实数全章教案汇编

合集下载

实数的教案

实数的教案

实数的教案教案一:引导学生学习实数的基本概念和性质教学目标:1. 理解实数的定义和性质;2. 能够在数轴上表示实数;3. 能够进行实数的加减乘除运算。

教学重点:1. 实数的定义和性质;2. 实数的表示和比较。

教学难点:实数与有理数的关系。

教学资源:1. 教师准备的课件;2. 数轴模型。

教学过程:Step 1:导入与激发兴趣(5分钟)教师通过提问判断学生对实数的理解程度,如“你们觉得实数是什么?有哪些特点?”Step 2:学习实数的定义和性质(15分钟)教师呈现实数的定义和性质,如“实数是包括有理数和无理数的数的集合”、“实数可以无限制地进行加减乘除运算”等。

Step 3:实数的表示和比较(15分钟)教师通过数轴模型展示实数的表示和比较方法,教学过程中引导学生思考,如“如何表示和比较两个实数?”、“怎样在数轴上找到实数的位置?”等。

Step 4:实数的加减乘除运算(20分钟)教师通过例题演示实数的加减乘除运算过程,并解释其中的规律,如“两个正数相加得到正数,两个负数相加也得到负数”,“正数与负数相乘得到负数”,等。

Step 5:练习与巩固(15分钟)教师根据学生的学习情况设计一些实数加减乘除的练习题,让学生在课堂上进行解答,并及时给予指导。

Step 6:拓展与应用(10分钟)教师设计一些拓展问题,让学生进行思考和讨论,如“实数有哪些应用场景?”、“无理数的定义和性质是什么?”等。

Step 7:总结与反思(5分钟)教师引导学生总结本节课所学的知识点,并反思学习过程中的困难和收获。

Step 8:布置作业(5分钟)教师布置课后作业,要求学生巩固所学知识,并提醒学生参考教材和相关资料复习实数的内容。

教学延伸:学生可以通过阅读相关书籍和资料,进一步深入了解实数的定义、性质和应用,拓宽知识面。

还可以进行实际问题的应用实践,探究实数在日常生活中的应用场景。

教学反思:通过本节课的教学,学生对实数的基本概念有了初步了解,并掌握了实数的表示和比较方法,以及加减乘除运算的规律。

新人教版七年级下册第六章实数全章教案

新人教版七年级下册第六章实数全章教案

6.1.1平方根(第一课时)】学问与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正驾驭算术平方根的意义。

情感看法与价值观:通过学习算术平方根,相识数与人类生活的亲密联络,建立初步的数感与符号感,开展抽象思维,为学生以后学习无理数做好打算。

教学重点:算术平方根的概念与求法。

教学难点:算术平方根的求法。

一、情境引入:问题:学校要实行美术作品竞赛,小欧很兴奋,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参与竞赛,这块正方形画布的边长应取多少?二、探究归纳:1.探究:学生能依据已有的学问即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm5。

接下来老师可以再深化地引导此问题:4,那么正方形的边长分别是假如正方形的面积分别是1、9、16、36、252,接下来老师可以引导性地提多少呢?学生会求出边长分别是1、3、4、6、5问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,老师需加以引导。

上面的问题,事实上是已知一个正数的平方,求这个正数的问题。

2.归纳:⑴算术平方根的概念:一般地,假如一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。

⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。

三、应用:例1、 求下列各数的算术平方根:注:①依据算术平方根的定义解题,明确平方与开平方互为逆运算; ②求带分数的算术平方根,须要先把带分数化成假分数,然后依据定义去求解;③0的算术平方根是0。

由此例题老师可以引导学生思索如下问题:你能求出-1,-36,-100的算术平方根吗?随意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。

实数精品教案设计(通用5篇)

实数精品教案设计(通用5篇)

实数精品教案设计(通用5篇)2022-03-22作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么应当如何写教案呢?以下是小编精心整理的实数教案设计,欢迎阅读与收藏。

实数教案设计篇1教学目标●知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用。

(2)用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围进行正确计算。

(3)正确运用公式:(≥0,≥0)(≥0,>0)这两个公式,实际上是二次根式内容中的两个公式,但这里不必向学生提出二次根式这个概念。

●过程与方法目标(1)通过具体数值的运算,发现规律,归纳总结出规律。

(2)能用类比的方法解决问题,用已有知识去探索新知识。

●情感与态度目标由实例得出两条运算法则,培养学生归纳、合作、交流的意识,提高数学素养。

教学重点(1)用类比的方法,引入实数的运算法则、运算律,能在实数范围内正确运算。

(2)发现规律:(≥0,≥0)(≥0,>0)教学难点(1)类比的学习方法。

(2)发现规律的过程。

教学准备:教材、、电脑。

电脑软件:Word,Powerpoint。

教学过程第一环节:复习引入(2分钟,学生通过回答问题,回顾旧知)问题1 :有理数中学过哪些运算及运算律?答:加、减、乘、除、乘方,加法()交换律、结合律,分配律。

问题2:实数包含哪些数?答:有理数,无理数。

问题3:有理数中的运算法则、运算律等在实数范围内能继续使用?答:这是我们本节课要解决的新问题。

实数教案设计篇2一.教学目标知识与技能目标:掌握实数运算的法则和运算顺序,会用计算器进行简单的混合运算,并解决一些简单的实际问题。

过程与方法目标:通过回顾有理数的运算法则和运算律,了解有理数的运算法则和运算律在实数范围内同样适用。

情感与态度目标:通过计算器的使用,提高学生的应用意识;通过对实际问题的解决,体验数学的应用性特点。

实数教案(精选3则)

实数教案(精选3则)

实数教案(精选3则)实数教案实数教案(一):初中数学教案----实数一、资料特点在知识与方法上类似于数系的第一次扩张。

也是后继资料学习的基础。

资料定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。

二、设计思路[]整体设计思路:无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于资料的始终。

学习对象----实数概念及其运算;学习过程----透过拼图活动引进无理数,透过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。

具体过程:首先透过拼图活动和计算器探索活动,给出无理数的概念,然后透过具体问题的解决,引入平方根和立方根的概念和开方运算。

最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

第一节:数怎样又不够用了:透过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会决定一个数是有理数还是无理数。

第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。

第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常透过估算来求它的近似值,为此这一节资料介绍估算的方法,包括透过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。

第五节:用计算器开方:会用计算器求平方根和立方根。

经历运用计算器探求数学规律的活动,发展合情推理的潜力。

第六节:实数。

总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

三、一些推荐1.注重概念的构成过程,让学生在概念的构成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的好处理解。

第13章《实数》全章教学案(7套教学案打包)

第13章《实数》全章教学案(7套教学案打包)

立方根教学设计(2)【教材分析】本章可以看成其后的代数内容的起始章,是学习二次根式、一元二次方程以及解三角形的基础,因此在中学数学中占有重要的地位。

通过本章的学习,学生对数的范围的认识就由有理数扩大到实数,而无理数的概念正是由数的平方根和立方根引入的。

在此之前,学生已学习了数的平方根,这为过渡到本节的学习起着铺垫作用。

通过本节课的学习,学生可以更深入的了解无理数,为后面学习奠定基础。

【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。

因此,我把本节课的教学目标确定为以下三个方面:知识目标:①了解立方根和开立方的概念;②掌握立方根的性质;③会用根号表示一个数的立方根;④会求一个数的立方根。

方法与过程目标:通过用类比的方法探寻出立方根的运算及表示方法,并能自我总结出平方根与立方根的异同。

通过学习立方根,培养学生理解概念并用定义解题的能力。

情感态度与价值观目标:①发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理。

②通过探究活动,锻炼学生克服困难的意志,建立自信心,提高学习热情。

【重点与难点】重点:立方根的概念及性质;难点:求一个数的立方根。

【学生分析】八年级的学生已经能从具体事例中归纳问题的本质,通过观察、类比等活动抽象出问题的规律,同时学生在前面的学习中已经熟练掌握平方根的知识,具备了用所学知识来分析立方根性质的基础。

【教学方法】课前布置学生进行预习,根据自己的学习,完成《问题导读评价单》,从而发现本节课存在的难点问题课上树立以学生为本的思想,通过创设问题情境,利用《问题生成评价单》,采用引导探索法、递进练习法。

用类比及引导探索法由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流得出立方根的定义,将定义的应用融入到探究活动中。

最后通过《问题训练评价单》对学生本节课所学的知识点进行验证,做到查漏补缺【设计理念】本节课设计的指导思想是全日制义务教育《数学课程标准》及新课程改革的教学理念。

实数的教学设计(精编7篇)

实数的教学设计(精编7篇)

实数的教学设计(精编7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!实数的教学设计(精编7篇)实数的教学设计(1)教学目标知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用。

(实用)最新人教版七年级 第六章《实数》整章教案(绝对精品)

(实用)最新人教版七年级 第六章《实数》整章教案(绝对精品)

6.1平方根(第1课时)邓伶亚赤壁市实验中学一、内容和内容解析1.内容《义务教育课程标准实验教科书——数学》(人教版)七年级下册第六章《实数》第一节第一课时的知识,主要介绍算术平方根的概念、表示方法和求法,以及用夹逼法估计2的大致范围.2.内容解析教材的地位和作用:第一,教科书先介绍算术平方根,让学生看到算术平方根与实际的联系,在学习算术平方根的基础上再学习平方根.算术平方根与之前学的平方运算存在互逆关系,也是下节课学习平方根的前提,具有承上启下的作用.第二,2是历史上人们发现的第一个无理数,引发了数学危机,也促使数系从有理数扩充到无理数。

教科书采用夹逼的方法,利用2的一系列不足近似值和过剩近似值来估计它的大小,进而给出2是无限不循环小数的结论,并指出53,等也是无限不循环小数,为后面学习无理数概念打下基础.第三,会用根号表示非负数的算术平方根,了解算术平方根的非负性,为以后学习二次根式做出了铺垫,提供知识积累.对本节课教学有利因素是:七年级学生会做加减乘除以及乘方运算了,但还是会发现一些生活中常见的数学问题(比如知道正方形面积求边长这一类的问题)没办法用这些计算方法解决,内心渴望新的计算方法出现,本节课的学习将实现他们内心的期盼.本节课教学不利因素是:第一、乘方运算是已知底数和指数,求幂,开方运算是已知幂和指数,求底数。

因为涉及到三个量的关系,与学过的互逆运算(加法和减法、乘法和除法)相比关系更为复杂,造成学生理解的困难.第二、对一个正数,开平方运算可以得到一正一负两个平方根,正的那个叫算术平方根.而教科书是从解决实际问题的需要出发,把算术平方根的学习放在平方根前面.对算术平方根是非负的理解,学生会有些困难.第三,对于可以表示成有理数的平方的数,由于它们的算术平方根都是有理数,所以学生容易把握这些算术平方根的大小.但是对于像2这样不能表示成一个有理数的平方的数,它的算术平方根到底有多大,对学生来说是一个新问题.基于以上分析,可以确定本节课的重点是:了解算术平方根的意义和性质.二、目标和目标解析1.目标(1)通过实际问题生成算术平方根的概念,了解平方与开平方互为逆运算,会用符号表示数的算术平方根.(2)通过互动游戏,巩固算术平方根的概念,并归纳出算术平方根的性质.(3)通过探究2的大小,了解2是无限不循环小数.2.目标解析目标(1)解析:学生经历由实际问题逐步抽象为数学问题的过程,建立初步的数感和符号感,发展抽象思维;在探索算术平方根概念的过程中,经历由具体到抽象、由特殊到一般的数学思想过程;通过对实际生活中问题的解决,体验数学来源于生活.目标(2)解析:学生在积极参与游戏的过程中,巩固算术平方根的概念;在师生问答互动的过程中,辨析概念,培养学生的推理、归纳能力.目标(3)解析:通过探究2的大小,培养估算意识,了解两个方向无限逼近的数学思想。

初中数学实数章节教案设计

初中数学实数章节教案设计

初中数学实数章节教案设计教学目标:1. 理解实数的概念,掌握实数的性质和运算。

2. 掌握平方根和立方根的概念和求法。

3. 能够运用实数及其运算解决实际问题。

教学内容:1. 实数的概念和性质2. 平方根和立方根的概念和求法3. 实数的运算教学步骤:一、导入(5分钟)1. 引入实数的概念,让学生回顾已学的有理数和无理数,引导学生思考实数的范围和特点。

二、实数的性质和运算(15分钟)1. 介绍实数的性质,如交换律、结合律、分配律等,通过示例和练习让学生熟练掌握。

2. 讲解实数的运算,包括加法、减法、乘法、除法等,通过例题和练习让学生熟悉实数的运算规则。

三、平方根和立方根的概念和求法(15分钟)1. 介绍平方根的概念,讲解平方根的求法,通过示例和练习让学生掌握平方根的计算方法。

2. 介绍立方根的概念,讲解立方根的求法,通过示例和练习让学生掌握立方根的计算方法。

四、实数的应用(15分钟)1. 通过实际问题引入实数的应用,让学生运用实数及其运算解决实际问题,如长度、面积、体积等计算。

2. 提供一些实际问题,让学生独立解决,并交流解题思路和方法。

五、总结和复习(10分钟)1. 对本节课的内容进行总结,强调实数的概念、性质和运算的重要性。

2. 安排一些复习题,让学生巩固所学知识,并为下一节课做准备。

教学评价:1. 通过课堂讲解和练习,评价学生对实数的概念、性质和运算的理解和掌握程度。

2. 通过实际问题的解决,评价学生对实数的应用能力。

教学资源:1. 实数的性质和运算的PPT或黑板示例。

2. 平方根和立方根的计算练习题。

3. 实际问题的案例和练习题。

教学建议:1. 在讲解实数的性质和运算时,可以通过示例和练习让学生积极参与,加强实数运算的熟练程度。

2. 在讲解平方根和立方根的概念和求法时,可以通过示例和练习让学生掌握计算方法,并能够灵活运用。

3. 在实际问题的解决中,可以鼓励学生交流解题思路和方法,培养学生的解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数全章教案12.1实数的概念教学目标知识与技能:了解数系从整数到有理数、再到实数的扩展过程,理解实数系统的结构,体会分类思想.过程与方法:通过对比分析,理解无理数是无限不循环小数,会辨别一个数是否是无理数.情感态度价值观:通过动手操作经历发现无理数的过程,了解无理数是客观存在的数,了解无理数的发现是人类理性思维的胜利.教学重点及难点理解无理数是无限不循环小数,会辨别一个数是否是无理数.教学用具准备各种大小的正方形纸片若干、小剪刀若干、多媒体设备.教学过程设计一、 复习引入教师设问:(1)我们已经学习了有理数,你能举出几个有理数吗?(2)有理数都可以表示为哪种统一的形式?(3)是不是所有的数都能表示为分数)0,(≠q q p qp 都是整数,且的形式? 答:不是,无限不循环小数(如:π)就不能表示为该形式.[说明]前两个问题带领学生复习已有的相关知识;第三个问题设置疑问,引发学生的思考,带着这样的困惑和好奇学习新知.二、 学习新知1. 操作剪拼正方形,引出2.要求:能否将两个边长为1的正方形剪拼成一个大正方形?怎样剪拼?它的面积是多少?边长如何用代数符号表示?师:如果设该正方形的边长为x ,那么22=x ,即x 是这样一个数,它的平方等于2.这个数表示面积为2的正方形的边长,是现实世界中真实存在的线段长度.由于这个数和2有关,我们现在用2(读作“根号2”)来表示.追问:面积为3的正方形,它的边长又如何表示?若面积为5呢? 类似的,分别用3(读作“根号3”)、5(读作“根号5”)来表示.2. 尝试说明2是一个无限不循环小数.要求学生尝试完成以下填空: 假设2是一个有理数,设)0,(2≠=q q p qp 表示整数且互素,同时,等式两边分别平方,可以得到2= ,则2p = ,由此可知p 一定是一个 (填“奇”或“偶”)数,再设p=2n(n 表示整数),代入上式,那么2q = ,同理可知q 也是 .这时发现p 、q 有了共同的因数2,这与之前假设中的“ ”矛盾.因此假设不成立, 即2不是 ,而是无限不循环小数. 师生总结:从以上填空可以说明2是无限不循环小数.3. 请你再举出几个无限不循环小数的例子. 除了以上提到的2,我们熟悉的圆周率 也是无限不循环小数.此外,我们还可以构造几个无限不循环小数,如:0.202002000200002……、0.123456789101112131415161718192021222324……等.三、 形成概念1.无理数无限不循环小数叫做无理数.无理数也有正、负之分.只有符号不同的两个无理数,它们互为相反数.2.实数有理数和无理数统称为实数.实数可以这样分类:正有理数有理数 零 ——有限小数或无限循环小数实数 负有理数正无理数无理数 ——无限不循环小数负无理数四、 巩固练习1.将下列各数填入适当的括号内:0、-3、2、6、3.14159、32.0 、722、5、π、0.3737737773…. 有理数:﹛ ﹜;无理数:﹛ ﹜; 正实数:﹛ ﹜;负实数:﹛ ﹜; 非负数:﹛ ﹜;整 数:﹛ ﹜.2.判断下列说法是否正确,并说明理由:(1) 无限小数都是无理数;(2)无理数都是无限小数;(3)正实数包括正有理数和正无理数;(4)实数可以分为正实数和负实数两类.3.请构造几个大小在3和4之间的无理数.4.用“是”、“不是”、“统称”、“包括”、“叫做”填空,并体会这些词的含义:. (2) 0 有理数.{ { {(3) 无限不循环小数 无理数.(4) 实数 有理数和无理数.(5) 正整数、0和负整数 整数.(6) 有理数 有限小数或无限循环小数.五、自主小结请学生谈谈:你学到了什么?你有什么样的疑问?你有什么收获、体会或想法?你还想知道什么?六、布置作业布置作业:必做:数学练习册12.1习题选作:伴你成长教学反思本节课的知识形成过程:首先通过操作,得到面积为2的正方形,提出 “正方形的边长怎样表示”的问题,引出边长为“2”.然后通过与有理数比较分析并且说理,推出2只能是一个无限不循环小数,即无理数.紧接着再举几个无理数的例子.在此基础上,引进无理数,归纳得到实数的概念,体验数的扩充的过程和必要性.(1)动手操作和问题讨论的目的,是让学生感受2的现实意义,并认识到用已有的有理数不能准确表示这一线段长度,因而需要寻找一种新的数来解决问题;同时调动学生学习和思维的积极性,帮助学生体验无理数的产生过程,引导学生用科学的眼光认识世界.本节中“”的出现先于定义,暂只作为一个记号,其含义待下一节课详述.(2)考虑到学生层次相对较好,教学中以2为例,教师与学生一起通过说理,说明了2不是有理数,而是一个无限不循环小数.对此,可结合本班学生实际特点开展教学.(3)把无限不循环小数叫做无理数,是与有理数的意义进行比较后,通过理性思考得到的,无需做更多地解释.无理数的相反数的概念在“实数运算”一节有定义,这里只对特殊的数作说明.(4)实数的分类办法,建议与有理数分类方法进行比较.实数的分类能帮助学生更好认识实数,构建数系知识结构,应予重视.在此要帮助学生领会数的分类应遵循的规则,领会分类思想.(5)练习从不同的角度帮助学生理解实数系中各类数的概念.练习1中722应给予关注,它是一个无限循环小数,学生容易将它归入无理数范畴.练习2的(3)、(4)两小题,建议与实数的分类作比较分析,即可得出正确结论.在此可引导学生总结实数的另一种分类方法。

12.2平方根和开平方(1)教学目标知识与技能:知道正平方根与平方根的区别,理解正数的两平方根之间的关系及实数范围内负数没有平方根;过程与方法:会根据平方根、开平方的意义和运算性质求完全平方数的平方根. 情感态度价值观:理解平方根产生的背景和平方根的概念及其符号表示;教学重点及难点理解开平方和平方运算的互逆关系,运用平方根的运算性质求完全平方数的平方根.教学过程设计一、 问题导入1.小丽家有一张方桌,桌面是面积为64平方分米的正方形,这个正方形桌面的边长是多少?2.解答:设正方形桌面的边长为x 分米,则可得:x 2=64,因为x>0,所以x=8.3.思考:上述问题可以归结为“已知一个数的平方,求这个数”.在解决问题时,我们联想到了哪一种运算?二、学习新课1、概念辨析:(1)已知一个数的平方等于a,那么这个数叫做a 的平方根,即x 2=a ,我们把x 叫做a 的平方根,a 叫做被开方数.(2)求一个数a 的平方根的运算叫做开平方运算.【强调】 平方运算和开平方运算互为逆运算.2.例题分析:求下列各数的平方根,并根据你的解答过程总结:正数、0、负数的平方根有什么不同?(1) 0.16; (2) -259; (3) 0. 解:因为(±0.4)2=0.16,所以0.16的平方根是±0.4. 因为不存在一个实数的平方根为-259,所以-259无平方根. 因为02=0,所以0的平方根为0.3.性质归纳:(1)因为任何一个实数的平方都是非负的,所以负数没有平方根;(2)因为任何一对非零相反数的平方都是同一个正数,因此正数a 有2个不同的平方根,记作“±a ”,它们互为相反数,其中“a ”表示正的平方根(也可以称算术平方根),读作“根号a ”.(3).因为0的平方等于0,所以0的平方根就是0,即:±0=0.【说明】“a ”是一个数学符号,其意义是:非负数a 的算术..平方根,同时它也表示一个数,这个数的平方等于a ,即(a )2=a.三.问题拓展思考1:由以下计算你能否发现并总结某些规律?(1)2)3(-的意义是什么? 2)3(-=?(2)2)3(的意义是什么? 2)3(=?(3)2)3(-的意义是什么? 2)3(-=?(4)2)3(-的意义是什么? 2)3(-=?(5) 计算:2)31(=______ 2)31(-=______ 2)7(=_______ 2)7(-=______ 210-=_______ 2)10(--=______.2.规律总结:(1).2a 表示a 2的正平方根,因为a 2≥0,所以2a =∣a|∣.(2).2)a (表示数a 的正平方根的平方,根据平方根的意义,这里的a ≥0,且2)a (=a ;2)a (-表示数a 的负平方根的平方,根据平方根的意义,必有a ≥0,且2)a (-=a ;综上所述,(±a )2=a.四、巩固练习1.下列等式是否正确?不正确的请说明理由并加以改正.(1)49-=-7; (2)2)2(-=2; (3)-2)5(-=5; (4)81=±92.求下列各数的正的平方根:(1) 225; (2)0.0001; (3) 1219. 3.若2m-5与4m-9是同一个数的平方根,求m 的值.【说明】练习3对“同一个数的平方根”需要进行分类讨论:一种情况是2m-5与4m-9是一个数的两个相反的平方根;另一种情况是2m-5与4m-9是一个数的同一个平方根.五、课堂小结1.平方根的意义是什么?平方根的性质是什么?2.开平方运算与平方运算有怎样的关系?3、求完全平方数的平方根时要把被开方数做怎样的变形?六、作业布置必做:1 . 课本和练习册上的练习2 . 复习所学的知识选作:伴你成长、预习新课教学反思:1.对学生而言,开平方运算和平方根不易理解的最大原因是:它不同于其它任何一种已经学过的数学运算.到目前为止,学生学过的五种运算都有唯一的运算法则和运算结果,对不同的数不需要讨论运用不同的运算方法;但求一个数的平方根时,首先要根据已知数的正负性选择不同的运算性质,而且每种数有不同的运算结果:正数的平方根有两个,且互为相反数,而0的平方根只有一个:0;负数没有平方根.因此在教学时,应该让学生充分理解平方运算和开平方运算的互逆关系,根据平方运算结果的非负性自然地理解并接受平方根的意义和运算性质.这里的教学多举一些实例进行说明.2.在生活中,开平方运算不如其他运算运用广泛,对学生而言比较抽象而陌生,因此,体验开平方运算的实际意义和背景就非常必要了.本节课设计用与课本类似的实际问题引入新课,意在于此.但在课后学生出现的最大问题是:求正数的平方根时往往漏掉负的一个,本人认为与课堂引入问题的结果只保留了正的一个有部分关系.因此,建议在课堂引入时,可以采用纯数学问题:“如果一个数的平方等于64,这个数是多少?”3.在平方根概念中隐含了分类讨论数学思想,在教学中应该加以渗透,从而培养思维的严密性,在课堂练习时也可以适当补充类似的问题,加深对概念的理解.4.要理解公式“2a=∣a∣”和“(±a)2=a”超出了学生的思维发展水平,因此我在教学时的处理方式是:(1)用大量的具体数字的运算结果推出结论并加深印象,这是设问题拓展的原因,意在通过一正一负两种问题的反复比较,让学生产生2a≥0的印象,然后归纳出“2a=∣a∣”.(2)通过对“2)3(-无意义”(-的意义和计算结果”的讨论,达到对“2)3的理解,从而总结出“(±a)2=a”成立的前提条件是:“a≥0”.对部分理解能力相对较弱的学生,笔者认为可以放低要求,对含字母的运算不作要求.12.2平方根和开平方(2)教学目标知识与技能:会根据一个正数的正平方根求它的负平方根.过程与方法:会用计算器求一个正数的正平方根,并按指定精确度取近似值; 情感态度价值观:经历2是无限不循环小数的探索过程,了解无限逼近思想; 教学重点1.会用计算器对任意正数进行开方运算,并按指定精确度取其近似值;.2.理解“逐步逼近数学思想”基本原理,对“极限”思想有初步认识. 教学难点 尝试用逐步逼近法探索2的近似值.教学过程设计一、 复习引入1.问题:2的意义是什么?根据其意义,你能否猜测2有多大?2.探索:2的意义是“面积为2的正方形的边长”;比较面积分别为1、2和4的三个正方形的大小可知:因为面积1<2<4,所以边长1<2<2,即2的整数部分为1.3.规律总结:当 c>a>b>0时,b a c >>.二、学习新课1、请用计算器计算:1.12=________,1.22=________,1.32=________,1.42=________,1.52=________;2、思考:(1)观察计算结果,你有什么发现?小结:由以上计算结果可知:1.42<2<1.52,根据上述规律可得:1.4<2<1.5,所以2的十分位为4.(2):如何求2的百分位?方法讨论:用计算器计算:1.412=________,1.422=________.因为1.412<2<1.422,所以1.41<2<1.42,得2的百分位为1.3.巩固性问题:(1) 请求出2的千分位.(2) -2有多大?(精确到千分位)4.例题分析:用计算器求下列各数的平方根的近似值(保留三位小数)(1)8 (2)294 解:(1)8±≈±2.828.(2) 942±≈±1.563.三、巩固练习1、用计算器求值(近似值保留四位小数)(1)5 (2)78.53、求下列各数的整数部分,你可以用几种方法? (1)3 (2) 12 (3) 72【说明】 求a 的整数部分一般有两种方法:(1) 找到与被开方数a 最接近且比它大的一个完全平方数n 2,那么一定有“n 2>a ≥(n-1)2”,从而“n>a ≥n-1”,可以确定a 的整数部分为n-1;(2) 用计算器求出其近似值,然后取整数部分,需要注意的是:此时取整数部分不要四舍五入,把小数部分全部舍去.四.问题拓展1.思考:满足x2<2006的整数x有多少个?2.阅读理解题:用逐次逼近法求平方根的计算步骤是:(1).任意取x1>0,作为a的第一个估计值;(2)由x1出发,计算x2=⎪⎪⎭⎫⎝⎛+11xax21,作为a的第二个估计值;(3)分别由x2、x3、x4、…出发,重复步骤(2),求出x3、x4、x5、…作为a的第三个、第四个、第五个、…的估计值;由此得到x2、x3、x4、…将一个比一个更接近a的不同精确度的近似值.请用逐次逼近法,求5的近似值.(保留4个有效数字)五、课堂小结1.“逐步逼近法”的基本原理.2.求一个正数的正平方根的整数部分其本质就是用“逐步逼近法”求算术平方根的近似值,只是结果保留整数.3.用计算器求平方根的近似值不同于“逐步逼近法”,最后结果要用“四舍五入”法保留要求的精确度.4.根据正平方根的近似值取其相反数可以得到一个正数的两个平方根.六、作业布置必做:数学练习册12.1习题复习所学的知识预习新课选作:伴你成长教学反思1.无理数是学生刚刚开始接触、与有理数完全不同的另一类数,其表示方法也是全新的,部分学生对“a”还没有真正的理解,只处于模仿的阶段;而“逐步逼近法”又是一个比较抽象、难以理解的数学思想方法,二个难点碰到一起,本节课处理不好,学生一节课的学习不但不会有太大的收获,同时还可能造成对数学的恐惧和厌恶.为避免学生在学习过程中感到“难、烦”,可以把课堂教学各个环节设计地尽可能明晰,每个环节的任务明确,结论单一,同时,环节宜少不宜多.2.为了更加清楚地说明“2”的大小,笔者认为,利用其意义“面积等于2的正方形的边长”来引入既起到了复习的作用,同时,在上节课基础上利用拼正方形、比较三个正方形的面积,把面积的大小比较转化为边长的大小比较,渗透了“转化”的数学思想方法,而在动手操作中由可以更加直观地发现“逐步逼近法”的原理,为进一步探究问题打下基础.3.在问题探究时,笔者设计利用几个子问题(先求整数部分、再求十分位、最后求百分位,而巩固性问题中继续求千分位)搭起台阶,学生对使用计算器是很有热情的,因此请他们用计算器计算,然后把计算结果与2进行大小比较,可以提高他们的参与热情和学习兴趣.而几个子问题具有相同的解决方法,在这样不断重复的过程中,逐步逼近法的本质就被发现并掌握了.4.部分学生的理解和学习能力较强,为了这部分学生能够有更多的收获,同时加强对逐步逼近法的理解,我设计了拓展性问题,引进“逐次逼近法”.这两种方法都体现了“极限思想”.12.3立方根和开立方教学目标知识与技能:了解立方根与实际生活的联系,通过与平方根类比,理解立方根的概念.过程与方法:会用计算器求任意一个数的立方根,并能按指定精确度求近似值. 理解a a =33和a a =33)(的含义,并能运用它们解决问题. 情感态度价值观:理解开立方与立方互为逆运算,能根据两者的关系求完全立方数的立方根. 教学重点及难点理解开立方与立方互为逆运算,能根据两者的关系求完全立方数的立方根. 教学用具准备多媒体设备、卡西欧fx-82函数型计算器. 教学过程设计一、 复习、类比、引入 复习题:(1)我们用________表示面积为5的正方形边长; 用6来表示_________的正方形的边长.(2)同样8表示_________的正方形的边长,那么这个正方形的边长是多少?你是怎么知道的?你运用了什么运算?(3)小杰家中有一个储物柜,是一个容积为27立方分米的正方体.这个正方体储物柜的棱长是多少分米?(4)经过立方运算后结果是27的数还有没有?是多少?这样立方是27的数有几个? 师生归纳:已知一个数的平方求这个数的运算,叫做开平方.类似的,已知一个数的立方求这个数的运算,我们称之为开立方.二、 通过类比,学习新知 给出立方根和开立方的概念:如果一个数的立方等于a ,那么这个数叫做a 的立方根,用“3a ”表示,读作“三次根号a ”,3a 中的a 叫做被开方数,3叫做根指数. 求一个数a 的立方根的运算叫做开立方.例如,如果,1253=x 因为_____________=125,所以________=x ,也就是说 是125的立方根.例题1、求下列各数的立方根:(1)1000 (2)278- (3)001.0- (4)0[说明]体会开立方与立方的逆运算关系,会据此求完全立方数、小数、分数的立方根三、 思考归纳设问:通过例题1的解决,请归纳开平方与开立方在被开方数取值范围、方根个数等方面有何显著区别?你知道其中的原因吗?1、 正数的立方是一个正数,负数的立方是一个负数,零的立方等于零.2、 正数的立方根是一个正数,负数的立方根是一个负数,零的立方根是零.3、 任意一个数都有立方根,而且只有一个立方根.也就是说:(1)a a =33)(,(2)a a =33.四、 巩固练习1.以下说法中正确的有( ).A .16的平方根是4±B .64的立方根是4±C .27-的立方根是3-D .81的平方根是9 2.求值:(1)33)8(- (2)3216 (3)3610- (4)335- 3.用计算器,求值(近似值保留三位小数):(1)324 (2)317576 (3)396.3- (4)3322 4.用计算器,求下列立方根,直接写出计算器显示的结果: (1)36 (2)36- (3)36000 (4)3006.0五、 课堂小结学生自主小结:你学到了什么?你有什么样的疑问?你有什么收获、体会或想法? 你还想知道什么?六、 布置作业布置作业:必做:数学练习册12.3习题 选作:伴你成长 教学反思教学设计着重于把立方根与开立方和平方根与开平方进行类比教学.注重概念的形成过程.让学生在新概念的形成过程中,逐步理解新概念.通过设置问题,组织思考讨论来帮助学生理解立方根和开立方的概念,让学生通过具体实例和抽象类比来理解立方根与平方根概念的联系与区别.对本节课的例题和练习安排,我是这样思考的:(1)对例题1的教学,要着眼于对立方根的概念的理解,要求学生模仿和适应书写格式.练习2则体现了开立方与立方互为逆运算的关系,并利用互逆运算来求一个数的立方根,但限于所得立方根是有理数的情况.(2)求一个实数的立方根有两种途径.一种是根据定义(如例题1),只用于求特殊实数的立方根,而且学生容易分析出这个实数是某数的立方;另一种是使用计算器(如练习3),这是通用的方法,要讲清具体的操作.对练习3中的第(3)小题,可向学生说明一个负数的立方根等于它的相反数(正数)的立方根的相反数.(3)在学生会用计算器求实数立方根的基础上,例4 的“思考”是引导学生探索被开方数与立方根之间的小数点移动规律,让学生看到,正开方数扩大1000倍,它的立方根扩大十倍;反之亦然.可指导学生类比被开方数与算术平方根之间的小数点移动规律,并进一步思考为什么有这样的规律,但是不要求学生勉为其难,更不要求会用.12.4 n次方根教学目标知识与技能:类比平方根与立方根建立n次方根和开方运算的概念;过程与方法:掌握开方运算的运算性质,会根据乘方运算与开方运算的互逆关系求任意实数的奇次方根或非负数的偶次方根,理解负数没有偶次方根.情感态度价值观:通过体验“从特殊到一般”的数学归纳过程,理解n次方根的概念,并从中体会分类和类比等数学思想;教学重点1.通过类比平方根、立方根建立n次方根的概念,并在此过程中体验分类讨论、类比和“从特殊到一般”等数学思想;2.掌握开方运算的运算性质,会根据乘方运算与开方运算的互逆关系求任意实数的奇次方根或非负数的偶次方根,理解负数没有偶次方根.教学难点理解并能初步掌握在建立n次方根概念过程中所体现出的、以及在求偶次方根时所必须的“分类讨论思想”.教学过程设计一、问题导入1.问题:如果一个数的n次方(其中n是大于1的整数)等于a,你能否类比平方根和立方根的意义说明这个数是多少?2.分析:设这个数为x,则可以建立方程x n=a,x叫做a的n次方根.3.小结:(1)如果一个数x的n次方等于a(n是大于1的整数),则这个数x叫a的n 次方根;(2)求一个数的n次方根的运算叫做开n次方.二、问题探索1.求x:(1)x5=32,x= ,x5=-32,x= .(2)x4=16,x= ,x4=-16,x= .(3)x5=0,x= , x4=0, x= .2.思考:观察以上运算结果,类比平方根a与立方根3a,你能否说明当根指数n取不同的值时,a的n次方根可以分为几类?每一类方根有什么性质?3.知识归纳:(1)当n为偶数时,a的n次方根有与平方根类似的性质,我们称之为a的偶次方根;正数a有2个互为相反数的偶次方根,记作“±n a”;其中n a为a的正偶次方根,也叫做算术偶次方根;a叫被开方数,n为根指数;读作“n次根号a”.=0;0的偶次方根等于0,n0负数没有偶次方根(即当a<0时,n a 无意义).(2) 当n 为奇数时,a 的n 次方根有与立方根类似的性质,我们称之为a 的奇次方根;记作: n a ”,a 叫被开方数,n 为根指数;“n a ”读作“n 次根号a ”. 任意实数a 的奇次方根都存在,并且与a 有相同的正负性. 4.例题分析:1.(1) 求-24332的5次方根;(2) 求(-8)2的6次方根.解答:(1) 3232243325555-=-=-; (2) 22)8(6662±=±=-±.【说明】(1)正数的偶次方根一定有两个,不要漏掉负的一个;(2)求方根时,为了降低难度,可以把被开方数中比较大的数分解质因数.2.用计算器,求近似值(保留三位小数): (1) 48600; (2) 568.15-. 解:(1)48600≈9.630. (2) 568.15-≈-1.734.【说明】 注意精确度的意义,最后一位要四舍五入.三、练习反馈1.计算:3216; 481; 5243-; 6281⎪⎭⎫⎝⎛- .2. 用计算器,求下列各数的近似值(结果保留三位小数): 47859; 51568-; 0.3456的6次方根.四.拓展性问题 1. 若n 为自然数,n 2n2a =-a ,a 的取值范围是什么?2. 5的n 次方根是多少?五、课堂小结六、作业布置必做:1 .数学练习册12.4习题2 . 复习所学的知识3 . 预习新课选作:伴你成长教学反思。

相关文档
最新文档