初三锐角三角函数基础练习题(含答案)
锐角三角函数练习卷(含答案)

锐角三角函数练习卷(含答案)
一、选择题
1. 设角A为锐角,且sin(A) = 0.6,那么A的近似值是多少?- A)36.87°
- B)45°
- C)53.13°
- D)64.04°
答案:C)53.13°
2. 三角函数tan(A)的值是斜边长与________的比值。
- A)对边长
- B)邻边长
- C)斜边长
- D)角A的弧度
答案:B)邻边长
3. 三角函数cot(A)的值是邻边长与________的比值。
- A)对边长
- B)斜边长
- C)角A的弧度
- D)斜边长的倒数
答案:A)对边长
二、填空题
4. 已知角B是锐角,且cos(B) = 0.8,那么角B的近似值是________度。
答案:37°
5. 已知角C是锐角,且tan(C) = 0.5,那么角C的近似值是________度。
答案:26.57°
三、计算题
6. 已知三角形的两边分别为5和12,夹角为60°,求第三边的长度。
答案:13
7. 已知一个角的弧度为π/3,求sin和cos的值。
答案:sin(π/3) = (√3) / 2, cos(π/3) = 1 / 2
四、证明题
请证明:sin^2(A) + cos^2(A) = 1,其中A是任意角。
证明:
由三角恒等式sin^2(A) + cos^2(A) = 1可得:
sin^2(A) + cos^2(A) = (1 - cos^2(A)) + cos^2(A) = 1
证毕。
锐角三角函数基础题

A BCD (第7题)锐角三角函数练习一、正弦练习1.三角形在正方形网格纸中的位置如图所示,则sinα的值是﹙ ﹚A .43 B .34 C .53 D .542. 在△ABC 中,∠C=90°,BC=2,sinA=23,则边AC 的长是( )A .13B .3C .43D . 53.如图,已知点P 的坐标是(a ,b ),则sinα等于( )A .a bB .ba CD 4.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。
已知AC= 5 ,BC=2,那么sin ∠ACD =( )AB .23CD5.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3.则sin ∠BAC= ;sin ∠ADC= .第1题 第3题 第4题 第5题 6.在ABC Rt ∆中,︒=∠90C ,B A ∠∠,所对的边分别为b a ,,若23sin sin =B A ,则bba +的值( ) .A135 B132 C213D25 7.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为 半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB ∠的 值为( )A .43B .34 C .45D .358.已知:在⊿ABC 中,∠C=90°,sinA=31,AC=,24求 AB 和sinB 二、余弦、正切 1.在中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C的对边,则有( )A ....2.在中,∠C =90°,如果cos A=45 那么的值为( ) A .35B .54C .34D .433.在正方形网格中,ABC △的位置如图2所示,则cos B ∠的值为( )B αA .12B.2C.2D.34.直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是( ) A .247BC .724D .135.如图,在Rt △ABC 中,∠C=90°,AB=6,AD=2, 求CD 的长及sinA 、tgB 的值.6.已知:如图,在ABC ∆中,AC AB =,AC BD ⊥于D ,AD DC BC 2,4==求A cos 和AB .三、特殊角的函数值1.下列各式中不正确的是( ) A .sin 260°+cos 260°=1 B .sin30°+cos30°=1 C .sin35°=cos55° D .tan45°>sin45°2.已知∠A 为锐角,且cosA≤12,那么( )A .0°<∠A≤60°B .60°≤∠A<90°C .0°<∠A≤30°D .30°≤∠A<90°3.在△ABC 中,∠A 、∠B 都是锐角,且sinA=12 ,cosB= 32,则△ABC 的形状是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定 4.如图Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,BC=3,AC=4, 设∠BCD=a ,则tana •的值为( ).A .34 B .43 C .35 D .455.当锐角a>60°时,cosa 的值( )A .小于12B .大于12C .大于 32D .大于16.在△ABC 中,三边之比为a:b :c=12,则sinA+tanA 等于( )A .1.2B C D7.已知梯形ABCD 中,腰BC 长为2,梯形对角线BD 垂直平分AC ,则∠CAB 等于( ) A .30° B .60° C .45°D .以上都不对8.若( 3 tanA-3)2+│2cosB - 3 │=0,则△ABC ( )68CEABD(第4题)DCBAA .是直角三角形B .是等边三角形C .是含有60°的任意三角形D .是顶角为钝角的等腰三角形 9.因为1sin 302=,1sin 2102=-,所以sin 210sin(18030)sin30=+=-;因为2sin 45=,sin 2252=-,所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=( )A .12-B .2-C .2-D .10.sin30°+cos60°+tan45° = 11.2 sin30°·cos30°= 12.(sin45°+ cos45°)2 =13.45cos 130cos 22- = 14. (1+ sin45°)(1-cos45°) = 15.60sin 3345cos 22-= 16.在△ABC 中,∠C=90°,a + b = 2,∠A = 60°,求a ,b ,c . 四、用计算器求函数相关值1. 用计算器求下列锐角三角函数值.=10sin =33cos ='2442tan="23'157sin , ="28'4560tan .2. 已知下列锐角三角函数值,用计算器求其相应的锐角.(1)=A sin 0.7083, =∠A . =B sin 0.9371, =∠B . (2)=A cos 0.2996, =∠A . =B cos 0.829, =∠B . (3)=A tan 2.22, =∠A . =B tan 31.80 , =∠B . 3.如图,厂房屋顶人字架(等腰三角形)的跨度为12m ,五、灵活运用用三个函数值解决问题1.在⊿ABC 中,若∠B+∠C=2∠A,则tanA 的值为( )A.21 B.23 C.33 D.3 2.在Rt ⊿ABC 中,∠C=90°,CD 是斜边AB 上的高,若BC=5, DC=3,则A sin 的值是( )跨度柱26 C (第3题)A .43B .34C .53D .54 3. 在△ABC 中,若∠C= 90°,AC =1,BC=2,则下列结论中正确的是( )A. sin B =B. 2cos 5B =C. tan 2B =D. 21tan =A4. 如图1,矩形ABCD 中,若AD = 1,AB = 3,则该矩形的两条对角线所夹的锐角是( )A. 30°B.45°C.60°D. 75°5.如图2,CD 是 Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处, 则∠A 等于( ) A. 25° B. 30° C. 45° D. 60° 6.在菱形ABCD 中,∠ABC=60°,AC =4,求BD 的长. 7.已知:在⊿ABC 中, ∠A=120°, AB=5, AC=3, 求tanC 的值. 8.已知如图在Rt ⊿ABC 中, ∠C=90°, ∠ABC 的平分线BD 交AC 于点D ,,38,12cm BD cm BC == 求⊿ABD 的面积9.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a ,求其底边上的高. 10.如图,已知在⊿ABC 中,∠B=60°,∠C=30°,BC=),33(10+求AB 、AC 的长.第8题第10题六、解直角三角形(一)1.Rt ⊿ABC 中,∠C=90°,若AC=22, AB=4, 则∠A= ,BC= . 2.Rt ⊿ABC 中,∠C=90°,若∠A= 45°, AB=5, 则BC= , AC= . 3. Rt ⊿ABC 中,∠C=90°,若∠A=60°, AC =2, 则AB= , BC= . 4.已知Rt ⊿ABC 中,∠C=90°,S ⊿ABC =5, AB=29.求B A tan tan +的值. 5.在四边形ABCD 中,∠B=∠D=90°,AB=BC ,AD=7,tanA=2,求CD 的长; 6.在菱形ABCD 中,AE BC ⊥于E ,1EC =,5sin 13B =,求四边形AECD 的周长.七、解直角三角形(二) 1.已知如图,从山顶A 点测得一建筑物B 的俯角为30°,若山的高度AC 为1500米,山坡的倾斜角∠ADC=60°, 求建筑物到山脚D 的距离BD.2.如图,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30,测得岸边点D 的俯角为45,又知 河宽CD 为50米。
人教版初3数学9年级下册 第28章(锐角三角函数)正切函数专题练习(含答案)

人教版九年级数学下册第二十八章锐角三角函数之正切函数专题练习一、选择题1.如图,第一象限的点P的坐标是(a,b),则tan ∠POx等于( )A.abB.baC.aa2+b2D.ba2+b22.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=2,则t的值是( )A. 1B. 1.5C. 2D. 33.在直角坐标系xOy中,点P(4,y)在第四象限内,且OP与x轴正半轴的夹角的正切值是2,则y 的值是( )A. 2B. 8C.-2D.-84.正比例函数y=kx的图象经过点(3,2),则它与x轴所夹锐角的正切值是( )A.23B.32C.132D.1335.根据图中的信息,经过估算,下列数值与tanα值最接近的是( )A. 0.26B. 0.43C. 0.90D. 2.236.如图,在2×3的正方形网格中,tan ∠ACB的值为( )A.223B.2105C.12D. 27.如图,四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则tan ∠APB等于( )A. 1B.3C.33D.128.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tan B′的值为( )A.12B.13C.14D.249.在Rt△ABC中,∠C=90°,若AB=2,AC=1,则tan A的值为( )A.12B.32C.33D.310.如图,E在矩形ABCD的边CD上,AB=2BC,则tan ∠CBE+tan ∠DAE的值是( )A. 2B. 2+3C. 2-3D. 2+2311.在Rt△ABC中,∠A=90°,如果把这个直角三角形的各边长都扩大2倍,那么所得到的直角三角形中,∠B的正切值( )A.扩大2倍B.缩小2倍C.扩大4倍D.大小不变12.比较tan 20°,tan 50°,tan 70°的大小,下列不等式正确的是( )A. tan 70°<tan 50°<tan 20°B. tan 50°<tan 20°<tan 70°C. tan 20°<tan 50°<tan 70°D. tan 20°<tan 70°<tan 50°二、填空题13.如图,P(12,a)在反比例函数y=60图象上,PH⊥x轴于H,则tan ∠POH的值为__________.x14.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果2b=3a,则tan A=__________.15.在一个直角三角形中,如果各边的长度都扩大4倍,那么它的两个锐角的正切值__________.16.已知∠B是△ABC中最小的内角,则tan B的取值范围是____________.17.比较大小:tan 50°________tan 48°.三、解答题18.如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.求tan ∠BOA的值.19.如图,在△ABC中,AB=8,BC=6,S△ABC=12.试求tan B的值.答案解析1.【答案】B【解析】如图因为第一象限的点P的坐标是(a,b),所以tan ∠POx=ba.故选B.2.【答案】B【解析】如图,tanα=ABOB =2,即3t=2,解得t=1.5.故选B.3.【答案】D【解析】如图,∵点P(4,y)在第四象限内,∴OA=4,PA=-y又OP与x轴正半轴的夹角的正切值是2,∴tan ∠AOP=2,∴PAOA=2,∴-y=2×4,∴y=-8.故选D.4.【答案】A【解析】如图,过A作AB⊥x轴于B,∵A(3,2),∴AB=2,OB=3,∵正比例函数y=kx的图象经过点(3,2),∴它与x轴所夹锐角的正切值是tan ∠AOB=ABOB =23,故选A.5.【答案】B【解析】如图,AB≈2.6,OB=6,tanα=ABOB ≈2.66≈0.43.故选B.6.【答案】D【解析】如图,过A作AD⊥BC于D,设每个小正方形边长为1,在Rt△ACD中,AD=2,CD=1,则tan ∠ACB=ADCD=2,故选D.7.【答案】A【解析】∵A、B、O是小正方形顶点,∴∠AOB=90°,∴∠APB=12∠AOB=45°,∴tan ∠APB=1.故选A.8.【答案】B【解析】设每个小正方形边长为1,过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,CD=1,BD=3,故tan B=CDBD =13,则tan B′=tan B=13.故选B.9.【答案】D【解析】∵AB=2,AC=1,∴CB=22−12=3,∴tan A=BCAC=3,故选D.10.【答案】【解析】∵四边形ABCD是矩形,∴tan ∠CBE=CEBC ,tan ∠DAE=DEAD,∵AD=BC,CE+DE=CD=AB=2AD,∴tan ∠CBE+tan ∠DAE=CEBC +DEAD=CDAD=2ADAD=2.故选A.11.【答案】D【解析】把这个直角三角形的各边长都扩大2倍,那么所得到的直角三角形与原来的三角形相似,则∠B的大小不变,则∠B的正切值不变.故选D.12.【答案】C【解析】由锐角的正切值随角增大而增大,得tan 20°<tan 50°<tan 70°,故C符合题意,故选C.13.【答案】512【解析】∵P(12,a)在反比例函数y=60x图象上,∴a=6012=5,∵PH⊥x轴于H,∴PH=5,OH=12,∴tan ∠POH=512.14.【答案】23【解析】∵∠C=90°,a,b,c分别是∠A,∠B,∠C对边,∴tan A=ab,∵2b=3a,∴a b =23,∴tan A =a b =23.15.【答案】不变【解析】∵锐角的正切值是该角的对边与邻边的比,∴当各边都扩大为原来的4倍时,比值不变.16.【答案】0<tan B ≤3【解析】根据三角形的内角和定理,易知三角形的最小内角不大于60°.根据题意,知:0°<∠B ≤60°.又tan 60°=3,故0<tan B ≤3.17.【答案】>【解析】根据锐角三角函数的增减性:正切值随着角度的增大(或减小)而增大(或减小),∵50°>48°,∴tan 50°>tan 48°.18.【答案】解 tan ∠BOA =AB OA =24=12.【解析】19.【答案】解 如图,过点A 作AD ⊥BC 的延长线于D ,S △ABC =12BC ·AD =12×6×AD =12,解得AD =4,在Rt △ABD 中,BD =AB 2−AD 2=82−42=43,tan B =AD BD =443=33.【解析】过点A作AD⊥BC的延长线于D,利用三角形的面积求出AD,再利用勾股定理列式求出BD,然后根据锐角的正切值等于对边比邻边列式计算即可得解.。
黄冈市初中数学锐角三角函数的基础测试题含解析

黄冈市初中数学锐角三角函数的基础测试题含解析一、选择题1.cos60tan45+o o 的值等于( )A .32B .22C .32D .1【答案】A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:原式13122=+=. 故选A .【点睛】本题考查了特殊角的三角函数值,解题的关键是熟练掌握特殊角的三角函数值.2.如图,AB 是O e 的弦,直径CD 交AB 于点E ,若3AE EB ==,15C ∠=o ,则OE 的长为( )A .3B .4C .6D .33【答案】D【解析】【分析】 连接OA .证明OAB ∆是等边三角形即可解决问题.【详解】如图,连接OA .∵AE EB =,∴CD AB ⊥,∴»»AD BD=, ∴230BOD AOD ACD ∠=∠=∠=o ,∴60AOB ∠=o ,∵OA OB =,∴AOB ∆是等边三角形,∵3AE =, ∴tan 6033OE AE =⋅=o ,故选D .【点睛】本题考查圆周角定理,勾股定理,垂径定理,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.菱形ABCD 的周长为20cm,DE ⊥AB,垂足为E,sinA=35,则下列结论正确的个数有( ) ①DE=3cm; ②BE=1cm; ③菱形的面积为15cm 2; ④BD=210cm .A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据菱形的性质及已知对各个选项进行分析,从而得到答案【详解】∵菱形ABCD 的周长为20cm∴AD=5cm∵sinA=35∴DE=3cm (①正确)∴AE=4cm∵AB=5cm∴BE=5﹣4=1cm (②正确)∴菱形的面积=AB×DE=5×3=15cm 2(③正确)∵DE=3cm,BE=1cm∴10(④不正确)所以正确的有三个.故选C .【点睛】本题考查了菱形的性质及锐角三角函数的定义,熟练掌握性质是解题的关键4.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B 之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.(543+10) cm B.(542+10) cm C.64 cm D.54cm【答案】C【解析】【分析】过A作AE⊥CP于E,过B作BF⊥DQ于F,则可得AE和BF的长,依据端点A与B之间的距离为10cm,即可得到可以通过闸机的物体的最大宽度.【详解】如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=12AC=12×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),故选C.【点睛】本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.5.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.πB.2πC.3πD.(31)π+【答案】C【解析】【分析】由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3的正三角形.可计算边长为2,据此即可得出表面积.【详解】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3的正三角形.∴正三角形的边长32 sin60==︒.∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π∴侧面积为12222ππ⨯⨯=,∵底面积为2rππ=,∴全面积是3π.故选:C.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.6.同学们参加综合实践活动时,看到木工师傅用“三弧法”在板材边角处作直角,其作法是:如图:(1)作线段AB,分别以点A,B为圆心,AB长为半径作弧,两弧交于点C;(2)以点C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.根据以上作图过程及所作图形,下列结论中错误的是()A.∠ABD=90°B.CA=CB=CD C.sinA=32D.cosD=12【答案】D【解析】【分析】由作法得CA=CB=CD=AB,根据圆周角定理得到∠ABD=90°,点C是△ABD的外心,根据三角函数的定义计算出∠D=30°,则∠A=60°,利用特殊角的三角函数值即可得到结论.【详解】由作法得CA=CB=CD=AB,故B正确;∴点B在以AD为直径的圆上,∴∠ABD=90°,故A正确;∴点C是△ABD的外心,在Rt△ABC中,sin∠D=ABAD=12,∴∠D=30°,∠A=60°,∴sinA=3,故C正确;cosD=3,故D错误,故选:D.【点睛】本题考查了解直角三角形,三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和解直角三角形.7.直角三角形纸片的两直角边长分别为6,8,现将ABCV如图那样折叠,使点A与点B 重合,折痕为DE,则tan CBE∠的值是()A.247B7C.724D.13【答案】C【解析】试题分析:根据题意,BE=AE.设BE=x,则CE=8-x.在Rt△BCE中,x2=(8-x)2+62,解得x=254,故CE=8-254=74,∴tan∠CBE=724 CECB=.故选C.考点:锐角三角函数.8.如图,在矩形ABCD 中,BC =2,AE ⊥BD ,垂足为E ,∠BAE =30°,则tan ∠DEC 的值是( )A .1B .12C .32D .33【答案】C【解析】【分析】 先根据题意过点C 作CF ⊥BD 与点F 可求得△AEB ≌△CFD (AAS ),得到AE =CF =1,EF =323-33【详解】过点C 作CF ⊥BD 与点F .∵∠BAE =30°,∴∠DBC =30°,∵BC =2,∴CF =1,BF 3 ,易证△AEB ≌△CFD (AAS )∴AE =CF =1,∵∠BAE =∠DBC =30°,∴BE =33 AE =33, ∴EF =BF ﹣BE 3 3233, 在Rt △CFE 中,tan ∠DEC =323CFEF ==, 故选C .【点睛】此题考查了含30°的直角三角形,三角形全等的性质,解题关键是证明所进行的全等9.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )A .500sin55m oB .500cos55m oC .500tan55m oD .500cos55m o【答案】B【解析】【分析】根据已知利用∠D 的余弦函数表示即可.【详解】 在Rt △BDE 中,cosD=DE BD, ∴DE=BD •cosD=500cos55°.故选B .【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.10.如图,ABC ∆是一张顶角是120︒的三角形纸片,,6AB AC BC ==现将ABC ∆折叠,使点B 与点A 重合,折痕DE ,则DE 的长为( )A .1B .2C 2D 3【答案】A【解析】【分析】 作AH ⊥BC 于H ,根据等腰三角形的性质求出BH ,根据翻折变换的性质求出BD ,根据正切的定义解答即可.【详解】解:作AH ⊥BC 于H ,∵AB=AC ,AH ⊥BC ,BH=12BC=3, ∵∠BAC=120°,AB=AC ,∴∠B=30°,∴AB=30BH cos=23, 由翻折变换的性质可知,DB=DA=3,∴DE=BD •tan30°=1,故选:A .【点睛】此题考查翻折变换的性质、勾股定理的应用,解题关键在于掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.如图,平面直角坐标系中,A (8,0),B (0,6),∠BAO ,∠ABO 的平分线相交于点C ,过点C 作CD ∥x 轴交AB 于点D ,则点D 的坐标为( )A .( 163,2) B .( 163,1) C .( 83,2) D .(83,1) 【答案】A【解析】【分析】 延长DC 交y 轴于F ,过C 作CG ⊥OA 于G ,CE ⊥AB 于E ,根据角平分线的性质得到FC =CG =CE ,求得DH =CG =CF ,设DH =3x ,AH =4x ,根据勾股定理得到AD =5x ,根据平行线的性质得到∠DCA =∠CAG ,求得∠DCA =∠DAC ,得到CD =HG =AD =5x ,列方程即可得到结论.【详解】解:延长DC交y轴于F,过C作CG⊥OA于G,CE⊥AB于E,∵CD∥x轴,∴DF⊥OB,∵∠BAO,∠ABO的平分线相交于点C,∴FC=CG=CE,∴DH=CG=CF,∵A(8,0),B(0,6),∴OA=8,OB=6,∴tan∠OAB=DHAH=OBOA=34,∴设DH=3x,AH=4x,∴AD=5x,∵CD∥OA,∴∠DCA=∠CAG,∵∠DAC=∠GAC,∴∠DCA=∠DAC,∴CD=HG=AD=5x,∴3x+5x+4x=8,∴x=23,∴DH=2,OH=163,∴D(163,2),故选:A.【点睛】本题考查了等腰三角形的判定和性质,进行的判定和性质,解直角三角形,正确的作出辅助线构造矩形和直角三角形是解题的关键.12.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若4BC=,1DE AF==,则GF的长为()A .135B .125C .195D .165【答案】A【解析】【分析】根据正方形的性质以及勾股定理求得5BE CF ==,证明BCE CDF ∆≅∆,根据全等三角形的性质可得CBE DCF ∠=∠,继而根据cos cos BC CG CBE ECG BE CE∠=∠==,可求得CG 的长,进而根据GF CF CG =-即可求得答案.【详解】∵四边形ABCD 是正方形,4BC =,∴4BC CD AD ===,90BCE CDF ∠=∠=︒,∵1AF DE ==,∴3DF CE ==, ∴22345BE CF =+=,在BCE ∆和CDF ∆中, BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴()BCE CDF SAS ∆≅∆,∴CBE DCF ∠=∠,∵90CBE CEB ECG CEB CGE ∠+∠=∠+∠=︒=∠,cos cos BC CG CBE ECG BE CE ∠=∠==, ∴453CG =,125CG =, ∴1213555GF CF CG =-=-=, 故选A.【点睛】 本题考查了正方形的性质,勾股定理,全等三角形的判定与性质,三角函数等知识,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.13.如图,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x轴上,将Rt△AOB绕点O顺时针旋转至△RtA'OB',其中点B'落在反比例函数y=﹣2x的图象上,OA'交反比例函数y=kx的图象于点C,且OC=2CA',则k的值为()A.4 B.72C.8 D.7【答案】C【解析】【详解】解:设将Rt△AOB绕点O顺时针旋转至Rt△A'OB'的旋转角为α,OB=a,则OA=3a,由题意可得,点B′的坐标为(acosα,﹣asinα),点C的坐标为(2asinα,2acosα),∵点B'在反比例函数y=﹣2x的图象上,∴﹣asinα=﹣2acosα,得a2sinαcosα=2,又∵点C在反比例函数y=kx的图象上,∴2acosα=k2asinα,得k=4a2sinαcosα=8.故选C.【点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C的坐标,再通过反比例函数的性质求解即可.14.如图,已知△A1B1C1的顶点C1与平面直角坐标系的原点O重合,顶点A1、B1分别位于x轴与y轴上,且C1A1=1,∠C1A1B1=60°,将△A1B1C1沿着x轴做翻转运动,依次可得到△A2B2C2,△A3B3C3等等,则C2019的坐标为()A .(2018+6723,0)B .(2019+6733,0)C .(40352+6723,3)D .(2020+6743,0) 【答案】B【解析】【分析】根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.【详解】由题意知,111C A =,11160C A B ︒∠=,则11130C B A ︒∠=,11222A B A B ==,1122333C B C B C B ===,结合图形可知,三角形在x 轴上的位置每三次为一个循环,Q 20193673÷=,∴2019673(123)20196733OC =++=+,∴2019C (20196733,0)+,故选B .【点睛】考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.15.如图,在平面直角坐标系中,AOB ∆的顶点B 在第一象限,点A 在y 轴的正半轴上,2AO AB ==,120OAB ∠=o ,将AOB ∠绕点O 逆时针旋转90o ,点B 的对应点'B 的坐标是( )A .3(23)2--B .33(2222---C .3(3,22--D .(3)-【解析】【分析】过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==22=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M =,'1A M =,∴OM=2+1=3,∴'B 的坐标为(3,3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.16.如图,△ABC 的顶点是正方形网格的格点,则cos A =( )A .12B .22C 3D 5 【答案】B【解析】【分析】构造全等三角形,证明△ABD 是等腰直角三角形,进行作答.过A作AE⊥BE,连接BD,过D作DF⊥BF于F.∵AE=BF,∠AEB=∠DFB,BE=DF,∴△AEB≌△BFD,∴AB=DB.∠ABD=90°,∴△ABD是等腰直角三角形,∴cos∠DAB=2 .答案选B.【点睛】本题考查了不规则图形求余弦函数的方法,熟练掌握不规则图形求余弦函数的方法是本题解题关键.17.如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是()A 213B313C.23D13【答案】B【解析】【分析】首先证明△ABF≌△DEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到12•x•x+•x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.【详解】∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,∴∠ABF =∠EAD ,在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622xx x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2, 在Rt △BEF 中,222313BE =+=,∴313cos 1313BF EBF BE ∠===. 故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.18.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和OE ,然后三角形的面积公式可得S △ODE=4OE 2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC=212即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC V 是等边三角形,点O 是ABC V 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30°∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120°∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COEBO COOBD OCE∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE V 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30°∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=2OE∴∴S △ODE =12DE·2∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a ×33=36a ∴S △ODE 3223 ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =12BC·OE′=231223=14×2312a ∴S △ODE ≤14S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE 23 ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE V 的周长最小∵3OE∴OE 最小时,DE 最小而OE 的最小值为3 ∴DE 33=12a ∴BDE V 的周长的最小值为a +12a =1.5a ,故④正确;综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.19.如图,一架飞机在点A 处测得水平地面上一个标志物P 的俯角为α,水平飞行m 千米后到达点B 处,又测得标志物P 的俯角为β,那么此时飞机离地面的高度为( )A .cot cot m αβ-千米B .cot cot m βα-千米C .tan tan m αβ-千米 D .tan tan m βα-千米【答案】A【解析】【分析】根据锐角三角函数的概念进行作答.【详解】在P 点做一条直线垂直于直线AB 且交于点O ,由锐角三角函数知,AO=PO cot α,BO=PO cot β,又AB=m=AO-BO= PO cot α- PO cot β=cot cot m αβ-. 所以答案选A. 【点睛】本题考查了锐角三角函数的概念,熟练掌握锐角三角函数是本题解题关键.20.如图,在矩形ABCD 中E 是CD 的中点,EA 平分,BED PE AE ∠⊥交BC 于点P ,连接PA ,以下四个结论:①EB 平分AEC ∠;②PA BE ⊥;③3AD AB =;④2PB PC =.其中结论正确的个数是( )A.4个B.3个C.2个D.1个【答案】A【解析】【分析】根据矩形的性质结合全等三角形的判定与性质得出△ADE≌△BCE(SAS),进而求出△ABE 是等边三角形,再求出△AEP≌△ABP(SSS),进而得出∠EAP=∠PAB=30°,再分别得出AD与AB,PB与PC的数量关系即可.【详解】解:∵在矩形ABCD中,点E是CD的中点,∴DE=CE,又∵AD=BC,∠D=∠C,∴△ADE≌△BCE(SAS),∴AE=BE,∠DEA=∠CEB,∵EA平分∠BED,∴∠AED=∠AEB,∴∠AED=∠AEB=∠CEB=60°,故:①EB平分∠AEC,正确;∴△ABE是等边三角形,∴∠DAE=∠EBC=30°,AE=AB,∵PE⊥AE,∴∠DEA+∠CEP=90°,则∠CEP=30°,故∠PEB=∠EBP=30°,则EP=BP,又∵AE=AB,AP=AP,∴△AEP≌△ABP(SSS),∴∠EAP=∠PAB=30°,∴AP⊥BE,故②正确;∵∠DAE=30°,∴tan∠DAE=DEAD=tan30°=33,∴AD,即2AD=,∵AB=CD,∴③AD AB=正确;∵∠CEP=30°,∴CP=12 EP,∵EP=BP,∴CP=12 BP,∴④PB=2PC正确.综上所述:正确的共有4个.故选:A.【点睛】此题主要考查了四边形综合,全等三角形的判定与性质,等边三角形的判定与性质,含30度角的直角三角形性质以及三角函数等知识,证明△ABE是等边三角形是解题关键.。
锐角三角函数(附答案)

教材过关二十八 锐角三角函数一、填空题1.在直角三角形中,斜边和一直角边的比是5∶3,最小角为α,则sin α=_______________,cos α=_________________,tan α=__________________. 答案:53 54 43 提示:假如两边长分别为5、3,则另一边为4,且3所对的角最小,由此可得答案. 2.在△ABC 中,若︱sinA-21︱+(23-cosB)2=0, 则∠C=___________________. 答案:120° 提示:由sinA=21,可得∠A=30°, 由cosB=23,得∠B=30°,则∠C=120°. 3.6tan 230°-3sin60°-2cos45°=__________________. 答案:21-2 提示:tan30°=33,sin60°=23,cos45°=22. 4.等腰三角形的两条边长分别是 4 cm ,9 cm ,则等腰三角形的底角的余弦值是________________. 答案:92 提示:三角形三边只能为4,9,9.5.若∠A 为锐角,且tan 2A+2tanA-3=0,则∠A=__________________. 答案:45°提示:解这个一元二次方程,可得tanA 的值,但∠A 为锐角,所以只能取正值. 6.如图9-43,AB 、CD 是两栋楼,且AB=CD=30 m,两楼间距AC=24 m,当太阳光与水平线的夹角为30°时,AB 楼在CD 楼上的影子是m.(精确到0.1 m )图9-43答案:16.2提示:画出图形,解直角三角形. 二、选择题7.在△ABC 中,∠C=90°,下列式子正确的是A.b=atanAB.b=csinAC.a=ccosBD.c=asinA 答案:C 提示:因为cosB=ca,所以a=ccosB. 8.在Rt △ABC 中,各边都扩大四倍,则锐角A 的各三角函数值 A.没有变化 B.分别扩大4倍 C.分别缩小到原来的41D.不能确定 答案:A提示:因为各边都扩大四倍,它们的比值不变,故三角函数值也不变. 9.在Rt △ABC 中, 2sin(α+20°)=3,则锐角α的度数是A.60°B.80°C.40°D.以上结论都不对 答案:C提示:2sin(α+20°)=3,得sin(α+20°)=23, 所以α+20°=60°,α=40°.10.在Rt △ABC 中, ∠C=90°,已知tanB=25,则cosA 等于 A.25 B.35 C.552 D.32答案:B 提示:∵tanB=25,a b =25,可令b=5,a=2,则c=3,cosA=35. 11.有一个角是30°的直角三角形,斜边为1 cm ,则斜边上的高为 A.41 cm B.21cmC.43 cm D.23 cm 答案:C 提示:直角三角形中30°角所对的边等于斜边的一半,求出两直角边再利用面积或射影定理. 三、解答题12.(2010四川泸洲中考)如图9-44,在一次实践活动中,小兵从A 地出发,沿北偏东45°方向行进了53千米到达B 地,然后再沿北偏西45°方向行进了5千米到达目的地点C.图9-44(1)求A 、C 两地之间的距离;(2)试确定目的地C 在点A 的什么方向? 解:根据题意,可知∠ABC=90°,∵AB=53,BC=5, AC 2=AB 2+BC 2 =75+25 =100.∴AC=10千米.(2)在Rt △ABC 中,tan ∠BAC=AB BC =355=33, ∴∠BAC=30°.∴C 在点A 的北偏东15°.提示:根据方向角,先确定出△ABC 是直角三角形,可用勾股定理求AC,再利用三角函数求出CA.13.如图9-45,用测角仪测得铁塔顶点A 的仰角为30°,测角仪离铁塔中心线AB 的距离为40米,测角仪CD 高1.5米,求铁塔的高度.(精确到0.1米)图9-45答案:24.6米.提示:铁塔的高度AB=40tan30°+1.5≈24.6(米). 14.如图9-46,河对岸有铁塔AB ,在C 处测得塔顶A 的仰角为30°,向塔前进14米到达D ,在D 处测得A 的仰角为45°,求铁塔AB 的高.图9-46解:在Rt △ABD 中, ∵tan ∠ADB=BDAB=1,∴BD=AB. 又在Rt △ABC 中,∵tanC=BC AB =33, ∴BC=30tan AB=3AB.又∵BC-BD=14,∴3AB-AB=14. ∴AB=7(3+1)(米).15.如图9-47,水面上有一浮标,在高于水面1米的地方观察,测得浮标顶的仰角30°,同时测得浮标在水中的倒影顶端俯角45°,观察时水面处于平静状态,求水面到浮标顶端的高度.(精确到0.1米)图9-47答案:3.7米.提示:过A 作AD ⊥BC 于D,则∠BAD=30°,∠DAC=45°. 设BD=x,则AD=xcot30°.又AD=DC 且BE=DC,即x+1=xcot30°. 求得x ≈2.73.∴BE=2.73+1≈3.7(米).16.如图9-48,在一次暖气管道的铺设工作中,工程是由A 点出发沿正西方向进行的,在A 点的南偏西60°的方向上有一所学校,学校占地是以B 点为中心方圆100米的圆形,当工程进行了200米时到达C 处,此时B 在C 的南偏西30°的方向上,请根据题中所提供的信息计算、分析一下,工程继续进行下去,是否会穿过学校?图9-48解:过B 作BD ⊥AC 于D,在Rt △BCD 中,∠BCD=60°,∵tan60°=CD BD ,∴CD=︒60tan BD. 同理,在Rt △BAD 中,AD=︒30tan BD,又∵AD-CD=200,∴3BD-33BD=200. ∴BD=1003>100.∴不会穿过学校.。
锐角三角函数练习题及答案

锐角三角函数(一)1.把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A,A′的余弦值的关系为()A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定2.如图1,已知P是射线OB上的任意一点,PM⊥OA于M,且PM:OM=3:4,则cosα的值等于()A.34 B.43 C.45 D .35图 1 图 2 图3 图4图53.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,则下列各项中正确的是()A.a=c·sinB B.a=c·cosB C.a=c·tanB D.以上均不正确4.在Rt△ABC中,∠C=90°,cosA=23,则tanB等于()A.35 B.53 C.255 D.525.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA=______,cosA=______,•tanA=_______.6.如图2,在△ABC中,∠C=90°,BC:AC=1:2,则sinA=_______,cosA=______,tanB=______.7.如图3,在Rt△ABC中,∠C=90°,b=20,c=202,则∠B的度数为_______.8.如图4,在△CDE中,∠E=90°,DE=6,CD=10,求∠D的三个三角函数值.9.已知:α是锐角,tanα=724,则sinα=_____,cosα=_______.10.在Rt△ABC中,两边的长分别为3和4,求最小角的正弦值为10.如图5,角α的顶点在直角坐标系的原点,一边在x轴上,•另一边经过点P(2,23),求角α的三个三角函数值.12.如图,在△ABC中,∠ABC=90°,BD⊥AC于D,∠CBD=α,AB=3,•BC=4,•求sinα,cosα,tanα的值.解直角三角形一、填空题1. 已知cosA=23,且∠B=900-∠A ,则sinB=__________.2. 在Rt △ABC 中,∠C 为直角,cot(900-A)=1.524,则tan(900-B)=_________.3. ∠A 为锐角,已知sinA=135,那么cos (900-A)=___________.4. 已知sinA=21(∠A 为锐角),则∠A=_________,cosA_______,tanA=__________.5. 用不等号连结右面的式子:cos400_______cos200,sin370_______sin420.6. 若cot α=0.3027,cot β=0.3206,则锐角α、β的大小关系是______________. 7. 计算: 2sin450-3tan600=____________. 8. 计算: (sin300+tan450)·cos600=______________.9. 计算: tan450·sin450-4sin300·cos450+6cot600=__________.10. 计算: tan 2300+2sin600-tan450·sin900-tan600+cos 2300=____________. 二、选择题:1. 在Rt △ABC 中,∠C 为直角,AC=4,BC=3,则sinA=( )A . 43;B . 34;C .53;D . 54.2. 在Rt △ABC 中,∠C 为直角,sinA=22,则cosB 的值是( )A .21;B .23;C .1;D .223. 在Rt △ABC 中,∠C 为直角,∠A=300,则sinA+sinB=( )A .1;B .231+;C .221+;D .414. 当锐角A>450时,sinA 的值( )A .小于22; B .大于22; C .小于23; D .大于235. 若∠A 是锐角,且sinA=43,则( )A .00<∠A<300; B .300<∠A<450;C .450<∠A<600;D . 600<∠A<9006. 当∠A 为锐角,且tanA 的值大于33时, ∠A( )A .小于300; B .大于300; C .小于600; D .大于6007. 如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D ,已知AC=3,AB=5,则tan ∠BCD 等于( )A .43;B .34;C .53;D .548. Rt △ABC 中,∠C 为直角,AC=5,BC=12,那么下列∠A 的四个三角函数中正确的是( )A . sinA=135; B .cosA=1312; C . tanA=1213;D . cotA=1259. 已知α为锐角,且21<cos α<22,则α的取值范围是( )A .00<α<300;B .600<α<900;C .450<α<600;D .300<α<450.三、解答题1、 在△ABC 中,∠C 为直角,已知AB=23,BC=3,求∠B 和AC .2、在△ABC 中,∠C 为直角,直角边a=3cm ,b=4cm ,求sinA+sinB+sinC 的值.3、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知b=3, c=14. 求∠A 的四个三角函数.4、在△ABC 中,∠C 为直角,不查表解下列问题: (1)已知a=5,∠B=600.求b ; (2)已知a=52,b=56,求∠A .5、在△ABC 中,∠C 为直角, ∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知a=25,b=215,求c 、∠A 、∠B .6、在Rt △ABC 中,∠C =90°,由下列条件解直角三角形: (1) 已知a =156, b =56,求c; (2) 已知a =20, c =220,求∠B ; (3) 已知c =30, ∠A =60°,求a ;(4) 已知b =15, ∠A =30°,求a .7、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.8、已知:如图,在山脚的C 处测得山顶A 的仰角为︒45,沿着坡度为︒30︒=∠30DCB ,400=CD 米),测得A 的仰角为︒60,求山的高度DCAB9、会堂里竖直挂一条幅AB,如图5,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度。
初三数学锐角三角函数试题答案及解析

初三数学锐角三角函数试题答案及解析1.(2014山东德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1︰2,则斜坡AB的长为()A.米B.米C.米D.24米【答案】B【解析】∵斜面坡度为1︰2,∴在Rt△ABC中,BC︰AC=1︰2,∴米,由勾股定理得米,故选B.2.(2013湖北十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A,B两点间的距离为________米.【答案】【解析】如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°-30°=45°,AC =30×25=750(米),∴米.在Rt△ABD中,易知∠B=30°,∴米.3.如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米的速度收绳.问:(1)未开始收绳子的时候,图中绳子BC的长度是多少米?(2)收绳8秒后船向岸边移动了多少米?(结果保留根号)【答案】见解析【解析】(1)在Rt△ABC中,,∴(米),∴绳子BC的长度是10米.(2)未收绳时,(米),收绳8秒后,绳子BC缩短了4米,只剩6米,这时,船与河岸的距离为(米),∴船向岸边移动的距离为米.4. (2014江苏无锡)如图,在□ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于________.【答案】【解析】如图,在直角△AOE中,,∴.又∵四边形ABCD是平行四边形,∴.5. (2014四川宜宾)规定:sin(-x)=-sinx,cos(-x)=cosx,sin(x+y)=sinx·cosy+cosx·siny.据此判断下列等式中成立的是________(写出所有正确的序号).①;②;③sin2x=2sinx·cosx;④sin(x-y)=sinx·cosy-cosx·siny.【答案】②③④【解析】①,故①错误;②sin75°=sin(30°+45°)=sin30°·cos45°+cos30°·sin45°,故②正确;③sin2x=sinx·cosx+cosx·sinx=2sinx·cosx,故③正确;④sin(x-y)=sinx·cos(-y)+cosx·sin(-y)=sinx·cosy-cosx·siny,故④正确.6. (2014浙江绍兴)某校九(1)班的同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图①,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求α的度数.(2)如图②,第二小组用皮尺量得EF的长为16米(E为护墙上的端点),EF的中点距离地面FB的高度为1.9米,请你求出E点距离地面FB的高度.(3)如图③,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P处测得旗杆顶端A的仰角为45°,向前走4米到达点Q处,测得A的仰角为60°,求旗杆的高度AE(精确到0.1米.参考数据:tan60°≈1.732,tan30°≈0.577,,).【解析】(1)∵BD=BC,∴∠CDB=∠DCB,∴α=2∠CDB=2×38°=76°.(2)设EF的中点为M,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,如图①.∴MN∥EH,又M为EF的中点,∴MN为△EFH的中位线,又∵MN=1.9米,∴EH=2MN=3.8米,∴E点距离地面FB的高度是3.8米.(3)延长AE,交PB于点C,如图②.设AE=x米,则AC=(x+3.8)米.∵∠APB=45°,∴PC=AC=(x+3.8)米.∵PQ=4米,∴CQ=x+3.8-4=(x-0.2)米.∵,∴,解得x≈5.7,即AE≈5.7米.答:旗杆的高度AE约为5.7米.7.(2014黑龙江大庆)如图,矩形ABCD中,,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=________.【答案】【解析】∵∠GAF=∠F=20°,∴∠AGC=∠ACG=40°,∴∠CAG=100°,∴∠DAC=60°,∴,∵,∴.8.如图所示,在△ABC中,∠C=90°,,D为AC上一点,∠BDC=45°,DC=6,求AB的长.【答案】15【解析】先解直角三角形BCD,求得BC=DC=6,再解直角三角形ABC,由正弦的定义可得,从而得.所以在较复杂的图形中求线段的长度时,有时要通过两次或更多次解直角三角形才能达到目的.因为∠C=90°,∠BDC=45°,所以∠DBC=45°,所以BC=DC=6.在Rt△ABC中,,所以,即AB的长为15.9. (2014江西抚州)如图①所示的晾衣架,支架的基本图形是菱形,其示意图如图②,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均为20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C,D两点间的距离.(2)当∠CED由60°变为120°时,点A向左移动了多少厘米?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据:,可使用科学计算器)【答案】(1)20cm(2)43.9cm(3)20≤x≤34.6【解析】(1)连接CD(如图①).∵CE=DE,∠CED=60°,∴△CED是等边三角形,∴CD=DE=20cm.(2)连接CD,根据题意得AB=BC=CD,当∠CED=60°时,AD=3CD=60cm.当∠CED=120°时,过点E作EH⊥CD于H(如图②),则∠CEH=60°,CH=HD.在Rt△CHE中,.∴(cm),∴cm,∴(cm).∴点A向左大约移动了103.9-60=43.9(cm).(3)连接CD,当∠CED=120°时,∠DEG=60°.又∵DE=EG,∴△DEG是等边三角形,∴DG=DE=20cm当∠CED=60°时(如图③),∠DEG=120°,过点E作EI⊥DG于点I.∵DE=EG.∴∠DEI=∠GEI=60°,DI=IG.在Rt△DIE中,,∴(cm).∴(cm).故x的取值范围是20≤x≤34.6.10. (2014贵州黔东南)某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校旗杆的高,小明站在点B处测得旗杆顶端E点的仰角为45°,小军站在点D处测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF.(结果精确到0.1米,参考数据:,)【答案】10.3米【解析】过点A作AM⊥EF于M,过点C作CN⊥EF于N,则MN=0.25米.∵∠EAM=45°,∴AM=ME.设AM=ME=x米,则CN=(x+6)米,EN=(x-0.25)米.∵∠ECN=30°,∴,解得x≈8.8,则EF=EM+MF≈8.8+1.5=10.3(米).∴旗杆的高EF约为10.3米.11.(2014四川广安)为邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图,已知斜坡AB的长为米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为,求休闲平台DE的长.(2)一座建筑物距离A点33米远(即AG=33米),小亮在D点处测得建筑物顶部H的仰角(即∠HDM)为30°.点B,C,A,G,H在同一个平面内,点C,A,G在同一条直线上,且HG⊥CG.问:建筑物的高GH为多少米?【答案】(1)米(2)米【解析】(1)∵FM∥CG,∴∠BDF=∠BAC=45°,∴BF=DF.∵斜坡AB的长为米,D是AB的中点,∴米,∴(米),∴BF=DF=30米.∵斜坡BE的坡比为,∴,∴(米),∴米.(2)由题意及(1)知CF=BF=AP=30米,又四边形MGCF为矩形,∴GM=FC=30米.设GH=x米,则MH=GH-GM=(x-30)米,DM=AG+AP=33+30=63(米).在Rt△DMH中,,即,解得.∴建筑物的高GH为米.12.(2014江苏镇江)如图,小明从点A出发,沿着坡角为α的斜坡向上走了0.65千米到达点B,,然后又沿着坡度为i=1︰4的斜坡向上走了1千米到达点C.问小明从A点到C点上升的高度CD是多少千米(结果保留根号)?【答案】【解析】如图,作BE⊥AD于E,BF⊥CD于F,则,∴.∵,∴设CF=x,则BF=4x,∴,∴.∵BE⊥AD,BF⊥CD,CD⊥AD,∴四边形BEDF是矩形,∴BE=DF.∴.答:小明从A点到C点上升的高度CD是千米.13.如图,在Rt△ABC中,∠C=90°,BC=8,,点D在BC上,且BD=AD.求AC 的长和cos∠ADC的值.【答案】4;【解析】在Rt△ABC中,∵BC=8,,∴AC=4.设AD=x,则BD=x,CD=8-x,由勾股定理,得(8-x)2+42=x2.解得x=5.∴.14.计算:(1);(2).【答案】(1)(2)1【解析】准确地掌握30°,45°,60°角的正弦、余弦、正切值是解题的关键.解:(1)(2).15.根据下列条件,求α的度数.(1)0°<α<90°,;(2)0°<α<90°,tan2α+2tanα-3=0.【答案】(1)60°(2)45°【解析】(1)因为,所以.又0°<α<90°,所以α=60°.(2)因为tan2α+2tanα-3=0,所以(tanα+3)·(tanα-1)=0,即tanα=-3或tanα=1,因为0°<α<90°,所以tanα>0,所以tanα=1,所以α=45°.16. (2014福建厦门)sin30°的值是( )A.B.C.D.1【答案】A【解析】直接根据特殊角的三角函数值进行计算即可..故选A.17. (2014贵州贵阳)在Rt△ABC中,∠C=90°,AC=12,BC=5,则sinA的值为( ) A.B.C.D.【答案】D【解析】如图所示,∵∠C=90°,AC=12,BC=5,∴,∴.18. (2014内蒙古包头)计算sin245°+cos30°·tan60°的结果是( )A.2B.1C.D.【答案】A【解析】原式.19.计算:(1).(2)cos245°+tan30°·sin60°=________.【答案】(1)2 (2)1【解析】(1).(2).20.用计算器求下列各式的值(结果保留小数点后四位):(1)sin89°;(2)cos45.32°;(3)tan60°25′41″;(4)sin67°28′35″.【答案】(1)0.9998 (2)0.7031 (3)1.7623 (4)0.9237【解析】(1)按键顺序为,显示结果为0.999847695,∴sin89°≈0.9998.(2)按键顺序为,显示结果为0.703146544,∴cos45.32°≈0.7031.(3)按键顺序为,显示结果为1.762327064,∴tan60°25′41″≈1.7623.(4)按键顺序为,显示结果为0.923721753,∴sin67°28′35″≈0.9237.。
2023年九年级中考数学一轮复习:锐角三角函数(含答案)

2023年中考数学一轮复习:锐角三角函数(含答案)一、单选题1.如图,在ABC 中, 45B ∠=︒ , 30C ∠=︒ ,分别以 A 、 B 为圆心,大于12AB 的长为半径画弧,两弧相交于点 D 、 E .作直线 DE ,交 BC 于点 M ;同理作直线 FG 交 BC 于点 N ,若 6AB = ,则 MN 的长为( )A .1B 3C .3D .232.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则sin∠OMN 的值为( )A .12B .1C .2 D 33.如图,在 Rt ABC 中, 9053C AB BC ∠=︒==,, ,则 sin B 的值为( )A .45B .34C .35D .43二、填空题4.cos60︒ = .5.两块等腰直角三角形纸片 AOB 和 COD 按图1所示放置,直角顶点重合在点O 处,210AB = , 4CD = .保持纸片 AOB 不动,将纸片 COD 绕点O 逆时针旋转 α()090α<<︒ .当BD 与 CD 在同一直线上(如图2)时, α 的正切值等于 .6.在 ABC ∆ 中, 903016ACB A AB ︒︒∠=∠==,, ,点 P 是斜边 AB 上一点,过点 P 作PQ AB ⊥ ,垂足为 P ,交边 AC (或边 CB )于点 Q ,设 AP x = ,当 APQ ∆ 的面积为 3时, x 的值为 .三、综合题7.如图,在直角三角形ABC 中,∠C =90°,∠A =30°,AC =4,将∠ABC 绕点A 逆时针旋转60°,使点B 落在点E 处,点C 落在点D 处.P 、Q 分别为线段AC 、AD 上的两个动点,且AQ =2PC ,连接PQ 交线段AE 于点M .(1)AQ = ,∠APQ 为等边三角形;(2)是否存在点Q ,使得∠AQM 、∠APQ 和∠APM 这三个三角形中一定有两个三角形相似?若存在请求出AQ 的长;若不存在请说明理由; (3)AQ = ,B 、P 、Q 三点共线.8.(1)计算:3tan30°-(cos60°)-1+8 cos45°+()1tan 60-︒(2)先化简,再求代数式 221(1)122x x x --÷++ 的值,其中x=4cos30°-tan45° 9.如图,AB 是∠O 的直径,点P 在∠O 上,且PA =PB ,点M 是∠O 外一点,MB 与∠O 相切于点B ,连接OM ,过点A 作AC OM 交∠O 于点C ,连接BC 交OM 于点D .(1)求证:MC是∠O的切线;(2)若152OB=,12BC=,连接PC,求PC的长.10.如图,在∠ABC中,过点C作CD//AB,E是AC的中点,连接DE并延长,交AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形;(2)若AB=6,∠BAC=60°,∠DCB=135°,求AC的长.11.如图,∠ABC内接于∠O,AB是∠O的直径,∠O的切线AP与OC的延长线相交于点P,∠P=∠BCO.(1)求证:AC=PC;(2)若AB=6 3,求AP的长.12.(12744 sin603233-︒-(2)先化简,再求值:342111xxx x-⎛⎫+-÷⎪--⎝⎭,其中22x=.13.如图,以AB为直径作O,过点A作O的切线AC,连接BC,交O于点D,点E是BC边的中点,连结AE.(1)求证: 2AEB C ∠=∠ ; (2)若 5AB = , 3cos 5B =,求 DE 的长. 14.(1)计算: 2cos 45sin 30tan 45︒︒︒+⋅ . (2)求二次函数 21212y x x =++ 图象的顶点坐标. 15. 如图,直线y =-x +b 与反比例函数 3y x=-的图象相交于点A (a ,3),且与x 轴相交于点B .(1) 求a 、b 的值;(2) 若点P 在x 轴上,且∠AOP 的面积是∠AOB 的面积的12,求点P 的坐标. 16.如图, PA 、 PB 为O 的切线,A 、B 为切点,点C 为半圆弧的中点,连 AC 交 PO于E 点.(1)求证: PB PE = ; (2)若 3tan 5CPO ∠=,求 sin PAC ∠ 的值. 17.(120313213(202248)64---⨯--().(2)先化简,再求值:2243()22ab a ba b a b b a a b---⨯÷+-+,代入你喜欢的a ,b 值求结果. 18.矩形AOBC 中,OB =4,OA =3,分别以OB ,OA 所在直线为x 轴,y 轴,建立如图所示的平面直角坐标系,F 是BC 边上一个动点(不与B ,C 重合),过点F 的反比例函数 ky x= (k >0)的图象与边AC 交于点E.(1)当点F 为边BC 的中点时,求点E 的坐标; (2)连接EF ,求∠EFC 的正切值.19.如图1,已知矩形ABCD 中,AB=6,BC=8,O 是对角线AC 的中点,点E 从A 点沿AB 向点B运动,运动过程中连接OE ,过O 作OF∠OE 交BC 于F ,连接EF ,(1)当点E 与点A 重合时,如图2,求 tan OEF ∠ 的值;(2)运动过程中, tan OEF ∠ 的值是否与(1)中所求的值保持不变,并说明理由; (3)当EF 平分∠OEB 时,求AE 的长.20.如图1,已知二次函数()20y ax bx c a =++>的图象与x 轴交于点()10A -,、()20B ,,与y 轴交于点C ,且2tan OAC ∠=.(1)求二次函数的解析式;(2)如图2,过点C 作CD x 轴交二次函数图象于点D ,P 是二次函数图象上异于点D 的一个动点,连接PB 、PC ,若PBCBCDSS=,求点P 的坐标;(3)如图3,若点P 是二次函数图象上位于BC 下方的一个动点,连接OP 交BC 于点Q.设点P 的横坐标为t ,试用含t 的代数式表示PQ OQ 的值,并求PQOQ的最大值. 21.如图1,四边形 ABCD 内接于O , BD 为直径, AD 上存在点E ,满足AE CD = ,连结 BE 并延长交 CD 的延长线于点F , BE 与 AD 交于点G.(1)若 DBC α∠= ,请用含 α 的代数式表列 AGB ∠ . (2)如图2,连结 ,CE CE BG = .求证; EF DG = . (3)如图3,在(2)的条件下,连结 CG , 2AG = . ①若 3tan 2ADB ∠=,求 FGD 的周长. ②求 CG 的最小值.22.如图,直线364y x =+分别与x 轴、y 轴交于点A 、B ,点C 为线段AB 上一动点(不与A 、B 重合),以C 为顶点作OCD OAB ∠=∠,射线CD 交线段OB 于点D ,将射线OC 绕点O 顺时针旋转90︒交射线CD 于点E ,连接BE .(1)证明:CD ODDB DE=;(用图1) (2)当BDE 为直角三角形时,求DE 的长度;(用图2) (3)点A 关于射线OC 的对称点为F ,求BF 的最小值.(用图3)23.如图,在二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象与x 轴交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D.其对称轴与线段BC 交于点E ,与x 轴交于点F.连接AC ,BD.(1)求A ,B ,C 三点的坐标(用数字或含m 的式子表示),并求 OBC ∠ 的度数; (2)若 ACO CBD ∠=∠ ,求m 的值;(3)若在第四象限内二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象上,始终存在一点P ,使得 75ACP ∠=︒ ,请结合函数的图象,直接写出m 的取值范围.24.如图,已知 AB 是O 的直径,点 E 是O 上异于 A , B 的点,点 F 是 EB 的中点,连接 AE , AF , BF ,过点 F 作 FC AE ⊥ 交 AE 的延长线于点 C ,交 AB 的延长线于点 D , ADC ∠ 的平分线 DG 交 AF 于点 G ,交 FB 于点 H .(1)求证: CD 是 O 的切线;(2)求 sin FHG ∠ 的值; (3)若 GH 42=, HB 2= ,求 O 的直径.25.如图,在平面直角坐标系中,二次函数 ()240y ax bx a =++≠ 的图象经过 ()3,0A - ,()4,0B 两点,且与 y 轴交于点 C .点 D 为 x 轴负半轴上一点,且 BC BD = ,点 P ,Q 分别在线段 AB 和 CA 上.(1)求这个二次函数的表达式.(2)若线段 PQ 被 CD 垂直平分,求 AP 的长. (3)在第一象限的这个二次函数的图象上取一点 G ,使得 GCBGCASS= ,再在这个二次函数的图象上取一点 E (不与点 A , B , C 重合),使得 45GBE ∠=︒ ,求点 E 的坐标.参考答案1.【答案】A【解析】【解答】如解图,连接AM、AN,由作法可知,DE、FG分别为线段AB、AC的垂直平分线,∴AM=BM,AN=CN.∵∠B=45°,∠C=30°,∴∠BAM=45°,∠CAN=30°.∴∠AMB=∠AMC=90°.∴∠MAN=90°−∠C−∠CAN=30°.∵AB= 6,∴AM= 3,∴MN=AM·tan30°=1,故答案为:A.【分析】利用线段垂直平分线的性质得到AM=BM,AN=CN,∠BAM=45°,∠CAN=30°.求得∠MAN=90°−∠C−∠CAN=30°,利用特殊角的三角函数值即可求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数基础练习题(含答案)
一、选择题
1.当为锐角时,表示的是( )
A.一个角B.一个无理数C.一个负数 D.一个正数
2.在中,,,那么( )
A.B.C. D.
3.根据图中信息,经过估算计算的结果,(精确到是( )
A.B.
C.D.
4.已知:如图,O是的外接圆,AD是O的直径,连接CD,若O的半径,,
则的值是( )
A.B.
C.D.
5.如图,CD是平面镜,光线从A点出发经CD上点E反射后照射到B点,若入射角为,于,
于,且,,则
的值为( )
A.B.
C.D.
二、填空题
6.若的补角是,则=________,________.
7.已知:如图,的一边BC与以AC为直径的O相切于点C,若
,则________.
8.________.
9.,锐角的度数为________.
10.已知:是方程的一个根,是三角形的一个内角,那么的值
为________.
参考答案
1.D 2.B 3.B 4.B 5.D
6.60°,7. 8. 9.10.。