x 2+x 3=2π+2π=π,∴ M a =π;④ 当a =1时,f (x )=a 有两解,且x 1=0,x 2=2π,∴ x 1+x 2=2π,∴ M a =2π.综上所述,M a =2,0,{1},2232,,422,,1.2a a a πππ⎧⎡⎫∈⎪⎪⎢⎪⎪⎣⎭⎪⎧⎫⎪⎪⎪∈⎨⎨⎬⎪⎪⎩⎭⎪⎪⎛⎫⎪∈ ⎪ ⎪⎪⎝⎭⎩。

相关文档
最新文档