2016年 高考真题 天津卷 理科数学 (含答案解析)
高考数学(理)真题专题汇编:平面向量

高考数学(理)真题专题汇编:平面向量一、选择题1.【来源】2019年高考真题——理科数学(北京卷)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件2.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .-3 B .-2C .2D .33.【来源】2019年高考真题——理科数学(全国卷Ⅰ) 已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π64.【来源】2018年高考真题——理科数学(天津卷)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则⋅AE BE 的最小值为(A) 2116(B) 32(C) 2516(D) 35.【来源】2018年高考真题——理科数学(全国卷II ) 已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )= A .4B .3C .2D .06.【来源】2018年高考真题——理科数学(全国卷Ⅰ) 在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=A.43AB -41ACB. 41AB -43AC C. 43AB +41AC D. 41AB +43AC7.【来源】2016年高考真题——理科数学(天津卷)已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则BC AF ⋅的值为( )(A )85-(B )81(C )41(D )8118.【来源】2017年高考真题——数学(浙江卷)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记I 1=OB OA ⋅,I 2=OC OB ⋅,I 3=OD OC ⋅,则A .I 1<I 2<I 3B .I 1<I 3 <I 2C .I 3<I 1<I 2D . I 2<I 1<I 39.【来源】2017年高考真题——理科数学(全国Ⅲ卷)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为()A .3B .22C 5D .210.【来源】2017年高考真题——理科数学(全国Ⅱ卷)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则)(PC PB PA +⋅的最小值是( )A.-2B.23-C. 43-D.-111.【来源】2016年高考真题——理科数学(新课标Ⅱ卷)12.【来源】2014高考真题理科数学(福建卷)在下列向量组中,可以把向量()2,3=a 表示出来的是( ) A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e e C.)10,6(),5,3(21==e e D.)3,2(),3,2(21-=-=e e二、填空题13.【来源】2019年高考真题——数学(浙江卷)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.14.【来源】2019年高考真题——理科数学(天津卷)在四边形ABCD 中,,23,5,30ADBC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅= . 15.【来源】2019年高考真题——理科数学(全国卷Ⅲ)已知a ,b 为单位向量,且a ·b =0,若25=-c a b ,则cos ,<>=a c ___________. 16.【来源】2019年高考真题——理科数学(全国卷Ⅰ)已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.17.【来源】2019年高考真题——数学(江苏卷)如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.18.【来源】2018年高考真题——数学理(全国卷Ⅲ)已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________. 19.【来源】2018年高考真题——数学(江苏卷)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . 20.【来源】2017年高考真题——数学(浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是_______.21.【来源】2017年高考真题——数学(江苏卷)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若20≤⋅PB PA ,则点P 的横坐标的取值范围是 .22.【来源】2017年高考真题——数学(江苏卷)如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,2,OA 与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°。
三角恒等变换精讲精析(解析版)

三角恒等变换精讲精析点点突破热门考点01 两角和与差的三角函数公式的应用两角和与差的正弦、余弦、正切公式 C (α-β):cos(α-β)=cos αcos β+sin αsin β; C (α+β):cos(α+β)=cos αcos_β-sin_αsin β; S (α+β):sin(α+β)=sin αcos β+cos αsin β; S (α-β):sin(α-β)=sin_αcos_β-cos αsin β; T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.变形公式:tan α±tan β=tan(α±β)(1∓tan αtan β);)4sin(2cos sin πααα±=±.sin αsin β+cos(α+β)=cos αcos β,cos αsin β+sin(α-β)=sin αcos β,函数f(α)=acos α+bsin α(a,b 为常数),可以化为f(α)=a 2+b 2sin(α+φ)或f(α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.【典例1】(2020·全国高考真题(文))已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭( )A .12B C .23D 【答案】B 【解析】由题意可得:1sin sin cos 122θθθ++=,则:3sin cos 122θθ+=,1sin cos 223θθ+=,从而有:sin coscos sin66ππθθ+=,即sin 6πθ⎛⎫+= ⎪⎝⎭故选:B.【典例2】(2020·全国高考真题(理))已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A .–2 B .–1C .1D .2【答案】D 【解析】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D.【典例3】(2018·全国高考真题(理))已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.【答案】12-【解析】 因为,所以,①因为,所以,②①②得,即, 解得, 故本题正确答案为【典例4】(2018·全国高考真题(文))已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________. 【答案】32. 【解析】5tan tan5tan 114tan 541tan 51tan tan 4παπααπαα--⎛⎫-=== ⎪+⎝⎭+⋅,解方程得3tan 2α=. 【方法技巧】1.三角公式化简求值的策略(1)使用两角和、差及倍角公式,首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用. (3)使用公式求值,应注意配方法、因式分解和整体代换思想的应用. 2.注意三角函数公式逆用和变形用的两个问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.热门考点02 二倍(半)角公式的运用二倍角的正弦、余弦、正切公式: S 2α:sin 2α=2sin_αcos_α;C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;T 2α:tan 2α=2tan α1-tan 2α.变形公式:降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2配方变形:1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)21±sin α=⎝ ⎛⎭⎪⎫sin α2±co s α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2【典例5】(2019·全国高考真题(理))已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=( )A .15 B .5C D 【答案】B 【解析】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin α∴=,故选B . 【典例6】(2019·河南高三(理))若34tan 43πθ⎛⎫-=- ⎪⎝⎭,则tan 2θ=( ) A .725-B .725C .724-D .724【答案】C 【解析】 因为34tan 43πθ⎛⎫-=- ⎪⎝⎭,所以tan 141tan 3θθ+=--,解得tan 7θ=,从而22tan 7tan21tan 24θθθ==--. 故选:C 【总结提升】1.运用两角和与差的三角函数公式时,不但要熟练,准确,而且要熟悉公式的逆用及变形,如tan α+tanβ=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.2.应熟悉公式的逆用和变形应用,公式的正用是常见的,但逆用和变形应用则往往容易被忽视,公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力,只有熟悉了公式的逆用和变形应用后,才能真正掌握公式的应用.提醒:在T (α+β)与T (α-β)中,α,β,α±β都不等于k π+π2(k ∈Z ),即保证tan α,tan β,tan(α+β)都有意义;若α,β中有一角是k π+π2(k ∈Z ),可利用诱导公式化简.热门考点03 三角函数恒等变换中“角、名、式”的变换(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.【典例7】(2019·上海市向明中学高一期中)已知tan 1α=,()3sin sin 2βαβ=+,则()tan αβ+=______.【答案】2 【解析】因为()βαβα=+-,()2αβαβα+=++, 所以()3sin sin 2βαβ=+即()()()()3sinsin αβααβα+-=++,即()()()()3sin cos 3cos sin sin cos cos sin αβααβααβααβα+-+=+++, 所以()()2sin cos 4cos sin αβααβα+=+, 所以()2tan 4tan 4αβα+==, 所以()tan 2αβ+=. 故答案为:2【典例8】(2019·宁夏银川一中高三)已知,2παπ⎛⎫∈ ⎪⎝⎭,1tan 47πα⎛⎫+= ⎪⎝⎭,则sin cos αα+=____.【答案】15- 【解析】 ∵1tan 47πα⎛⎫+= ⎪⎝⎭ ∴1tan 11tan 7αα+=-解得3tan 4α=-, ∵,2παπ⎛⎫∈ ⎪⎝⎭,∵22sin cos 1αα+=…①sin tan cos ααα=,…② 解①②得34sin ,cos 55αα==-∴341sin cos 555αα+=-=-.故答案为:15-.【典例9】(2018届河南省郑州外国语学校高三第十五次调研)已知,满足,则的最大值为______.【答案】.【解析】由, 得化为,,,的最大值为,故答案为.【典例10】求证:ααπαcos 1)24tan(1tan =++. 【解析】左边=sin αcos α+)24sin()24cos(απαπ++ )24sin(cos )24cos(cos )24sin(sin απααπααπα++++=)24sin(cos )24cos(απαααπ+-+=)24sin(cos )24cos(απααπ+-===++=ααπααπcos 1)24sin(cos )24sin(=右边. 故原式得证.【典例11】(2018·浙江高考真题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455--,). (Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=513,求cos β的值. 【答案】(Ⅰ)45;(Ⅱ)5665- 或1665.【解析】(Ⅰ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得4sin 5α=-, 所以()4sin πsin 5αα+=-=. (Ⅱ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得3cos 5α=-,由()5sin 13αβ+=得()12cos 13αβ+=±. 由()βαβα=+-得()()cos cos cos sin sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=. 【总结提升】1.三角函数式的化简遵循的三个原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的变换,从而正确使用公式. (2)二看“名”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”或“弦化切”. (3)三看“形”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”“遇到平方要降幂”等. 2.三角函数式化简的方法(1)弦切互化,异名化同名,异角化同角,降幂或升幂.(2)在三角函数式的化简中“次降角升”和“次升角降”是基本的规律,根号中含有三角函数式时,一般需要升次,去掉根号. 3.三角恒等式的证明方法(1)从等式的比较复杂的一边化简变形到另一边,相当于解决化简题目. (2)等式两边同时变形,变形后的结果为同一个式子.(3)先将要证明的式子进行等价变形,再证明变形后的式子成立.提醒:开平方时正负号的选取易出现错误,所以要根据已知和未知的角之间的关系,恰当地把角拆分,根据角的范围确定三角函数的符号.热门考点04 函数y =Asin(ωx +φ)的图象及其性质1.函数的解析式(1)()sin y A x ωϕ=+的有关概念(2)用五点法画sin y A x =+一个周期内的简图用五点法画()sin y A x ωϕ=+一个周期内的简图时,要找五个关键点,如下表所示:2.函数图象的变换(平移变换和上下变换) 平移变换:左加右减,上加下减把函数()y f x =向左平移()0ϕϕ>个单位,得到函数()y f x ϕ=+的图象; 把函数()y f x =向右平移()0ϕϕ>个单位,得到函数()y f x ϕ=-的图象;+网】 把函数()y f x =向上平移()0ϕϕ>个单位,得到函数()y f x ϕ=+的图象; 把函数()y f x =向下平移()0ϕϕ>个单位,得到函数()y f x ϕ=-的图象. 伸缩变换:把函数()y f x =图象的纵坐标不变,横坐标伸长到原来的1ω,得到函数()()01y fx ωω=<<的图象;把函数()y f x =图象的纵坐标不变,横坐标缩短到原来的1ω,得到函数()()1y f x ωω=>的图象;把函数()y f x =图象的横坐标不变,纵坐标伸长到原来的A ,得到函数()()1y Af x A =>的图象;把函数()y f x =图象的横坐标不变,纵坐标缩短到原来的A ,得到函数()()01y Af x A =<<的图象. 3. 由sin y x =的图象变换出()sin y x ωϕ=+()0ω>的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换,利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少. 途径一:先平移变换再周期变换(伸缩变换)先将sin y x =的图象向左()0ϕ>或向右()0ϕ<平移ϕ个单位,再将图象上各点的横坐标变为原来的1ω倍(0ω>),便得()sin y x ωϕ=+的图象.途径二:先周期变换(伸缩变换)再平移变换:先将sin y x =的图象上各点的横坐标变为原来的1ω倍(0ω>),再沿x 轴向左(0ϕ>)或向右(0ϕ<)平移ωϕ||个单位,便得()sin y x ωϕ=+的图象.注意:函数sin() y x ωϕ=+的图象,可以看作把曲线sin y x ω=上所有点向左(当0ϕ>时)或向右(当0ϕ<时)平行移动ϕω个单位长度而得到. 4.函数的综合运用(1)x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈. (2)对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系. sin )y A x ωϕ=+(的图象有无穷多条对称轴,可由方程()2x k k Z πωϕπ+=+∈解出;它还有无穷多个对称中心,它们是图象与x 轴的交点,可由()x k k Z ωϕπ+=∈,解得()k x k Z πϕω-=∈,即其对称中心为(),0k k Z πϕω-⎛⎫∈⎪⎝⎭.(3)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈.(4)()sin()f x A x ωϕ=+的最小正周期都是2||T πω=. 【典例12】(2019·广东高考模拟(理))把函数()y f x =的图象向左平移23π个单位长度,再把所得的图象上每个点的横、纵坐标都变为原来的2倍,得到函数()g x 的图象,并且()g x 的图象如图所示,则()f x 的表达式可以为( )A .()2sin 6f x x π⎛⎫=+⎪⎝⎭B .()sin 46f x x π⎛⎫=+⎪⎝⎭C .()sin 46f x x π⎛⎫=- ⎪⎝⎭D .()2sin 46f x x π⎛⎫=-⎪⎝⎭【答案】B∵g (0)=2sinφ=1,即sinφ12=, ∴φ52,6k ππ=+或φ2,6k k Z ππ=+∈(舍去) 则g (x )=2sin (ωx 56π+),又755122,,2,12667k k Z k ππωπω⎛⎫+=∈∴=-⨯ ⎪⎝⎭当k=1, 2ω= 即g (x )=2sin (2x 56π+), 把函数g (x )的图象上所有点的横坐标缩短到到原来的12,得到y =2sin (4x 56π+),再把纵坐标缩短到到原来的12,得到y =sin (4x 56π+),再把所得曲线向右平移23π个单位长度得到函数g (x )的图象,即g (x )=sin[4(x -23π)56π+]=8511sin 4x sin 4sin 43666x x ππππ⎡⎤⎛⎫⎛⎫-+=-=+ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭故选:B .【典例13】(2016年高考四川理)为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【答案】D 【解析】由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x =的图像上所有点向右移6π个单位,故选D.【典例14】(2018年理天津卷)将函数的图象向右平移个单位长度,所得图象对应的函数( ) A. 在区间上单调递增 B. 在区间上单调递减 C. 在区间上单调递增 D. 在区间上单调递减【解析】由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:.本题选择A 选项. 【总结提升】1.由()sin y A x ωϕ=+的图象求其函数式:已知函数()sin y A x ωϕ=+的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定ϕ常根据“五点法”中的五个点求解,其中一般把第一个零点,0ϕω⎛⎫- ⎪⎝⎭作为突破口,可以从图象的升降找准第一个零点的位置. 2.利用图象变换求解析式:由sin y x =的图象向左()0ϕ>或向右()0ϕ<平移ϕ个单位,,得到函数()sin y x ϕ=+,将图象上各点的横坐标变为原来的1ω倍(0ω>),便得()sin y x ωϕ=+,将图象上各点的纵坐标变为原来的A 倍(0A >),便得()sin y A x ωϕ=+.3. 图象的变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”,注意二者的“不同”之处.4.研究函数的性质,要注意“复合函数”这一特征.热门考点05 三角函数模型的应用【典例15】如图为一半径为3m 的水轮,水轮圆心O 距水面2m ,已知水轮每分钟转4圈,水轮上的点P 到水面距离y (单位:m )与时间x (单位:s )满足关系式()sin 2y A x ωϕ=++,则有( )A.5,512A πω== B.2,315A πω== C.5,312A πω== D.15,52A ωπ== 【答案】B 【解析】∵水轮的半径为3m ,水轮圆心O 距离水面2m , ∴max min 235,231y y =+==-=-,∴max min32y y A -==; 又水轮每分钟旋转4圈,故转1圈需要15s , ∴215T πω==,∴215πω=, 故选:B.【典例16】某港口一天内的水深y (米)是时间t (024t ,单位:时)的函数,下面是水深数据:t (时)0 3 6 9 12 15 18 21 24 y (米)10.013.09.97.010.013.010.17.010.0据上述数据描成的曲线如图所示,经拟合,该曲线可近似地看成正弦型函数()sin 0,0y A t B A ωω=+>>的图象.(1)试根据数据和曲线,求出sin y A t B ω=+的解析式.(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)【答案】(1)()3sin100246y t t π=+;(2)该船在1:00至5:00或13:00至1700:能安全进港.不能超过16小时. 【解析】(1)从拟合的曲线可知,函数sin y A t B ω=+的一个周期为12小时,因此26T ππω==.又()()min max max min max min 117,13,3,1022y y A y y B y y ==∴=-==+=. ∴函数的解析式为()3sin100246y t t π=+.(2)由题意,水深 4.57y +,即[]3sin1011.5,0,246y t t π=+∈,1sin62tπ∴, 52,2,0,1666t k k k πππππ⎡⎤∴∈++=⎢⎥⎣⎦,[]1,5t ∴∈或[]13,17t ∈. ∴该船在1:00至5:00或13:00至1700:能安全进港.若欲于当天安全离港,则船在港内停留的时间最多不能超过16小时. 【总结提升】三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型再利用三角函数的有关知识解决问题.热门考点06 三角恒等变换的综合应用三角恒等变换在研究三角函数图象和性质中的应用(1)图象变换问题:先根据和角公式、倍角公式把函数表达式变为正弦型函数y =A sin(ωx +φ)+b 的形式,再进行图象变换.(2)函数性质问题:求函数周期、最值、单调区间的方法步骤①利用三角恒等变换及辅助角公式把三角函数关系式化成y =A sin(ωx +φ)+b 的形式; ②利用公式T =2πω(ω>0)求周期;③根据自变量的范围确定ωx +φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为求二次函数的最值;④根据正、余弦函数的单调区间列不等式求函数y =A sin(ωx +φ)+b 的单调区间. 【典例17】(2018·北京高考真题(文))已知函数()2sin 3sin cos f x x x x =.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若()f x 在区间,3m π⎡⎤-⎢⎥⎣⎦上的最大值为32,求m 的最小值.【答案】(Ⅰ)π ;(Ⅱ)π3. 【解析】(Ⅰ)()1cos211π1sin2sin2cos2sin 22222262x f x x x x x -⎛⎫=+=-+=-+ ⎪⎝⎭, 所以()f x 的最小正周期为2ππ2T ==. (Ⅱ)由(Ⅰ)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为π,3x m ⎡⎤∈-⎢⎥⎣⎦,所以π5ππ2,2666x m ⎡⎤-∈--⎢⎥⎣⎦. 要使得()f x 在π,3m ⎡⎤-⎢⎥⎣⎦上的最大值为32,即πsin 26x ⎛⎫-⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的最大值为1. 所以ππ262m -≥,即π3m ≥. 所以m 的最小值为π3. 【典例18】(2018·上海高考真题)设常数R a ∈,函数()2sin 22cos f x a x x =+. (1)若()f x 为偶函数,求a 的值;(2)若π14f ⎛⎫=⎪⎝⎭,求方程()1f x =[]ππ-,上的解. 【答案】(1)0a =;(2)5π24x =-或19π24x =或13π11π2424x x 或==-. 【解析】(1)∵()2sin22cos f x a x x =+,∴()2sin22cos f x a x x -=-+,∵()f x 为偶函数, ∴()()f x f x -=,∴22sin22cos sin22cos a x x a x x -+=+, ∴2sin20a x =, ∴0a =;(2)∵π14f ⎛⎫= ⎪⎝⎭,∴2ππsin2cos 1124a a ⎛⎫+=+= ⎪⎝⎭,∴a =∴()2π2cos cos212sin 216f x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭,∵()1f x =∴π2sin 2116x ⎛⎫++= ⎪⎝⎭∴πsin 262x ⎛⎫+=- ⎪⎝⎭, ∴ππ22π64x k +=-+,或π52π2πZ 64x k k +=+∈,, ∴5ππ24x k =-+,或13ππZ 24x k k =+∈,, ∵[]ππx ∈-,, ∴5π24x =-或19π24x =或13π11π2424x x 或==-【典例19】(2016高考天津理)已知函数f(x)=4tanxsin(2x π-)cos(3x π-(Ⅰ)求f (x )的定义域与最小正周期; (Ⅱ)讨论f(x)在区间[,44ππ-]上的单调性.【答案】(Ⅰ),2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,.π(Ⅱ)在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 【解析】()I 解:()f x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭. ()4tan cos cos 34sin cos 333f x x x x x x ππ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭213=4sin cos sin 32sin cos 23sin 32x x x x x x ⎛⎫+-=+- ⎪ ⎪⎝⎭()()=sin 231-cos 23sin 23cos 2=2sin 23x x x x x π+-=--.所以, ()f x 的最小正周期2.2T ππ== ()II 解:令2,3z x π=-函数2sin y z =的单调递增区间是2,2,.22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦由222232k x k πππππ-+≤-≤+,得5,.1212k x k k Z ππππ-+≤≤+∈ 设5,,,441212A B x k x k k Z ππππππ⎧⎫⎡⎤=-=-+≤≤+∈⎨⎬⎢⎥⎣⎦⎩⎭,易知,124A B ππ⎡⎤=-⎢⎥⎣⎦.所以, 当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 【总结提升】1.函数的对称性问题,往往先将函数化成sin )y A x B ωϕ=++(的形式,其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心, 关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对称中心. 2.函数的性质(1).(2)周期(3)由 求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间; 由求减区间.巩固提升1. (2020·阜新市第二高级中学高一期末)式子22cos cos sin sin 3636ππππ-的值为( )A .12-B .0C .1D . 【答案】D 【解析】2ππ2ππcoscos sin sin 3636-=cos (2ππ36+)=cos 5π6=-cos π62=-,故选D . 2.(2020·四川南充�高二期末(理))若1cos 3α=,则cos2=α( ) A .79-B .89-C .79D .89【答案】A 【解析】由二倍角公式得217cos 22cos 12199αα=-=⨯-=-, 故选:A3.(2020·山东潍坊�高一期末)已知cos 410πθ⎛⎫-=⎪⎝⎭,则sin 2θ=( ) A .2425-B .1225-C .1225D .2425【答案】D 【解析】因为cos 4πθ⎛⎫-=⎪⎝⎭, 由24924sin 2cos(2)cos[2()]2cos ()1212445025πππθθθθ=-=-=--=⨯-=. 故选:D.4.(2018·全国高考真题(文))已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -=( )A .15B .5C .5D .1【答案】B 【解析】由,,O A B 三点共线,从而得到2b a =,因为222cos22cos 1213αα⎛⎫=-=⋅-=,解得215a =,即a =所以2a b a a -=-=,故选B. 5.(2018·全国高考真题(文))已知函数()222cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为4 【答案】B 【解析】根据题意有()1cos2x 35cos212cos2222f x x x -=+-+=+, 所以函数()f x 的最小正周期为22T ππ==, 且最大值为()max 35422f x =+=,故选B.6.(2019·安徽高考模拟(文)()cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 2α=( )A B C D 【答案】B【解析】由题意得,cos αα=-,则tan 7α=. 22tan 7tan 211tan 317ααα∴===--,故选B . 7.(2019·辽宁高考模拟(文))若tan()34πα+=-,则2sin 2cos αα-=( )A .35B .25-C .-1D .3【答案】A 【解析】tan tan4tan 33tan 241tan tan 4παπααπα+⎛⎫+=-⇒=-⇒= ⎪⎝⎭-⋅, 22222222sin2cos 2sin cos cos 2tan 1sin2cos sin cos sin cos 1tan ααααααααααααα----===+++,把tan 2α=代入,求得23sin2cos 5αα-=,故本题选A. 8.(2019·四川高三月考(理))函数()2sin22f x x x =+-的一条对称轴是( ) A .π12x = B .π6x = C .π3x =D .π2x =【答案】A 【解析】依题意,()sin 22f x x x =π2sin 223x ⎛⎫=+⎪⎝⎭,由ππ2π32x k +=+解得ππ,212k x k Z =+∈为函数的对称轴,令0k =求得函数的一条对称轴为π12x =.故选:A.9.(2020·营口市第二高级中学高一期末)【多选题】化简下式,与tan α相等的是( )A B 1,(0,π)cos αα∈C .1cos2sin 2αα-D .sin 21cos 2αα-【答案】BC 【解析】对于A tan α====,由1cos 201cos 2αα-≥+解得1cos21α-<≤,即()22k k Z αππ≠+∈,解得()2k k Z παπ≠+∈,故A 错误;对于B :因为(0,π)α∈所以111tan cos cos cos n s si sin cos co αααααααα=====, 故B 正确;对于C :21cos 22sin sin tan sin 22sin cos cos αααααααα-===对于D :2sin 22sin cos cos tan 1cos 22sin sin αααααααα==≠- 故选:BC10.(2020·沈阳市第一七〇中学高一期末)【多选题】已知函数()π1sin sin 34f x x x ⎛⎫=⋅+- ⎪⎝⎭的定义域为[](),m n m n <,值域为11,24⎡⎤-⎢⎥⎣⎦,则n m -的值不可能是( ) A .5π12B .7π12C .34π D .11π12【答案】CD 【解析】()π1sin sin 34f x x x ⎛⎫=⋅+- ⎪⎝⎭11=sin sin 224x x x ⎛⎫+- ⎪ ⎪⎝⎭2131=sin sin cos 224x x x +- ()131=1cos 2sin 2444x x -+- 131sin 2cos 2222x x ⎛⎫=- ⎪ ⎪⎝⎭ 1π=sin 226x ⎛⎫- ⎪⎝⎭.作出函数()f x 的图象如图所示,在一个周期内考虑问题,易得π,25π7π66m n ⎧=⎪⎪⎨⎪≤≤⎪⎩或π5π,267π6m n ⎧≤≤⎪⎪⎨⎪=⎪⎩满足题意,所以n m -的值可能为区间π2π33⎡⎤⎢⎥⎣⎦,内的任意实数.所以A,B 可能,C,D 不可能. 故选CD.11.(2019·江苏高考真题)已知,则的值是_____.【答案】. 【解析】 由,得,解得,或.,当时,上式当时,上式=综上,12.(2019·全国高考真题(文))函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【答案】4-. 【解析】23()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x π=+-=--=--+23172(cos )48x =-++, 1cos 1x -≤≤,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.13.(2018·浙江高考真题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455--,). (Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=513,求cos β的值. 【答案】(Ⅰ)45;(Ⅱ)5665- 或1665.【解析】(Ⅰ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得4sin 5α=-, 所以()4sin πsin 5αα+=-=. (Ⅱ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得3cos 5α=-,由()5sin 13αβ+=得()12cos 13αβ+=±. 由()βαβα=+-得()()cos cos cos sin sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=.14.(2018·江苏高考真题)已知,αβ为锐角,4tan 3α=,cos()αβ+=.(1)求cos2α的值;(2)求tan()αβ-的值. 【答案】(1)725-;(2)211-【解析】(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=,因此,27cos22cos 125αα=-=-.(2)因为,αβ为锐角,所以()0,παβ+∈.又因为()cos αβ+=()sin αβ+== 因此()tan 2αβ+=-. 因为4tan 3α=,所以22tan 24tan21tan 7ααα==--,因此,()()()()tan2tan 2tan tan 21+tan2tan 11ααβαβααβααβ-+⎡⎤-=-+==-⎣⎦+. 15.(2019·上海市敬业中学高三)已知函数()2sin 22cos 20.2f x x x x π⎡⎤=++∈⎢⎥⎣⎦,,(1)求函数()y f x =的单调递减区间; (2)求函数()y f x =的值域.【答案】(1)递减区间:,82ππ⎡⎤⎢⎥⎣⎦;(2)3⎡⎤⎣⎦; 【解析】(1) ()2sin 22cos 2=sin 2cos23)34f x x x x x x π=++++=++,令3222,242k x k k Z πππππ+≤+≤+∈, 所以5,88k x k k Z ππππ+≤≤+∈, 所以函数的单调递减区间为5[,],88k k k Z ππππ++∈ 令k=0,所以单调递减区间为5[,],88ππ因为[0,]2x π∈,所以递减区间为,82ππ⎡⎤⎢⎥⎣⎦. (2)因为[0,]2x π∈,所以52[0,]2x [,]444x ππππ∈∴+∈,,所以sin(2)1,1)44x x ππ≤+≤∴-≤+≤所以2)+34x π≤+≤,所以函数()y f x =的值域为3⎡⎤⎣⎦.16.(2019·西藏拉萨中学高二月考)已知函数()()22f x sin x cos x x cos x x R =--∈(I )求2f 3π⎛⎫⎪⎝⎭的值 (II )求()f x 的最小正周期及单调递增区间.【答案】(I )2;(II )()f x 的最小正周期是π,2+k +k k 63Z ππππ⎡⎤∈⎢⎥⎣⎦,.【解析】(Ⅰ)f (x )=sin 2x ﹣cos 2x -sin x cos x ,=﹣cos2x x , =﹣226sin x π⎛⎫+ ⎪⎝⎭, 则f (23π)=﹣2sin (436ππ+)=2, (Ⅱ)因为()2sin(2)6f x x π=-+.所以()f x 的最小正周期是π.由正弦函数的性质得3222,262k x k k Z πππππ+≤+≤+∈, 解得2,63k x k k Z ππππ+≤≤+∈, 所以,()f x 的单调递增区间是2[,]63k k k ππ+π+π∈Z ,.。
2016年高考天津理科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(天津卷)数学(理科)参考公式:• 如果事件A ,B 互斥,那么()()()P A B P A P B =+U ; • 如果事件A ,B 相互独立,那么()()()P AB P A P B =;• 柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高;• 锥体体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高.第Ⅰ卷(共40分)一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年天津,理1,5分】已知集合}{1,2,3,4A =,}{32,B y y x x A ==-∈,则A B =I ( )(A )}{1 (B )}{4 (C ){}1,3 (D ){}1,4【答案】D 【解析】把1,2,3,4x =分别代入32y x =-得:1,4,7,10y =,即{}1,4,7,10B =,∵{}1,2,3,4A =,∴{}1,4A B =I ,故选D .【点评】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.(2)【2016年天津,理2,5分】设变量x ,y 满足约束条件2023603290x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则目标函数25z x y =+的最小值为( )(A )4- (B )6 (C )10 (D )17 【答案】B【解析】作出不等式组2023603290x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩表示的可行域,如右图中三角形的区域,作出直线0:250l x y +=,图中的虚线,平移直线0l ,可得经过点()3,0时,25z x y =+取得最小值6,故选B .【点评】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围. (3)【2016年天津,理3,5分】在ABC ∆中,若13AB =,3BC =,120C ∠=o ,则AC =( )(A )1 (B )2 (C )3 (D )4 【答案】A【解析】在ABC ∆中,若13AB =,3BC =,120C ∠=o ,2222cos AB BC AC AC BC C =+-⋅,得:21393AC AC =++, 解得1AC =或4AC =-(舍去),故选A .【点评】(1)正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.(2)利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.(4)(4)【2016年天津,理4,5分】阅读右边的程序框图,运行相应的程序,则输出S 的值为( ) (A )2 (B )4 (C )6 (D )8 【答案】B【解析】第一次判断后:不满足条件,248S =⨯=,2n =,4i >;第二次判断不满足条件3n >;第三次判断满足条件:6S >,此时计算862S =-=,3n =,第四次判断3n >不满足条件, 第五次判断6S >不满足条件,4S =.4n =,第六次判断满足条件3n >,故输出4S =,故选B .【点评】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.(5)【2016年天津,理5,5分】设{}n a 是首项为正数的等比数列,公比为q 则“0q <”是“对任意的正整数n ,2120n n a a -+<”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】C【解析】{}n a 是首项为正数的等比数列,公比为q ,若“0q <”是“对任意的正整数n ,2120n n a a -+<”不一定成立,例如:当首项为2,12q =-时,各项为2,1-,12,14-,…,此时()2110+-=>,1110244⎛⎫+-=> ⎪⎝⎭; 而“对任意的正整数n ,2120n n a a -+<”,前提是“0q <”,则“0q <”是“对任意的正整数n ,2120n n a a -+<” 的必要而不充分条件,故选C .【点评】充分、必要条件的三种判断方法.(1)定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.(2)等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.(6)【2016年天津,理6,5分】已知双曲线()222104x y b b-=>,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) (A )223144x y -= (B )224143x y -= (C )222144x y -= (D )221412x y -= 【答案】D【解析】以原点为圆心,双曲线的实半轴长为半径长的圆的方程为224x y +=,双曲线两条渐近线方程为2by x =±,设,2b A x x ⎛⎫ ⎪⎝⎭,则∵四边形ABCD 的面积为2b ,∴22x bx b ⋅=,∴1x =±,将1,2b A ⎛⎫⎪⎝⎭代入224x y +=,可得2144b +=,∴212b =,∴双曲线的方程为221412x y -=,故选D .【点评】求双曲线的标准方程关注点:(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论.①若双曲线的焦点不能确定时,可设其方程为()2210Ax By AB =<+.②若已知渐近线方程为0mx ny +=,则双曲线方程可设为()22220m x n y λλ-=≠.(7)【2016年天津,理7,5分】已知ABC ∆是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC ⋅u u u r u u u r的值为( )(A )58- (B )18 (C )14 (D )118【答案】B【解析】由DD 、E 分别是边AB 、BC 的中点,2DE EF =,()()AF BC AD DF AC AB ⋅=+⋅-u u u r u u u r u u u r u u u r u u u r u u u r()()2213133112224442AB DE AC AB AB AC AC AB AC AB AC AB ⎛⎫⎛⎫=+⋅-=+⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,311111144228=-⋅⋅⋅-=,故选B .【点评】研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来.(8)【2016年天津,理8,5分】已知函数2(43)3,0()log (1)1,0a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩(0a >,且1a ≠)在R 上单调递减,且关于x 的方程()2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )(A )20,3⎛⎤ ⎥⎝⎦ (B )23,34⎡⎤⎢⎥⎣⎦(C )123,334⎡⎤⎧⎫⎨⎬⎢⎥⎣⎦⎩⎭U (D )123,334⎡⎫⎧⎫⎨⎬⎪⎢⎣⎭⎩⎭U【答案】C【解析】()log 11a y x =++在[)0,+∞递减,则01a <<,函数()f x 在R 上单调递减,则()()234020104303log 011a a a a a -⎧≥⎪⎪<<⎨⎪+-⋅+≥++⎪⎩;解得,1334a ≤≤;由图象可知,在[)0,+∞上,()2f x x =-有且仅有一个解,故在(),0-∞上,()2f x x =-同样有且仅有一个解,当32a >即23a >时,联立()24332x a a x +-+=-,则()()2424320a a ∆=---=,解得34a =或1(舍去),当132a ≤≤时,由图象可知,符合条件,综上:a 的取值范围为123,334⎡⎤⎧⎫⎨⎬⎢⎥⎣⎦⎩⎭U ,故选C .【点评】已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.第II 卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.(9)【2016年天津,理9,5分】已知a ,R b ∈,i 是虚数单位,若()()1i 1i b a +-=,则ab的值为 . 【答案】2【解析】∵()()()1i 1i 11i b b b a +-=++-=,,R a b ∈,∴110b a b +=⎧⎨-=⎩,解得:21a b =⎧⎨=⎩,∴2a b =.【点评】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(i)(i)()()i,(,,.)++=-++∈a b c d ac bd ad bc a b c d R ,22i ()()ii +++-=++a b ac bd bc ad c d c d(,,.)∈a b c d R ,其次要熟悉复数相关基本概念,如复数i(,)+∈a b a b R 的实部为a 、虚部为b 、模为22+a b 、共轭为i -a b .(10)【2016年天津,理10,5分】821x x ⎛⎫- ⎪⎝⎭的展开式中7x 的系数为 .(用数字作答)【答案】56-【解析】()()8216318811r rr r r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令1637r -=,解得3r =.∴821x x ⎛⎫- ⎪⎝⎭的展开式中7x 的系数为()338156C -=-.【点评】(1)求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n r ≥);第二步是根据所求的指数,再求所求解的项.(2)有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.(11)【2016年天津,理11,5分】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为 3m . 【答案】2【解析】由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,棱锥的底面是底为2,高为1的平行四边形,故底面面积2212m S =⨯=,棱锥的高3m h =,312m 3V Sh ==.【点评】(1)解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.(2)三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图 的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.(12)【2016年天津,理12,5分】如图,AB 是圆的直径,弦CD 与AB 相交于点E ,22BE AE ==,,则线段CE 的长为 .【答案】23【解析】过D 作DH AB ⊥于H ,∵22BE AE ==,BD ED =,∴1BH HE ==,2AH =,1BH =, ∴2•2DH AH BH ==,则2DH =,在Rt DHE ∆中,则 22213DE DH HE =+=+=,由相交弦定理得:CE DE AE EB ⋅=⋅,∴233AE EB CE DE ⋅===. 【点评】1、解决与圆有关的成比例线段问题的两种思路:(1)直接应用相交弦、切割线定理及其推论;(2)当比例式(等积式)中的线段分别在两个三角形中时,可转化为证明三角形相似,一般思路为“相 似三角形→比例式→等积式”.在证明中有时还要借助中间比来代换,解题时应灵活把握.2、应用相交 弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关 的相似三角形等.(13)【2016年天津,理13,5分】已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增.若实数a 满足()()122a f f ->-,则a 的取值范围是 .【答案】13,22⎛⎫ ⎪⎝⎭【解析】∵()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增,∴()f x 在区间()0,+∞上单调递减,则()()122a f f ->-,等价为()()122a f f->,即1222a --<<,则112a -<,即1322a <<.【点评】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:(1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效.(2)借助 函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代 数式的几何意义实现“数”向“形”的转化.(14)【2016年天津,理14,5分】设抛物线222x pt y pt ⎧=⎨=⎩(t 为参数,0p >)的焦点F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设7,02C p ⎛⎫⎪⎝⎭,AF 与BC 相交于点E .若2CF AF =,且ACE ∆的面积为32,则p 的值为 .【答案】6【解析】抛物线222x pt y pt⎧=⎨=⎩(t 为参数,0p >)的普通方程为:22y px =焦点为,02p F ⎛⎫⎪⎝⎭,如图:过抛物线上一点A 作l 的垂线,垂足为B ,设7,02C p ⎛⎫⎪⎝⎭,AF 与BC 相交于点E .2CF AF =,3CF p =,32AB AF p ==,(),2A p p ,ACE ∆的面积为32,12AE AB EF CF ==,可得13AFC ACE S S ∆∆=.即:11323232p p ⨯⨯⨯=,解得6p =.【点评】(1)凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.(2)若()00,P x y 为抛物线()220y px p =>上一点,由定义易得02pPF x =+;若过焦点的弦AB 的端点坐标为()11,A x y ,()22,B x y ,则弦长为12AB x x p =++,12x x +可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)【2016年天津,理15,13分】已知函数()4tan sin cos 323f x x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的定义域与最小正周期;(2)讨论()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调性.解:(1)()f x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭.()4tan cos cos 34sin cos 333f x x x x x x ππ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭2134sin cos sin 32sin cos 23sin 32x x x x x x ⎛⎫=+-=+- ⎪ ⎪⎝⎭()()sin 231-cos23sin 23cos2=2sin 23x x x x x π=+-=--.所以, ()f x 的最小正周期22T ππ==.(2)令23z x π=-,函数2sin y z =的单调递增区间是2,2,.22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦由222232k x k πππππ-+≤-≤+,得5,.1212k x k k Z ππππ-+≤≤+∈设5,,,441212A B x k x k k Z ππππππ⎧⎫⎡⎤=-=-+≤≤+∈⎨⎬⎢⎥⎣⎦⎩⎭,易知,124A B ππ⎡⎤=-⎢⎥⎣⎦I . 所以,当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增,在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 【点评】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证. 对于三角函数来说,常常是先化为()sin y A x k ωϕ=++的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的体现;降次是一种三角变换的常用技巧,要灵活运用降次公式.(16)【2016年天津,理16,13分】某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会. (1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.解:(1)由已知,有()1123442101,3C C C P A C +==所以,事件A 发生的概率为13. (2)随机变量X 的所有可能取值为0,1,2.()2223342104015C C C P X C ++===,()111133342107115C C C C P X C +===, ()113424215C C P X C ===.所以,随机变量X 分布列为: X0 1 2 P415 715 415随机变量X 的数学期望()0121151515E X =⨯+⨯+⨯=.【点评】求均值、方差的方法(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b 的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)如能分析所给随机变量是服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解.(17)【2016年天津,理17,13分】如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,2AB BE ==.(1)求证://EG 平面ADF ;(2)求二面角O EF C --的正弦值;(3)设H 为线段AF 上的点,且23AH HF =,求直线BH 和平面CEF 所成角的正弦值. 解:依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF u u u r u u u r u u u r的方向为x 轴,y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),A B C ----(11,0),D ,(1,1,2),E --(0,0,2),F (1,0,0)G -.(1)()(2,0,0),1,1,2AD AF ==-u u u r u u u r .设()1,,n x y z =u u r 为平面ADF 的法向量,则1100n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩u u r u u u ru u r u u u r, 即2020x x y z =⎧⎨-+=⎩.不妨设1z =,可得()10,2,1n =u u r ,又()0,1,2EG =-u u u r ,可得10EG n ⋅=u u u r u u r ,又因为直线EG ADF ⊄平面,所以//EG ADF 平面.(2)易证,()1,1,0OA =-u u u r 为平面OEF 的一个法向量.依题意,()()1,1,0,1,1,2EF CF ==-u u u r u u u r .设()2,,n x y z =u u r 为平面CEF 的法向量,则2200n EF n CF ⎧⋅=⎪⎨⋅=⎪⎩u u r u u u r u u r u u u r ,即020x y x y z +=⎧⎨-++=⎩.不妨设1x =,可得()21,1,1n =-u u r .因此有2226cos ,OA n OA n OA n ⋅<>==-⋅u u u r u u ru u u r u u r u u u r u u r ,于是23sin ,OA n <>=u u u r u u r , 所以,二面角O EF C --的正弦值为3. (3)由23AH HF =,得25AH AF =.因为()1,1,2AF =-u u u r ,所以2224,,5555AH AF ⎛⎫==- ⎪⎝⎭u u u u r u u u r ,进而有334,,555H ⎛⎫- ⎪⎝⎭, 从而284,,555BH ⎛⎫= ⎪⎝⎭u u u r ,因此2227cos ,BH n BH n BH n ⋅<>==-⋅u u u r u u ru u u r u u r u u u r u u r .直线BH 和平面CEF 所成角的正弦值为7. 【点评】1、利用数量积解决问题的两条途径 :一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.2、利用数量积可解决有关垂直、夹角、长度问题.(1)0a ≠,0b ≠,·0a b a b ⊥⇔=;(2)2a a =;(3)cos ,a ba b a b ⋅=.(18)【2016年天津,理18,13分】已知{}n a 是各项均为正数的等差数列,公差为d .对任意的N n *∈,n b 是na和1n a +的等比中项.(1)设221n n n c b b +=-,N n *∈,求证:数列}{n c 是等差数列;(2)设1a d =,221(1)nkn kk T b ==-∑,N n *∈,求证21112nk kT d =<∑. 解:(1)由题意得21n n n b a a +=,有22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此()212122n n n n c c d a a d +++-=-=,所以{}n c 是等差数列.(2)()()()2222221234212n n n T b b b b b b -=-++-++-+()()()22224222212n n n a a d a a a d d n n +=+++=⋅=+L所以()222211111111111112121212nnnk k k kT d k k d kk d n d ===⎛⎫⎛⎫==-=⋅-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑. 【点评】分组转化法求和的常见类型(1)若n n n a b c ±=,且{}n b ,{}n c 为等差或等比数列,可采用分组求和法求{}n a 的前n 项和.(2)通项公式为n a =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{}n b ,{}n c 是等比数列或等差数列,可采用分组求和法求和.(19)【2016年天津,理19,14分】设椭圆22213x y a +=()3a >的右焦点为F ,右顶点为A .已知113e OF OA FA +=,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF HF ⊥,且MOA ∠≤MAO ∠,求直线l 的斜率的取值范围.解:(1)设(),0F c ,由113cOF OA FA+=,即113()c c a a a c +=-,可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=.(2)设直线l 的斜率为k ()0k ≠,则直线l 的方程为()2y k x =-.设(),B B B x y ,由方程组()221432x y y k x ⎧+=⎪⎨⎪=-⎩, 消去y ,整理得()2222431616120k x k x k +-+-=.解得2x =,或228643k x k -=+,由题意得228643B k x k -=+,从而21243B ky k -=+.由(1)知,()1,0F ,设()0,H H y ,有()1,H FH y =-u u u r ,2229412,4343k k BF k k ⎛⎫-= ⎪++⎝⎭u u u r .由BF HF ⊥,得0BF HF ⋅=u u u r u u u r ,所以222129404343H ky k k k -+=++,解得29412H k y k-=.因此直线MH 的方程为219412k y x k k -=-+.设(),M M M x y ,由方程组219412(2)k y x k k y k x ⎧-=-+⎪⎨⎪=-⎩消去y ,解得2220912(1)M k x k +=+.在MAO ∆中,||||MOA MAO MA MO ∠≤∠⇔≤,即()22222M MMMx y x y -+≤+,化简得1M x ≥,即22209112(1)k k +≥+,解得k ≤或k ≥l的斜率的取值范围为,⎛⎫-∞+∞ ⎪ ⎪⎝⎦⎣⎭U . 【点评】在利用代数法解决最值与范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间 建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本 不等式求出参数的取值范围;(5)利用函数的值域的求法,确定参数的取值范围.(20)【2016年天津,理20,14分】设函数()3()1f x x ax b =---,x ∈R ,其中a ,b ∈R .(1)求()f x 的单调区间;(2)若()f x 存在极值点0x ,且()()10f x f x =,其中10x x ≠,求证:1023x x +=;(3)设0a >,函数()()g x f x =,求证:()g x 在区间[]0,2上的最大值不小于...14. 解:(1)由()()31f x x ax b =---,可得()()2'31f x x a =--.下面分两种情况讨论:①当0a ≤时,有()()2'310f x x a =--≥恒成立,所以()f x 的单调递增区间为(),-∞+∞. ②当0a >时,令()'0f x =,解得1x =+1x = 当x 变化时,()'f x ,()f x 的变化情况如下表:所以⎝⎭⎝⎭⎫+∞⎪⎪⎝⎭.(2)因为()f x 存在极值点,所以由(1)知0a >,且01x ≠,由题意,得()()200'310f x x a =--=,即()2013a x -=,进而()()300002133a a f x x axb x b =---=---. ()()()()()3000000082322222123333a a a f x x a xb x ax a b x b f x -=----=-+--=---=,且0032x x -≠,由题意及(1)知,存在唯一实数满足()()10f x f x =,且10x x ≠,因此1032x x =-,所以1023x x +=.(3)设()g x 在区间[]0,2上的最大值为M ,{}max ,x y 表示,x y 两数的最大值.下面分三种情况同理:①当3a ≥时,1021≤<≤,由(1)知,()f x 在区间[]0,2上单调递减,所以()f x 在区间 []0,2上的取值范围为()()2,0f f ⎡⎤⎣⎦,因此()(){}{}max 2,0max 12,1M f f a b b ==----{}max 1(),1()a a b a a b =-++--+1(),01(),0a a b a b a a b a b -+++≥⎧=⎨--++<⎩,所以12M a a b =-++≥.②当334a ≤<时,101121≤<<+<≤+1)和(2)知,()011f f f ⎛⎛≥-=+ ⎝⎭⎝⎭,()211f f f ⎛⎛≤+= ⎝⎭⎝⎭,所以()f x 在区间[]0,2上的取值范围为1,1ff ⎡⎤⎛⎛+⎢⎥ ⎢⎥⎝⎭⎝⎭⎣⎦,max 1,1M f f ⎧⎫⎛⎫⎛⎪⎪=+- ⎪ ⎨⎬ ⎪ ⎝⎭⎝⎭⎪⎪⎩⎭max a b a b ⎧⎫=---⎨⎬⎩⎭()()max a b a b ⎧⎫=++⎨⎬⎩⎭231944a b =+≥⨯=.③当304a <<时,0112<<<,由(1)和(2)知,()011f f f ⎛⎛<=+ ⎝⎭⎝⎭,()211f f f ⎛⎛>=- ⎝⎭⎝⎭,所以()f x 在区间[]0,2上的取值范围为()()0,2f f ⎡⎤⎣⎦,因此 ()(){}{}max 0,2max 1,12M f f b a b ==----()(){}max 1,1a a b a a b =-++--+11||4a ab =-++>. 综上所述,当0a >时,()g x 在区间[]0,2上的最大值不小于14. 【评析】1、求可导函数单调区间的一般步骤:(1)确定函数()f x 的定义域(定义域优先);(2)求导函数()f x ';(3)在函数()f x 的定义域内求不等式()0f x '>或()0f x '<的解集.(4)由()()()00f x f x >'<'的解集确定函数()f x 的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.2、由函数()f x 在(),a b 上的单调性,求参数范围问题,可转化为()0f x '≥ (或()0f x '≤)恒成立问题,要注意“=”是否可以取到.。
2016年天津市高考数学试卷(理科)(含详细答案解析)

2016年天津市高考数学试卷(理科)一、选择题1.(5分)已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}2.(5分)设变量x,y满足约束条件,则目标函数z=2x+5y的最小值为()A.﹣4 B.6 C.10 D.173.(5分)在△ABC中,若AB=,BC=3,∠C=120°,则AC=()A.1 B.2 C.3 D.44.(5分)如图的程序图,运行相应的程序,则输出S的值为()A.2 B.4 C.6 D.85.(5分)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n+a2n<0”的()﹣1A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)已知双曲线﹣=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=17.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣ B.C.D.8.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是()A.(0,]B.[,]C.[,]∪{}D.[,)∪{}二、填空题9.(5分)已知a,b∈R,i是虚数单位,若(1+i)(1﹣bi)=a,则的值为.10.(5分)(x2﹣)8的展开式中x7的系数为(用数字作答)11.(5分)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为m312.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.13.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是.14.(5分)设抛物线(t为参数,p>0)的焦点为F,准线为l,过抛物线上一点A作l的垂线,垂足为B,设C(p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为3,则p的值为.三、计算题15.(13分)已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.16.(13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为2,4,4.现从这10人中随机选出2人作为该组代表参加座谈会.(I)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(II)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.17.(13分)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF ⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O﹣EF﹣C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.18.(13分)已知{a n}是各项均为正数的等差数列,公差为d,对任意的n∈N+,b n是a n和a n+1的等比中项.(1)设c n=b n+12﹣b n2,n∈N+,求证:数列{c n}是等差数列;(2)设a1=d,T n=(﹣1)k b k2,n∈N*,求证:<.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴于点H,若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.20.(14分)设函数f(x)=(x﹣1)3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=3;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[0,2]上的最大值不小于.2016年天津市高考数学试卷(理科)参考答案与试题解析一、选择题1.(5分)已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}【分析】把A中元素代入y=3x﹣2中计算求出y的值,确定出B,找出A与B的交集即可.【解答】解:把x=1,2,3,4分别代入y=3x﹣2得:y=1,4,7,10,即B={1,4,7,10},∵A={1,2,3,4},∴A∩B={1,4},故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)设变量x,y满足约束条件,则目标函数z=2x+5y的最小值为()A.﹣4 B.6 C.10 D.17【分析】作出不等式组表示的平面区域,作出直线l0:2x+5y=0,平移直线l0,可得经过点(3,0)时,z=2x+5y取得最小值6.【解答】解:作出不等式组表示的可行域,如右图中三角形的区域,作出直线l0:2x+5y=0,图中的虚线,平移直线l0,可得经过点(3,0)时,z=2x+5y取得最小值6.故选:B.【点评】本题考查简单线性规划的应用,涉及二元一次不等式组表示的平面区域,关键是准确作出不等式组表示的平面区域.3.(5分)在△ABC中,若AB=,BC=3,∠C=120°,则AC=()A.1 B.2 C.3 D.4【分析】直接利用余弦定理求解即可.【解答】解:在△ABC中,若AB=,BC=3,∠C=120°,AB2=BC2+AC2﹣2AC•BCcosC,可得:13=9+AC2+3AC,解得AC=1或AC=﹣4(舍去).故选:A.【点评】本题考查三角形的解法,余弦定理的应用,考查计算能力.4.(5分)如图的程序图,运行相应的程序,则输出S的值为()A.2 B.4 C.6 D.8【分析】根据程序进行顺次模拟计算即可.【解答】解:第一次判断后:不满足条件,S=2×4=8,n=2,i>4,第二次判断不满足条件n>3:第三次判断满足条件:S>6,此时计算S=8﹣6=2,n=3,第四次判断n>3不满足条件,第五次判断S>6不满足条件,S=4.n=4,第六次判断满足条件n>3,故输出S=4,故选:B.【点评】本题主要考查程序框图的识别和运行,根据条件进行模拟计算是解决本题的关键.5.(5分)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正+a2n<0”的()整数n,a2n﹣1A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】利用必要、充分及充要条件的定义判断即可.【解答】解:{a n}是首项为正数的等比数列,公比为q,+a2n<0”不一定成立,若“q<0”是“对任意的正整数n,a2n﹣1例如:当首项为2,q=﹣时,各项为2,﹣1,,﹣,…,此时2+(﹣1)=1>0,+(﹣)=>0;+a2n<0”,前提是“q<0”,而“对任意的正整数n,a2n﹣1则“q<0”是“对任意的正整数n,a2n+a2n<0”的必要而不充分条件,﹣1故选:C.【点评】此题考查了必要条件、充分条件与充要条件的判断,熟练掌握各自的定义是解本题的关键.6.(5分)已知双曲线﹣=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【分析】以原点为圆心,双曲线的实半轴长为半径长的圆的方程为x2+y2=4,双曲线的两条渐近线方程为y=±x,利用四边形ABCD的面积为2b,求出A的坐标,代入圆的方程,即可得出结论.【解答】解:以原点为圆心,双曲线的实半轴长为半径长的圆的方程为x2+y2=4,双曲线的两条渐近线方程为y=±x,设A(x,x),则∵四边形ABCD的面积为2b,∴2x•bx=2b,∴x=±1将A(1,)代入x2+y2=4,可得1+=4,∴b2=12,∴双曲线的方程为﹣=1,故选:D.【点评】本题考查双曲线的方程与性质,考查学生分析解决问题的能力,属于中档题.7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣ B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.8.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是()A.(0,]B.[,]C.[,]∪{}D.[,)∪{}【分析】利用函数是减函数,根据对数的图象和性质判断出a的大致范围,再根据f(x)为减函数,得到不等式组,利用函数的图象,方程的解的个数,推出a 的范围.【解答】解:y=loga(x+1)+1在[0,+∞)递减,则0<a<1,函数f(x)在R上单调递减,则:;解得,;由图象可知,在[0,+∞)上,|f(x)|=2﹣x有且仅有一个解,故在(﹣∞,0)上,|f(x)|=2﹣x同样有且仅有一个解,当3a>2即a>时,联立|x2+(4a﹣3)x+3a|=2﹣x,则△=(4a﹣2)2﹣4(3a﹣2)=0,解得a=或1(舍去),当1≤3a≤2时,由图象可知,符合条件,综上:a的取值范围为[,]∪{},故选:C.【点评】本题考查了方程的解个数问题,以及参数的取值范围,考查了学生的分析问题,解决问题的能力,以及数形结合的思想,属于中档题.二、填空题9.(5分)已知a,b∈R,i是虚数单位,若(1+i)(1﹣bi)=a,则的值为2.【分析】根据复数相等的充要条件,构造关于a,b的方程,解得a,b的值,进而可得答案.【解答】解:∵(1+i)(1﹣bi)=1+b+(1﹣b)i=a,a,b∈R,∴,解得:,∴=2,故答案为:2【点评】本题考查的知识点是复数的乘法运算,复数相等的充要条件,难度不大,属于基础题.10.(5分)(x2﹣)8的展开式中x7的系数为﹣56(用数字作答)【分析】利用通项公式即可得出.==x16﹣3r,【解答】解:T r+1令16﹣3r=7,解得r=3.∴(x2﹣)8的展开式中x7的系数为=﹣56.故答案为:﹣56.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.11.(5分)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为2m3【分析】由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,进而可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,棱锥的底面是底为2,高为1的平行四边形,故底面面积S=2×1=2m2,棱锥的高h=3m,故体积V==2m3,故答案为:2【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.12.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.13.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是(,).【分析】根据函数奇偶性和单调性之间的关系将不等式进行转化进行求解即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在区间[0,+∞)上单调递减,则f(2|a﹣1|)>f(﹣),等价为f(2|a﹣1|)>f(),即﹣<2|a﹣1|<,则|a﹣1|<,即<a<,故答案为:(,)【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系将不等式进行转化是解决本题的关键.14.(5分)设抛物线(t为参数,p>0)的焦点为F,准线为l,过抛物线上一点A作l的垂线,垂足为B,设C(p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为3,则p的值为.【分析】化简参数方程为普通方程,求出F与l的方程,然后求解A的坐标,利用三角形的面积列出方程,求解即可.【解答】解:抛物线(t为参数,p>0)的普通方程为:y2=2px焦点为F(,0),如图:过抛物线上一点A作l的垂线,垂足为B,设C(p,0),AF 与BC相交于点E.|CF|=2|AF|,|CF|=3p,|AB|=|AF|=p,A(p,),△ACE的面积为3,,可得=S.△ACE即:=3,解得p=.故答案为:.【点评】本题考查抛物线的简单性质的应用,抛物线的参数方程的应用,考查分析问题解决问题的能力.三、计算题15.(13分)已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.【分析】(1)利用三角函数的诱导公式以及两角和差的余弦公式,结合三角函数的辅助角公式进行化简求解即可.(2)利用三角函数的单调性进行求解即可.【解答】解:(1)∵f(x)=4tanxsin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tanxcosx•(cosx+sinx)﹣=4sinx(cosx+sinx)﹣=2sinxcosx+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,得kπ﹣<x<kπ+,k∈Z,即函数的增区间为(kπ﹣,kπ+),k∈Z,当k=0时,增区间为(﹣,),k∈Z,∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,得kπ+<x<kπ+,k∈Z,即函数的减区间为(kπ+,kπ+),k ∈Z,当k=﹣1时,减区间为(﹣,﹣),k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函数的减区间为∈[﹣,﹣),增区间为(﹣,].【点评】本题主要考查三角函数的图象和性质,利用三角函数的诱导公式,两角和差的余弦公式以及辅助角公式将函数进行化简是解决本题的关键.16.(13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为2,4,4.现从这10人中随机选出2人作为该组代表参加座谈会.(I)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(II)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.【分析】(I)由相互独立事件的概率计算公式求出事件A发生的概率;(Ⅱ)根据题意知随机变量X的所有可能取值,计算对应的概率值,写出分布列,计算数学期望值.【解答】解:(I)由已知得:,所以,事件A发生的概率为;﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)随机变量X的所有可能取值为0,1,2;﹣﹣﹣﹣﹣﹣﹣﹣(6分)计算,﹣﹣﹣﹣﹣﹣(7分),﹣﹣﹣﹣﹣﹣(8分);﹣﹣﹣﹣﹣﹣(9分)所以,随机变量X的分布列为随机变量X的数学期望为.﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题考查了离散型随机变量的分布列与数学期望的计算问题,是基础题.17.(13分)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF ⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O﹣EF﹣C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.【分析】(1)取AD的中点I,连接FI,证明四边形EFIG是平行四边形,可得EG ∥FI,利用线面平行的判定定理证明:EG∥平面ADF;(2)建立如图所示的坐标系O﹣xyz,求出平面OEF的法向量,平面OEF的法向量,利用向量的夹角公式,即可求二面角O﹣EF﹣C的正弦值;(3)求出=(﹣,,),利用向量的夹角公式求出直线BH和平面CEF 所成角的正弦值.【解答】(1)证明:取AD的中点I,连接FI,∵矩形OBEF,∴EF∥OB,EF=OB,∵G,I是中点,∴GI∥BD,GI=BD.∵O是正方形ABCD的中心,∴OB=BD.∴EF∥GI,EF=GI,∴四边形EFIG是平行四边形,∴EG∥FI,∵EG⊄平面ADF,FI⊂平面ADF,∴EG∥平面ADF;(2)解:建立如图所示的坐标系O﹣xyz,则B(0,﹣,0),C(,0,0),E(0,﹣,2),F(0,0,2),设平面CEF的法向量为=(x,y,z),则,取=(,0,1)∵OC⊥平面OEF,∴平面OEF的法向量为=(1,0,0),∵|cos<,>|=∴二面角O﹣EF﹣C的正弦值为=;(3)解:AH=HF,∴==(,0,).设H(a,b,c),则=(a+,b,c)=(,0,).∴a=﹣,b=0,c=,∴=(﹣,,),∴直线BH和平面CEF所成角的正弦值=|cos<,>|==.【点评】本题考查证明线面平行的判定定理,考查二面角O﹣EF﹣C的正弦值,直线BH和平面CEF所成角的正弦值,考查学生分析解决问题的能力,属于中档题.18.(13分)已知{a n}是各项均为正数的等差数列,公差为d,对任意的n∈N+,b n是a n和a n+1的等比中项.(1)设c n=b n+12﹣b n2,n∈N+,求证:数列{c n}是等差数列;(2)设a1=d,T n=(﹣1)k b k2,n∈N*,求证:<.【分析】(1)根据等差数列和等比数列的性质,建立方程关系,根据条件求出数列{c n}的通项公式,结合等差数列的定义进行证明即可.(2)求出T n=(﹣1)k b k2的表达式,利用裂项法进行求解,结合放缩法进行不等式的证明即可.【解答】证明:(1)∵{a n}是各项均为正数的等差数列,公差为d,对任意的n ∈N+,b n是a n和a n的等比中项.+1∴c n=b﹣b=a n+1a n+2﹣a n a n+1=2da n+1,∴c n﹣c n=2d(a n+2﹣a n+1)=2d2为定值;+1∴数列{c n}是等差数列;(2)T n=(﹣1)k b k2=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=2d(a2+a4+…+a2n)=2d=2d2n(n+1),∴==(1﹣…+﹣)=(1﹣).即不等式成立.【点评】本题主要考查递推数列的应用以及数列与不等式的综合,根据等比数列和等差数列的性质分别求出对应的通项公式以及利用裂项法进行求解是解决本题的关键.综合性较强,有一定的难度.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴于点H,若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得,整理得到M的坐标与k的关系,由∠MOA≤∠MAO,得到x0≥1,转化为关于k 的不等式求得k的范围.【解答】解:(1)由+=,得,即,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA≤∠MAO,∴x0≥1,再设H(0,y H),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为,令x=0,得,∵BF⊥HF,∴,即1﹣x1+y1y H=,整理得:,即8k2≥3.∴或.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)设函数f(x)=(x﹣1)3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=3;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[0,2]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时,f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)f′(x0)=0,可得3(x0﹣1)2=a,分别计算f(x0),f(3﹣2x0),化简整理即可得证;(3)要证g(x)在区间[0,2]上的最大值不小于,即证在[0,2]上存在x1,x2,使得f(x1)﹣f(x2)≥.讨论当a≥3时,当0<a<3时,运用单调性和极值,化简整理即可得证.【解答】解:(1)函数f(x)=(x﹣1)3﹣ax﹣b的导数为f′(x)=3(x﹣1)2﹣a,当a≤0时,f′(x)≥0,f(x)在R上递增;当a>0时,当x>1+或x<1﹣时,f′(x)>0,当1﹣<x<1+,f′(x)<0,可得f(x)的增区间为(﹣∞,1﹣),(1+,+∞),减区间为(1﹣,1+);(2)证明:f′(x0)=0,可得3(x0﹣1)2=a,由f(x0)=(x0﹣1)3﹣3x0(x0﹣1)2﹣b=(x0﹣1)2(﹣2x0﹣1)﹣b,f(3﹣2x0)=(2﹣2x0)3﹣3(3﹣2x0)(x0﹣1)2﹣b=(x0﹣1)2(8﹣8x0﹣9+6x0)﹣b=(x0﹣1)2(﹣2x0﹣1)﹣b,即为f(3﹣2x0)=f(x0)=f(x1),即有3﹣2x0=x1,即为x1+2x0=3;(3)证明:要证g(x)在区间[0,2]上的最大值不小于,只需证在[0,2]上存在x1,x2,使得f(x1)﹣f(x2)≥.当a≥3时,f(x)在[0,2]递减,f(2)=1﹣2a﹣b,f(0)=﹣1﹣b,f(0)﹣f(2)=2a﹣2≥4>,递减,成立;当0<a<3时,f(1﹣)=(﹣)3﹣a(1﹣)﹣b=﹣﹣a+a﹣b=﹣a﹣b,f(1+)=()3﹣a(1+)﹣b=﹣a﹣a﹣b=﹣﹣a﹣b,f(2)=1﹣2a﹣b,f(0)=﹣1﹣b,f(2)﹣f(0)=2﹣2a,若0<a≤时,f(2)﹣f(0)=2﹣2a≥成立;若a>时,f(1﹣)﹣f(1+)=>成立.综上可得,g(x)在区间[0,2]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,考查不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法的证明,以及化简整理的运算能力,属于难题.。
高考真题理综(天津测试卷).docx

2016年高考真题理综(天津卷)理综考试时间:—分钟单选题(本大题共17小题,每小题—分,共—分。
)1.我国成功硏发的反隐身先进米波雷达堪称隐身飞机的克星,它标志着我国雷达研究又创新的里程碑,米波雷达发射无线电波的波长在l~10m范围内,则对该无线电波的判断正确的是()A. 米波的频率比厘米波频率高B. 和机械波一样须靠介质传播C. 同光波一样会发生反射现象D. 不可能产生干涉和衍射现象2右图是a.b两光分别经过同一双缝干涉装置后在屏上形成的干涉图样,则()A. 在同种均匀介质中,a光的传播速度比b光的大B. 从同种介质射入真空发生全反射时a光临界角大C. 照射在同一金属板上发生光电效应时,a光的饱和电流大D. 若两光均由氢原子能级跃迁产生,产生a光的能级能量差大3. 我国即将发射“天宫二号"空间实验室,之后发生〃神舟十一号"飞船与"天宫二号"对接。
假设〃天宫二号"与〃神舟十一号"都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()A. 使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B. 使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C. 飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D. 飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接4. 如图所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地,在两极板间有一个固定在P点的点电荷,以E表示两板间的电场强度,Ep表示点电荷在P点的电势能,巾表示静电计指针的偏角。
若保持下极板不动,将上极板向下移动一小段距离至图中虚线位置,则()A. 〃增大,E增大B. 〃增大,坨,不变C. 0减小,坷増大D. 〃减小,E不变5. 如图所示,理想变压器原线圈接在交流电源上,图中各电表均为理想电表。
高考数学(全国甲卷通用理科)知识 方法篇 专题3 函数与导数 第8练 含答案

第8练 突难点——抽象函数与函数图象[题型分析·高考展望] 抽象函数即没有函数关系式,通过对函数性质的描述,对函数相关知识进行考查,此类题目难度较大,也是近几年来高考命题的热点.对函数图象问题,以基本函数为主,由基本函数进行简单的图象变换,主要是平行变换和对称变换,这样的题目都离不开函数的单调性与奇偶性.体验高考1.(2015·安徽)函数f (x )=的图象如图所示,则下列结论成立的是( )ax +b(x +c )2A.a >0,b >0,c <0B.a <0,b >0,c >0C.a <0,b >0,c <0D.a <0,b <0,c <0答案 C 解析 函数定义域为{x |x ≠-c },结合图象知-c >0,∴c <0.令x =0,得f (0)=,又由图象知f (0)>0,b c 2∴b >0.令f (x )=0,得x =-,结合图象知->0,b a b a∴a <0.故选C.2.(2015·天津)已知函数f (x )=Error!函数g (x )=b -f (2-x ),其中b ∈R .若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( )A. B.(74,+∞)(-∞,74)C. D.(0,74)(74,2)答案 D 解析 由f (x )=Error!得f (2-x )=Error!所以f (x )+f (2-x )=Error!即f (x )+f (2-x )=Error!y =f (x )-g (x )=f (x )+f (2-x )-b ,所以y =f (x )-g (x )恰有4个零点等价于方程f (x )+f (2-x )-b =0有4个不同的解,即函数y =b 与函数y =f (x )+f (2-x )的图象有4个公共点,由图象知<b <2.743.(2016·课标全国乙)函数y =2x 2-e |x |在[-2,2]的图象大致为( )答案 D解析 f (2)=8-e 2>8-2.82>0,排除A ;f (2)=8-e 2<8-2.72<1,排除B ;当x >0时,f (x )=2x 2-e x ,f ′(x )=4x -e x ,当x ∈时,f ′(x )<×4-e 0=0,(0,14)14因此f (x )在上单调递减,排除C ,故选D.(0,14)4.(2016·天津)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-),则a 的取值范围是________.2答案 (12,32)解析 ∵f (x )是偶函数,且在(-∞,0)上单调递增,∴在(0,+∞)上单调递减,f (-)=f (),22∴f (2|a -1|)>f (),∴2|a -1|<=221,22∴|a -1|<,即-<a -1<,即<a <.12121212325.(2015·浙江)已知函数f (x )=Error!则f (f (-3))=________,f (x )的最小值是________.答案 0 2-32解析 f (f (-3))=f (1)=0.当x ≥1时,f (x )=x +-3≥2-3<0,当且仅当x =时,取等2x22号;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号.∴f (x )的最小值为2-3.2高考必会题型题型一 与函数性质有关的简单的抽象函数问题例1 已知函数f (x )是定义在R 上的偶函数,且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的( )A.既不充分也不必要条件B.充分而不必要条件C.必要而不充分条件D.充要条件答案 D解析 ①∵f (x )在R 上是偶函数,∴f (x )的图象关于y 轴对称.∵f (x )为[0,1]上的增函数,∴f (x )为[-1,0]上的减函数.又∵f (x )的周期为2,∴f (x )为区间[-1+4,0+4]=[3,4]上的减函数.②∵f (x )为[3,4]上的减函数,且f (x )的周期为2,∴f (x )为[-1,0]上的减函数.又∵f (x )在R 上是偶函数,∴f (x )为[0,1]上的增函数.由①②知“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的充要条件.点评 抽象函数的条件具有一般性,对待选择题、填空题可用特例法、特值法或赋值法.也可由函数一般性质进行推理.变式训练1 已知定义在区间(0,+∞)上的函数f (x )满足f ()=f (x 1)-f (x 2),且当x >1x 1x 2时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2.解 (1)令x 1=x 2>0,代入f ()=f (x 1)-f (x 2),x 1x 2得f (1)=f (x 1)-f (x 2)=0,故f (1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则>1.x 1x 2∵当x >1时,f (x )<0.∴f <0,即f (x 1)-f (x 2)<0,(x 1x 2)即f (x 1)<f (x 2),故函数f (x )在区间(0,+∞)上单调递减.(3)由f =f (x 1)-f (x 2),(x 1x 2)得f ()=f (9)-f (3).93而f (3)=-1,∴f (9)=-2,∴原不等式为f (|x |)<f (9).∵函数f (x )在区间(0,+∞)上单调递减,∴|x |>9,∴x <-9或x >9.∴不等式的解集为{x |x <-9或x >9}.题型二 与抽象函数有关的综合性问题例2 对于函数f (x ),若在定义域内存在实数x ,满足f (-x )=-f (x ),则称f (x )为“局部奇函数”.(1)已知二次函数f (x )=ax 2+2x -4a (a ∈R ),试判断f (x )是否为“局部奇函数”?并说明理由;(2)若f (x )=2x +m 是定义在区间[-1,1]上的“局部奇函数”,求实数m 的取值范围.解 f (x )为“局部奇函数”等价于关于x 的方程f (x )+f (-x )=0有解.(1)当f (x )=ax 2+2x -4a (a ∈R )时,方程f (x )+f (-x )=0即2a (x 2-4)=0.因为方程有解x =±2,所以f (x )为“局部奇函数”.(2)当f (x )=2x +m 时,f (x )+f (-x )=0可化为2x +2-x +2m =0,因为f (x )的定义域为[-1,1],所以方程2x +2-x +2m =0在[-1,1]上有解.令t =2x ∈[,2],则-2m =t +.121t设g (t )=t +,t ∈[,2],1t 12则g ′(t )=1-,t ∈[,2].1t 212当t ∈时,g ′(t )<0,(12,1)故g (t )在(0,1)上为减函数;当t ∈(1,2)时,g ′(t )>0,故g (t )在(1,2)上为增函数.所以函数g (t )=t +,t ∈[,2]的值域为[2,],1t 1252由2≤-2m ≤,得-≤m ≤-1,5254故实数m 的取值范围是[-,-1].54点评 (1)让抽象函数不再抽象的方法主要是赋值法和单调函数法,因此学会赋值、判断并掌握函数单调性和奇偶性是必须过好的两关,把握好函数的性质.(2)解答抽象函数问题时,学生往往盲目地用指数、对数函数等代替函数来解答问题,而导致出错.要明确抽象函数是具有某些性质的一类函数,而不是具体的某一个函数.因此掌握这类函数的关键是把握函数的性质以及赋值的方法.变式训练2 定义在(0,+∞)上的可导函数f (x )满足xf ′(x )-f (x )=x ,且f (1)=1.现给出关于函数f (x )的下列结论:(1)函数f (x )在上单调递增;(1e ,+∞)(2)函数f (x )的最小值为-;1e2(3)函数f (x )有且只有一个零点;(4)对于任意的x >0,都有f (x )≤x 2.其中正确结论的个数是( )A.1B.2C.3D.4答案 D解析 设g (x )=,x ∈(0,+∞),f (x )x 则g ′(x )===,xf ′(x )-f (x )x 2x x 21x 所以g (x )=ln x +c (c 为常数),所以f (x )=x ln x +cx .因为f (1)=1,所以c =1,所以f (x )=x ln x +x .对于(1),因为f ′(x )=ln x +2,当x >时,f ′(x )>ln +2=-1+2=1>0,1e 1e所以(1)正确.对于(2),由f ′(x )>0,得x >;1e2由f ′(x )<0,得0<x <,1e2所以f (x )=x ln x +x 在(0,]上单调递减,1e2在[,+∞)上单调递增.1e2所以当x =时,函数f (x )取得最小值f ()=ln +=-,所以(2)正确.1e21e21e21e21e21e2对于(3),函数f (x )=x ln x +x 的图象如图所示,所以(3)正确.对于(4),f (x )-x 2=x ln x +x -x 2=x (ln x +1-x ).令h (x )=ln x +1-x ,x ∈(0,+∞),则h ′(x )=-1=.1x 1-x x令h ′(x )>0,得0<x <1;令h (x )<0,得x >1.从而h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以h (x )≤h (1)=0,即ln x +1-x ≤0.又x >0,所以f (x )-x 2=x (ln x +1-x )≤0,即f (x )≤x 2.所以(4)正确.综上,正确结论的个数是4.题型三 函数图象的应用与判断例3 已知函数f (x )=,则y =f (x )的图象大致为( )1ln (x +1)-x答案 B解析 令g (x )=ln(x +1)-x ,则g ′(x )=-,x >-1.x1+x 当g ′(x )>0时,-1<x <0;当g ′(x )<0时,x >0.故g (x )<g (0)=0,即x >0或-1<x <0时均有f (x )<0,排除A ,C ,D.点评 (1)求函数图象时首先考虑函数定义域,然后考虑特殊值以及函数变化趋势,特殊值首先考虑坐标轴上的点.(2)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(3)在运用函数图象时要避免只看表象不联系其本质,透过函数的图象要看到它所反映的函数的性质,并以此为依据进行分析、推断,才是正确的做法.变式训练3 形如y =(a >0,b >0)的函数因其图象类似于汉字中的“囧”字,故生动b|x |-a 地称为“囧函数”.若当a =1,b =1时的“囧函数”与函数y =lg|x |的交点个数为n ,则n =________.答案 4解析 由题意知,当a =1,b =1时,y ==Error!1|x |-1在同一坐标系中画出“囧函数”与函数y =lg|x |的图象如图所示,易知它们有4个交点.高考题型精练1.定义在R 上的偶函数f (x )满足f (2-x )=f (x ),且在[-3,-2]上是减函数,α,β是钝角三角形的两个锐角,则下列不等式中正确的是( )A.f (sin α)>f (cos β)B.f (sin α)<f (cos β)C.f (cos α)<f (cos β)D.f (cos α)>f (cos β)答案 B解析 因为f (x )为R 上的偶函数,所以f (-x )=f (x ),又f (2-x )=f (x ),所以f (x +2)=f (2-(x +2))=f (-x )=f (x ),所以函数f (x )以2为周期.因为f (x )在[-3,-2]上是减函数,所以f (x )在[-1,0]上也是减函数,故f (x )在[0,1]上是增函数.因为α,β是钝角三角形的两个锐角,所以α+β<,α<-β,π2π2所以0<sin α<sin =cos β<1,(π2-β)故f (sin α)<f (cos β),故选B.2.定义域为R 的函数f (x )对任意x 都有f (2+x )=f (2-x ),且其导函数f ′(x )满足>0,f ′(x )2-x 则当2<a <4时,有( )A.f (2a )<f (log 2a )<f (2)B.f (log 2a )<f (2)<f (2a )C.f (2a )<f (2)<f (log 2a )D.f (log 2a )<f (2a )<f (2)答案 A解析 由函数f (x )对任意x 都有f (2+x )=f (2-x ),得函数f (x )图象的对称轴为直线x =2.因为函数f (x )的导函数f ′(x )满足>0,f ′(x )2-x 所以函数f (x )在(2,+∞)上单调递减,(-∞,2)上单调递增.因为2<a <4,所以1<log 2a <2<4<2a .又函数f (x )图象的对称轴为直线x =2,所以f (2)>f (log 2a )>f (2a ),故选A.3.两个函数的图象经过平移后能够重合,称这两个函数为“同根函数”,给出四个函数:f 1(x )=2log 2(x +1),f 2(x )=log 2(x +2),f 3(x )=log 2x 2,f 4(x )=log 2(2x ),则“同根函数”是( )A.f 2(x )与f 4(x )B.f 1(x )与f 3(x )C.f 1(x )与f 4(x )D.f 3(x )与f 4(x )答案 A 解析 f 4(x )=log 2(2x )=1+log 2x ,f 2(x )=log 2(x +2),将f 2(x )的图象沿着x 轴先向右平移2个单位得到y =log 2x 的图象,然后再沿着y 轴向上平移1个单位可得到f 4(x )的图象,根据“同根函数”的定义可知选A.4.设函数f (x )=x |x -a |,若对∀x 1,x 2∈[3,+∞),x 1≠x 2,不等式>0恒成立,f (x 1)-f (x 2)x 1-x 2则实数a 的取值范围是( )A.(-∞,-3]B.[-3,0)C.(-∞,3]D.(0,3]答案 C解析 由题意分析可知条件等价于f (x )在[3,+∞)上单调递增,又∵f (x )=x |x -a |,∴当a ≤0时,结论显然成立;当a >0时,f (x )=Error!∴f (x )在上单调递增,(-∞,a 2)在上单调递减,在(a ,+∞)上单调递增,(a 2,a )∴0<a ≤3.综上,实数a 的取值范围是(-∞,3].5.在平面直角坐标系中,若两点P ,Q 满足条件:(1)P ,Q 都在函数y =f (x )的图象上;(2)P ,Q 两点关于直线y =x 对称,则称点对{P ,Q }是函数y =f (x )的一对“和谐点对”.(注:点对{P ,Q }与{Q ,P }看作同一对“和谐点对”)已知函数f (x )=Error!则此函数的“和谐点对”有( )A.0对B.1对C.2对D.3对答案 C解析 作出函数f (x )的图象,然后作出f (x )=log 2x (x >0)关于直线y =x 对称的图象,与函数f (x )=x 2+3x +2(x ≤0)的图象有2个不同交点,所以函数的“和谐点对”有2对.6.对定义在[0,1]上,并且同时满足以下两个条件的函数f (x )称为M 函数:(1)对任意的x ∈[0,1],恒有f (x )≥0;(2)当x 1≥0,x 2≥0,x 1+x 2≤1时,总有f (x 1+x 2)≥f (x 1)+f (x 2)成立.则下列3个函数中不是M 函数的个数是( )①f (x )=x 2;②f (x )=x 2+1;③f (x )=2x -1.A.0B.1C.2D.3答案 B解析 在[0,1]上,3个函数都满足f (x )≥0.当x 1≥0,x 2≥0,x 1+x 2≤1时:对于①,f (x 1+x 2)-[f (x 1)+f (x 2)]=(x 1+x 2)2-(x +x )=2x 1x 2≥0,满足;212对于②,f (x 1+x 2)-[f (x 1)+f (x 2)]=[(x 1+x 2)2+1]-[(x +1)+(x +1)]=2x 1x 2-1<0,不满212足;对于③,f (x 1+x 2)-[f (x 1)+f (x 2)]=(212x +x -1)-(21x -1+22x -1)=21x 22x -21x -22x +1=(21x -1)·(22x -1)≥0,满足.故选B.7.已知函数f (x )=-m |x |有三个零点,则实数m 的取值范围为________.1x +2答案 (1,+∞)解析 函数f (x )有三个零点等价于方程=m |x |有且仅有三个实根.∵=m |x |⇔=1x +21x +21m |x |·(x +2),作函数y =|x |(x +2)的图象,如图所示.由图象可知m 应满足:0<<1,故m >1.1m8.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为________.答案 (-∞,0]∪(1,2]解析 y=f(x+1)的图象向右平移1个单位得到y=f(x)的图象,由已知可得f(x)的图象的对称轴为x=1,过定点(2,0),且函数在(-∞,1)上递减,在(1,+∞)上递增,则f(x)的大致图象如图所示.不等式(x-1)f(x)≤0可化为Error!或Error!由图可知符合条件的解集为(-∞,0]∪(1,2].9.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有①2是函数f(x)的周期;②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0.其中所有正确命题的序号是________.答案 ①②解析 在f(x+1)=f(x-1)中,令x-1=t,则有f(t+2)=f(t),因此2是函数f(x)的周期,故①正确;当x∈[0,1]时,f(x)=2x是增函数,根据函数的奇偶性知,f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f(x)在[0,2]上的最大值f(x)max=f(1)=2,f(x)的最小值f(x)min=f(0)=f(2)=20=1,且f(x)是周期为2的周期函数,∴f(x)的最大值是2,最小值是1,故③错误.10.已知函数y=f(x)(x∈R)为奇函数,且对定义域内的任意x都有f(1+x)=-f(1-x).当x∈(2,3)时,f(x)=log2(x-1),给出以下4个结论:①函数y=f(x)的图象关于点(k,0)(k∈Z)成中心对称;②函数y=f(x)是以2为周期的周期函数;③当x∈(-1,0)时,f(x)=-log2(1-x);④函数y=f(|x|)在(k,k+1)(k∈Z)上单调递增,则正确结论的序号是__________.答案 ①②③解析 因为f(1+x)=-f(1-x),y=f(x)(x∈R)为奇函数,所以f (1+x )=f (x -1),则f (2+x )=f (x ),所以y =f (x )(x ∈R )是以2为周期的周期函数,②正确;所以f (2k +x )=f (x ),f (x -k )=f (x +k )=-f (k -x ),所以f (x +k )=-f (k -x ),即函数y =f (x )的图象关于点(k ,0)(k ∈Z )成中心对称,①正确;由①知,函数f (x )的图象关于点(2,0)成中心对称,即f (x +2)=-f (2-x ).又因为当x ∈(-1,0)时,2-x ∈(2,3),所以f (x )=f (x +2)=-f (2-x )=-log 2(2-x -1)=-log 2(1-x ),③正确;函数y =f (|x |)是偶函数,在关于原点对称的区间上的单调性相反,所以④不正确.11.已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.解 f (x )=Error!作出函数图象如图.(1)函数的增区间为(1,2),(3,+∞);函数的减区间为(-∞,1),(2,3).(2)在同一坐标系中作出y =f (x )和y =m 的图象,使两函数图象有四个不同的交点(如图).由图知0<m <1,∴M ={m |0<m <1}.12.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.解 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=f (1)=0.12令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )在D 上为偶函数.(3)依题设有f(4×4)=f(4)+f(4)=2,由(2)知,f(x)是偶函数,∴f(x-1)<2⇔f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数,∴0<|x-1|<16,解得-15<x<17且x≠1.∴x的取值范围是{x|-15<x<17且x≠1}.。
专题15 立体几何多选、填空题(理科)(原卷版)-十年(2014-2023)高考数学真题分项汇编

十年(2014-2023)年高考真题分项汇编立体几何填空、多选目录题型一:立体几何结构特征 (1)题型二:立体几何三视图 (2)题型三:立体几何的表面积与体积 (3)题型四:立体几何中的球的问题 (9)题型五:立体几何线面位置关系 (9)题型六:立体几何中的角度与距离 (10)题型一:立体几何结构特征1.(2023年全国甲卷理科·第15题)在正方体1111ABCD A B C D -中,E ,F 分别为AB ,11C D 的中点,以EF 为直径的球的球面与该正方体的棱共有____________个公共点.2.(2020年高考课标Ⅲ卷理科·第15题)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.3.(2019·全国Ⅱ·理·第16长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为(本题第一空2分,第二空3分).4.(2017年高考数学上海(文理科)·第11题)如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为________.5.(2015高考数学江苏文理·第9题)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积和高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为_______.二、多选题1.(2023年新课标全国Ⅰ卷·第12题)下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A .直径为0.99m 的球体B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体2.(2021年新高考Ⅰ卷·第12题)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 题型二:立体几何三视图1.(2021年高考全国乙卷理科·第16题)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).2.(2019·北京·理·第11题)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.3.(2017年高考数学上海(文理科)·第8题)已知球的体积为36π,则该球主视图的面积等于________.4.(2017年高考数学山东理科·第13题)由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为__________.则该棱台的体积为________.2.(2023年新课标全国Ⅱ卷·第14题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.3.(2020年新高考全国Ⅰ卷(山东)·第15题)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.4.(2020年新高考全国卷Ⅱ数学(海南)·第13题)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________5.(2020天津高考·第15题)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=- ,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN = ,则DM DN ⋅ 的最小值为_________.6.(2020江苏高考·第9题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半轻为0.5cm,则此六角螺帽毛坯的体积是____cm.7.(2019·天津·理·第11题)个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.8.(2019·全国Ⅲ·理·第16题)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9g /cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .9.(2019·江苏·第9题)如图,长方体1111ABCD A B C D -的体积是120,E 是1CC 的中点,则三棱椎-E BCD 的体积是______.10.(2018年高考数学江苏卷·第10题)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.11.(2018年高考数学天津(理)·第11题)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为.12.(2018年高考数学课标Ⅱ卷(理)·第16题)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为,则该圆锥的侧面积为__________.13.如图,在正三棱柱111ABC A B C -中,1AB =.若二面角1C AB C --的大小为60,则点1C 到直线AB 的距离为.1A 1B 1C AB C14.(2014高考数学天津理科·第10题)已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_________3m.15.(2014高考数学山东理科·第13题)三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V =.16.(2014高考数学江苏·第8题)设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且1294S S =,则12V V 的值是.17.(2015高考数学天津理科·第10题)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m.18.(2015高考数学上海理科·第4题)若正三棱柱的所有棱长均为a ,且其体积为,则a =.19.(2017年高考数学江苏文理科·第6题)如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是_______.20.(2016高考数学浙江理科·第14题)如图,在ABC ∆中,2,120AB BC ABC ==∠= .若平面ABC 外的点P 和线段AC 上的点D ,满足,PD DA PB BA ==,则四面体PBCD 的体积的最大值是.21.(2016高考数学浙江理科·第11题)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是2cm ,体积是3cm .OO 1O 2(第6题)⋅⋅⋅22.(2016高考数学天津理科·第11题)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_____________3m .23.(2016高考数学四川理科·第13题)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则三棱锥的体积为_______.二、多选题1.(2022新高考全国II 卷·第11题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =题型四:立体几何中的球的问题1.(2020年新高考全国Ⅰ卷(山东)·第16题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D BCC 1B 1的交线长为________.2.(2017年高考数学天津理科·第10题)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝2.(2019·北京·理·第12题)已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l m ⊥;②m ∥α;③l α⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【3.(2016高考数学课标Ⅱ卷理科·第14题),αβ是两个平面,,m n 是两条直线,有下列四个命题:(1)如果m n ⊥,m α⊥,//n β,那么αβ⊥.(2)如果m α⊥,//n α,那么m n ⊥.(3)如果//αβ,m α⊂,那么//m β.(4)如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)二、多选题1.(2021年新高考全国Ⅱ卷·第10题)如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是()A .B .C .D ._____________.(结果用反三角函数值表示)2.(2015高考数学浙江理科·第13题)如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是.3.(2015高考数学四川理科·第14题)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面相互垂直,动点M 在线段PQ 上,,E F 分别为AB ,BC 中点,设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________4.(2015高考数学上海理科·第6题)若圆锥的侧面积与过轴的截面积面积之比为2π,则其母线与轴的夹角的大小为.5.(2017年高考数学课标Ⅲ卷理科·第16题),a b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与,a b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60︒角时,AB 与b 成30︒角;②当直线AB 与a 成60︒角时,AB 与b 成60︒角;③直线AB 与a 所成角的最小值为45︒;④直线AB 与a 所成角的最大值为60︒.其中正确的是.(填写所有正确结论的编号)6.(2016高考数学上海理科·第6题)如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________.二、多选题1.(2023年新课标全国Ⅱ卷·第9题)已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45°,则().A .该圆锥的体积为πB .该圆锥的侧面积为C .AC =D .PAC △2.(2022新高考全国I 卷·第9题)已知正方体1111ABCD A B C D -,则()A .直线1BC 与1DA 所成的角为90︒B .直线1BC 与1CA 所成的角为90︒C .直线1BC 与平面11BBD D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒。
高考数学(理)真题专题汇编:集合与逻辑

高考数学(理)真题专题汇编:集合与逻辑一、选择题1.【来源】2019年高考真题——数学(浙江卷) 若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2.【来源】2019年高考真题——数学(浙江卷)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(C U A)∩B=( ) A. {-1} B. {0,1} C. {-1,2,3}D. {-1,0,1,3}3.【来源】2019年高考真题——理科数学(北京卷)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件4.【来源】2019年高考真题——理科数学(天津卷)设x R ∈,则“250x x -<”是“|1|1x -<”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.【来源】2019年高考真题——理科数学(天津卷)设集合A={-1,1,2,3,5},B={2,3,4},{|13}C x x =∈≤<R ,则()A C B =A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4} 6.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面7.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 设集合A={x|x 2-5x+6>0},B={ x|x-1<0},则A∩B= A .(-∞,1) B .(-2,1) C .(-3,-1)D .(3,+∞)8.【来源】2019年高考真题——理科数学(全国卷Ⅲ)已知集合A={-1,0,1,2},B={x|x 2≤1},则A∩B= A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2}9.【来源】2019年高考真题——理科数学(全国卷Ⅰ) 已知集合}242{60{}M x x N x x x =-<<=--<,,则M∩N=A .}{43x x -<<B .}42{x x -<<- C .}{22x x -<< D .}{23x x <<10.【来源】2018年高考真题——数学理(全国卷Ⅲ)已知集合A={x|x -1≥0},B={0,1,2},则A∩B= A .{0}B .{1}C.{1,2}D .{0,1,2}11.【来源】2018年高考真题——理科数学(北京卷)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a<0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 12.【来源】2018年高考真题——理科数学(北京卷)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件13.【来源】2018年高考真题——理科数学(北京卷)(1)已知集合A={x||x|<2},B={–2,0,1,2},则A∩B = (A ){0,1}(B ){–1,0,1}(C ){–2,0,1,2}(D ){–1,0,1,2}14.【来源】2018年高考真题——理科数学(天津卷)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件15.【来源】2018年高考真题——理科数学(天津卷)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R A B(A) {01}x x <≤ (B) {01}x x << (C){12}x x ≤<(D){02}x x <<16.【来源】2018年高考真题——理科数学(全国卷II )已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .417.【来源】2018年高考真题——理科数学(全国卷Ⅰ)已知集合A={x|x 2-x -2>0},则C R A= A.{ x|-1<x <2} B. { x|-1≤x≤2}C. { x| x <-1}∪{ x|x >2}D. { x| x≤-1}∪{ x|x≥2} 18.【来源】2016年高考真题——理科数学(天津卷)设{a n }是首项为正数的等比数列,公比为q ,则“q<0”是“对任意的正整数n ,a 2n−1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 19.【来源】2016年高考真题——理科数学(天津卷)已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( ) (A ){1}(B ){4}(C ){1,3}(D ){1,4}20.【来源】2017年高考真题——理科数学(北京卷)设m,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件21.【来源】2017年高考真题——理科数学(北京卷)若集合A={x|–2<x<1},B={x|x<–1或x>3},则A∩B=(A){x|–2<x<–1} (B){x|–2<x<3}(C){x|–1<x<1} (D){x|1<x<3}22.【来源】2017年高考真题——数学(浙江卷)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4 + S6>2S5”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件23.【来源】2017年高考真题——数学(浙江卷)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=A. (-1,2) B. (0,1) C. (-1,0) D.(1,2)二、填空题24.【来源】2019年高考真题——数学(江苏卷)已知集合A={-1,0,1,6},{}|0,B x x x R =>∈,则A∩B=_____. 25.【来源】2018年高考真题——理科数学(北京卷)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.26.【来源】2018年高考真题——数学(江苏卷)已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .27.【来源】2018年高考真题——数学(江苏卷)已知集合A={0,1,2,8},B={-1,1,6,8},那么A∩B = ▲ . 28.【来源】2017年高考真题——理科数学(北京卷)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a+b >c”是假命题的一组整数a ,b ,c 的值依次为______________________________. 29.【来源】2017年高考真题——数学(江苏卷)已知集合A={1,2},B={a ,a 2+3},若A∩B={1},则实数a 的值为________ 三、解答题(本题共1道小题,第1题0分,共0分) 30.【来源】2018年高考真题——理科数学(北京卷)(本小题14分)设n 为正整数,集合A=12{|(,,,),{0,1},1,2,,}n n t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记M (αβ,)=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--.(Ⅰ)当n=3时,若(1,1,0)α=,(0,1,1)β=,求M (,αα)和M (,αβ)的值;(Ⅱ)当n=4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由.试卷答案1.A 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果. 2. A【分析】本题借根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】={1,3}U C A -,则(){1}U C A B =-【点睛】易于理解集补集的概念、交集概念有误. 3. C【分析】由题意结合向量的减法公式和向量的运算法则考查充分性和必要性是否成立即可. 【详解】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C. 4. B化简不等式,可知 05x <<推不出11x -<; 由11x -<能推出05x <<,故“250x x -<”是“|1|1x -<”的必要不充分条件, 故选B. 5.因为{1,2}A C =, 所以(){1,2,3,4}A C B =.6. B根据面面平行的判定定理易得答案.选B. 7. A{2|<=x x A 或}3>x ,{}1|<=x x B ,∴)(1,∞-=⋂B A .8. A}11|{}1|{2≤≤-=≤=x x x x B ,所以}1,0,1{-=⋂B A .9. C由题意可知,}32|{<<-=x x N ,又因为}24|{<<-=x x M ,则}22|{<<-=x x N M ,故选C .10. C详解:由集合A 得 ,所以故答案选C. 11. D分析:求出 及 所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则 ,此命题的逆否命题为:若 ,则有,故选D.12. C分析:先对模平方,将 等价转化为0,再根据向量垂直时数量积为零得充要关系. 详解:,因为a ,b 均为单位向量,所以a ⊥b ,即“”是“a⊥b”的充分必要条件.选C.A分析:先解含绝对值不等式得集合A ,再根据数轴求集合交集. 详解:因此A∩B= ,选A.14. A分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系. 详解:绝对值不等式,由. 据此可知是的充分而不必要条件.本题选择A 选项. 15. B分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B 选项. 16. A 详解: ,当 时, ; 当 时, ; 当时,;所以共有9个,选A. 17. B 解答:{|2A x x =>或1}x <-,则{|12}R C A x x =-≤≤.18. C试题分析:由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a q q q q q ----+<⇔+<⇔+<⇔∈-∞-,故是必要不充分条件,故选C. 19.D试题分析:{1,4,7,10},A B {1,4}.B ==选D. 20. A若0λ∃<,使m n λ=,即两向量反向,夹角是180°,那么0cos1800m n m n m n ⋅==-<,反过来,若0m n ⋅<,那么两向量的夹角为(90°,180°],并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A. 21. A{}21A B x x =-<<-,故选A.22.C试题分析:由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d>0”是“S 4 +S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件. 23.A试题分析:利用数轴,取P 、Q 所有元素,得P ∪Q=(-1,2)【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 24. {1,6} 【分析】由题意利用交集的定义求解交集即可. 【详解】由题知,{1,6}AB =.【点睛】本题主要考查交集的运算,属于基础题. 25.y=sinx (答案不唯一)分析:举的反例要否定增函数,可以取一个分段函数,使得f (x )>f (0)且(0,2]上是减函数.详解:令,则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数. 又如,令f (x )=sinx ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.26.27分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 详解:设 ,则由得 所以只需研究是否有满足条件的解, 此时 , ,m 为等差数列项数,且. 由得满足条件的n 最小值为27.27.{1,8} 分析:根据交集定义求结果. 详解:由题设和交集的定义可知:.28.1,2,3---(答案不唯一) 123,1(2)3->->--+-=-29.1由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为130.解:(Ⅰ)因为α=(1,1,0),β=(0,1,1),所以M(α,α)=12[(1+1−|1−1|)+(1+1−|1−1|)+(0+0−|0−0|)]=2, M(α,β)=12[(1+0–|1−0|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.(Ⅱ)设α=(x1,x 2,x3,x4)∈B,则M(α,α)= x1+x2+x3+x4.由题意知x1,x 2,x3,x4∈{0,1},且M(α,α)为奇数,所以x1,x 2,x3,x4中1的个数为1或3.所以B {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有M(α,β)=1.所以每组中的两个元素不可能同时是集合B的元素.所以集合B中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B中元素个数的最大值为4.(Ⅲ)设S k=( x1,x 2,…,x n)|( x1,x 2,…,x n)∈A,x k =1,x1=x2=…=x k–1=0)(k=1,2,…,n),S n+1={( x1,x 2,…,x n)| x1=x2=…=x n=0},则A=S1∪S1∪…∪S n+1.对于S k(k=1,2,…,n–1)中的不同元素α,β,经验证,M(α,β)≥1.所以S k(k=1,2 ,…,n–1)中的两个元素不可能同时是集合B的元素.所以B中元素的个数不超过n+1.取e k=( x1,x 2,…,x n)∈S k且x k+1=…=x n=0(k=1,2,…,n–1).令B=(e1,e2,…,e n–1)∪S n∪S n+1,则集合B的元素个数为n+1,且满足条件.故B是一个满足条件且元素个数最多的集合.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年高考真题理科数学(天津卷)理科数学单选题(本大题共8小题,每小题____分,共____分。
)1.已知集合则=()A.B.C.D.2.设变量x,y满足约束条件则目标函数的最小值为()A.B. 6C. 10D. 173.在△ABC中,若,BC=3, ,则AC= ()A. 1B. 2C. 3D. 44.阅读程序框图,运行相应的程序,则输出S的值为()A. 2B. 4C. 6D. 85.设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,”的()A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件6.已知双曲线(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形的ABCD的面积为2b,则双曲线的方程为()A.B.C.D.7.已知△ABC是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为()A.B.C.D.8.已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程恰好有两个不相等的实数解,则a的取值范围是()A. (0,]B. [,]C. [,]{}D. [,){}填空题(本大题共6小题,每小题____分,共____分。
)9.已知,i是虚数单位,若,则的值为_______.10.的展开式中的系数为__________.(用数字作答)11.已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为_______m3.12.如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为__________.13.已知f(x)是定义在R上的偶函数,且在区间(-,0)上单调递增.若实数a满足,则a的取值范围是______.14.设抛物线,(t为参数,p>0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为B.设C(p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为,则p的值为_________.简答题(综合题)(本大题共6小题,每小题____分,共____分。
)已知函数f(x)=4tanxsin()cos()-.15.求f(x)的定义域与最小正周期;16.讨论f(x)在区间[]上的单调性.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,.现从这10人中随机选出2人作为该组代表参加座谈会.17.设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;18.设为选出的2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望. 如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.19.求证:EG∥平面ADF;20.求二面角O-EF-C的正弦值;21.设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.已知是各项均为正数的等差数列,公差为,对任意的是和的等差中项.22.设,求证:是等差数列;23.设,求证:设椭圆()的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.24.求椭圆的方程;25.设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率的取值范围.设函数,,其中26.求的单调区间;27. 若存在极值点,且,其中,求证:;28.设,函数,求证:在区间上的最大值不小于.答案单选题1. D2. B3. A4. B5. C6. D7. B8. C 填空题9.210.11.212.13.14.简答题15.(Ⅰ),16.(Ⅱ)在区间上单调递增, 在区间上单调递减.17.(Ⅰ)18.(Ⅱ)随机变量分布列为随机变量的数学期望.19.(I)证明:依题意,.设为平面的法向量,则,即.不妨设,可得,又,可得,又因为直线,所以.20.(Ⅱ)21.(Ⅲ)22.(Ⅰ)⑴为定值.∴为等差数列23.(Ⅱ)⑵(*)由已知将代入(*)式得∴,得证24.(Ⅰ)25.(Ⅱ)26.的单调递减区间为,单调递增区间为,.27.(Ⅱ)证明:因为存在极值点,所以由(Ⅰ)知,且,由题意,得,即,进而.又,且,由题意及(Ⅰ)知,存在唯一实数满足,且,因此,所以;28.(Ⅲ)欲证在区间上的最大值不小于,只需证在区间上存在,使得即可当时,在上单调递减递减,成立当时,∵∴若时,,成立当时,,成立综上所述,当时,在区间上的最大值不小于.解析单选题1.,,∴,选D.2.可行域如上图所示,则当取点时,取得最小值为6 3.设由余弦定理得:或(舍),∴,选A.4.依次循环:第一次:,第二次:,第三次:,结束循环,输出,选B.5.由题意得,,故是必要不充分条件,故选C.6.渐近线设,则,∴,∴,∴,∴∴7.设,,∴,,,∴,故选B.8.由在上递减可知,由方程恰好有两个不相等的实数解,可知,,又∵时,抛物线与直线相切,也符合题意,∴实数的去范围是,故选C.填空题9.,则,所以,,故答案为2.10.,∴系数为-5611.由三视图知四棱锥高为3,底面平行四边形的底为2,高为1,因此体积为.故答案为2.12.设,则由相交弦定理得,,又,所以,因为是直径,则,,在圆中,则,即,解得13.由是偶函数可知,单调递增;单调递减又,可得,即14.抛物线的普通方程为,,,又,则,由抛物线的定义得,所以,则,由得,即,所以,,所以,.简答题15.本题属于三角恒等变换与函数性质的综合应用问题,属于简单题,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证. 对于三角函数来说,常常是先化为y=Asin(ωx+φ)+k的形式,再利用三角函数的性质求解.本题只要掌握相关的公式及性质,即可解决本题,具体解析如下:解:的定义域为..所以, 的最小正周期16.本题属于三角恒等变换与函数性质的综合应用问题,属于简单题,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证. 对于三角函数来说,常常是先化为y=Asin(ωx+φ)+k的形式,再利用三角函数的性质求解.本题只要掌握相关的公式及性质,即可解决本题,具体解析如下:令函数的单调递增区间是由,得设,易知.所以, 当时,在区间上单调递增, 在区间上单调递减.17.本题属于概率与统计综合应用问题,属于简单题,只要掌握相关概率与统计的知识,即可解决本题,解析如下:试题解析:解:由已知,有所以,事件发生的概率为.18.本题属于概率与统计综合应用问题,属于简单题,只要掌握相关概率与统计的知识,即可解决本题,解析如下:随机变量的所有可能取值为,,.所以,随机变量分布列为随机变量的数学期望.19.本题属于立体几何的综合应用问题,属于中档题,只要掌握相关立体几何的知识,即可解决本题,解析如下:由题意可知,,如图建立空间直角坐标系,则.(I)证明:依题意,.设为平面的法向量,则,即.不妨设,可得,又,可得,又因为直线,所以.20.本题属于立体几何的综合应用问题,属于中档题,只要掌握相关立体几何的知识,即可解决本题,解析如下:由题意可知,,如图建立空间直角坐标系,则.(II)解:易证,为平面的一个法向量.依题意,.设为平面的法向量,则,即.不妨设,可得.因此有,于是,所以,二面角的正弦值为.21.本题属于立体几何的综合应用问题,属于中档题,只要掌握相关立体几何的知识,即可解决本题,解析如下:由题意可知,,如图建立空间直角坐标系,则.(III)解:由,得.因为,所以,进而有,从而,因此.所以,直线和平面所成角的正弦值为.22.本题属于数列知识的综合应用问题,属于中档题,只要掌握相关的知识,即可解决本题,解析如下:⑴为定值.∴为等差数列23.本题属于数列知识的综合应用问题,属于中档题,只要掌握相关的知识,即可解决本题,解析如下:⑵(*)由已知将代入(*)式得∴,得证24.本题属于圆锥曲线的综合应用问题,属于拔高题,不容易得分,解析如下:(1)解:设,由,即,可得,又,所以,因此,所以椭圆的方程为.25.本题属于圆锥曲线的综合应用问题,属于拔高题,不容易得分,解析如下:(2)由已知,设斜率为,方程为设,,,成立由韦达定理,∴,令,得∵,∴即∴,∴∴或.所以,直线的斜率的取值范围为.26.本题属于导数的综合应用问题,属于拔高题,不容易得分,解析如下:(Ⅰ)解:由,可得.下面分两种情况讨论:(1)当时,有恒成立,所以的单调递增区间为. (2)当时,令,解得,或.当变化时,,的变化情况如下表:所以的单调递减区间为,单调递增区间为,.27.本题属于导数的综合应用问题,属于拔高题,不容易得分,解析如下:(Ⅱ)证明:因为存在极值点,所以由(Ⅰ)知,且,由题意,得,即,进而.又,且,由题意及(Ⅰ)知,存在唯一实数满足,且,因此,所以;28.本题属于导数的综合应用问题,属于拔高题,不容易得分,解析如下:(Ⅲ)欲证在区间上的最大值不小于,只需证在区间上存在,使得即可当时,在上单调递减递减,成立当时,∵∴若时,,成立当时,,成立综上所述,当时,在区间上的最大值不小于.。