悬臂梁固有频率的计算之令狐采学创编
连续弹性体悬臂梁各阶固有频率及主振型测定(最全)word资料

实验十二 连续弹性体悬臂梁各阶固有频率及主振型测定一、一、实验目的1、 1、 用共振法确定连续弹性体悬臂梁的各阶固有频率和主振型。
2、 2、 观察分析梁振动的各阶主振型。
情况下,梁的振动是无穷多个主振型的迭加。
如果给梁施加一个合适大小的激扰力,且该力的频率正好等于梁的某阶固有频率,就会产生共振,对应于这一阶固有频率确定的振动形态叫做这一阶主振型,这时其它各阶振型的影响小得可以忽略不计。
用共振法确定梁的各阶固有频率及振型,我们只要连续调节激扰力,当梁出现某阶纯振型且振动幅值最大即产生共振时,就认为这时的激扰力频率是梁的这一阶固有频率。
实际上,我们关心的通常中最低几阶固有频率及主振型,本实验是用共振法来测定悬臂梁的一、二、l i β①根据《振动力学》,刘延柱,陈文良,陈立群著,1998版。
136页,例6.2-2式(g)A — A — 梁横截面积(m 2)l ρ—材料线密度(kg/m) l ρ=ρAρ—材料密度(kg/m 3) I —梁截面弯曲惯性矩(m 4)对矩形截面,弯曲惯性矩:123bhI = (m 4) (2)式中: b —梁横截面宽度(m) h —梁横截面高度(m) 本实验取l =( ) m b=( ) m h=( ) mE=20×1011Pa ρ=7800kg/m 3 各阶固有频率之比:f 1:f 2:f 3:f 4……=1:6.27:17.55 (3)理论计算可得悬臂梁的一、二、三阶固有频率的振型如图(3)所示:0.10.20.30.40.50.60.70.80.91-10120 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-2020 0.10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.511.5beam transvers vibration with one end clasped四、四、实验方法1、 1、 选距固定端L/4之处为激振点,将激振器端面对准悬臂梁上的激振点,保持初始间隙δ=6~8mm 。
固有频率影响因素相关公式

固有频率影响因素相关公式固有频率是指一个物体在没有外界干扰下自然振动的频率。
它是由物体的质量、弹性系数和几何形状等因素决定的。
在工程设计和研究中,对固有频率的分析对于了解物体的振动特性以及预防共振等问题非常重要。
下面,将介绍几种常见的固有频率影响因素相关的公式。
1.杆件的固有频率:杆件的固有频率与杆件的长度和弯曲刚度相关。
杆件的固有频率可以通过以下公式计算:f=(1/2π)*(√(EI/ρA))*(m/L^2)其中,f是固有频率,E是弹性模量,I是截面惯性矩,ρ是杆件的密度,A是截面面积,m是杆件的质量,L是杆件的长度。
2.简谐振子的固有频率:简谐振子是一个理想化的振动系统,它的固有频率只与它的质量和弹性系数有关。
简谐振子的固有频率可以通过以下公式计算:f=(1/2π)*(√(k/m))其中,f是固有频率,k是系统的弹性系数,m是系统的质量。
3.平面结构的固有频率:平面结构的固有频率与结构的刚度矩阵和质量矩阵有关。
平面结构的固有频率可以通过以下公式计算:K*X=ω^2*M*X其中,K和M分别是结构的刚度矩阵和质量矩阵,X是结构的振动模态矢量,ω是固有频率。
4.悬臂梁的固有频率:悬臂梁是一种常见的结构,在分析其固有频率时,需要考虑梁的长度、质量和截面形状等因素。
悬臂梁的固有频率可以通过以下公式计算:f=1.875^2*(E*I/(ρ*A*L^4))其中,f是固有频率,E是弹性模量,I是截面惯性矩,ρ是梁的密度,A是梁的截面面积,L是梁的长度。
以上所介绍的公式是几种常见的固有频率影响因素的相关公式。
它们可以用来计算不同类型物体的固有频率,并且可以帮助工程师和研究人员了解和分析物体振动的特性。
通过对固有频率的研究和分析,可以根据具体情况来优化设计,预防共振等振动问题的发生。
悬臂梁固有频率的计算(借鉴内容)

悬臂梁固有频率的计算(借鉴内容)悬臂梁固有频率的计算试求在0x =处固定、x l =处自由的等截面悬臂梁振动的固有频率(求解前五阶)。
解:法一:欧拉-伯努利梁理论悬臂梁的运动微分方程为:4242(,)(,)+0w x t w x t EI A x t ρ??=??;悬臂梁的边界条件为:2222(0)0(1),(0)0(2)0(3),(EI )0(4)x l x ldw w ww x x dx x x x ========,;该偏微分方程的自由振动解为(x,t)W(x)T(t)w =,将此解带入悬臂梁的运动微分方程可得到1234(x)C cos sin cosh sinh W x C x C x C x ββββ=+++,(t)Acos t Bsin t T w w =+;其中24A EIρωβ=将边界条件(1)、(2)带入上式可得13C 0C +=,24C 0C +=;进一步整理可得12(x)C (cos cosh )(sin sinh )W x x C x x ββββ=-+-;再将边界条件(3)、(4)带入可得12(cos cosh )C (sin sinh )0C l l l l ββββ-+-+=;12(sin sinh )C (cos cosh )0C l l l l ββββ--+-+=要求12C C 和有非零解,则它们的系数行列式必为零,即(cos cosh )(sin sinh )=0(sin sinh )(cos cosh )l l l l l l l l ββββββββ-+-+--+-+所以得到频率方程为:cos()cosh()1n n l l ββ=-;该方程的根n l β表示振动系统的固有频率:1224()(),1,2,...n n EI w l n Al βρ==满足上式中的各n l β(1,2,...n =)的值在书P443表8.4中给出,现罗列如下:123451.875104 4.6940917.85475710.99554114.1372l l l l l βββββ=====,,,,;若相对于n β的2C 值表示为2n C ,根据式中的1n C ,2n C 可以表示为21cos cosh ()sin sinh n n n n n n l lC C l lββββ+=-+;因此1cos cosh (x)C (cos x cosh x)(sin x sinh x),1,2,...sin sinh n n n n n n n n n n l lW n l l ββββββββ??+=---=??+??由此可得到悬臂梁的前五阶固有频率,分别将n=1,2,3,4,5带入可得:1112222221234441.875104() 4.694091()7.854757()EI EI EI Al Al Alωωωρρρ===,,, 112222454410.995541()14.1372()EI EI Al Alωωρρ==,;法二、铁摩辛柯梁梁理论1.悬臂梁的自由振动微分方程:4242442224(,)(,)(1)0w x t w x t E w I w EI A I kG kG x t x t t ρρρ+-++=;边界条件:(0)(0)0w x x φ====(1),0x lx lw x x φφ==??-==??(2);设方程的通解为:(,)Csincos n n xw x t w t lπ=;易知边界条件(1)满足此通解,将通解带入上面的微分方程可得到频率方程为:422222224442224r ()(1)0nnn r n r E n w w kG l l kG l ρππαπ-+++=;其中22I EI r A Aαρ==,;若转动惯量与剪切变形的影响均忽略,上式的频率方程简化为222222=n n EI n w l A l αππρ=;当n=1,2,3,4,5时可分别求得固有频率为:222221234522222491625EI EI EI EI EI w w w w w A l A l A l A l A lπππππρρρρρ=====多自由度系统频率的计算方法等效质量:连续系统悬臂梁简化为5个相等的集中质量12345m5m m m m m =====。
悬臂梁固有频率的计算

悬臂梁固有频率得计算试求在处固定、处自由得等截面悬臂梁振动得固有频率(求解前五阶)。
解:法一:欧拉-伯努利梁理论悬臂梁得运动微分方程为:;悬臂梁得边界条件为:2222(0)0(1),(0)0(2)0(3),(EI )0(4)x l x ldw w w w x x dx x x x ==∂∂∂======∂∂∂,; 该偏微分方程得自由振动解为,将此解带入悬臂梁得运动微分方程可得到,;其中将边界条件(1)、(2)带入上式可得,;进一步整理可得;再将边界条件(3)、(4)带入可得;要求有非零解,则它们得系数行列式必为零,即所以得到频率方程为:;该方程得根表示振动系统得固有频率:满足上式中得各()得值在书P443表8、4中给出,现罗列如下:123451.875104 4.6940917.85475710.99554114.1372l l l l l βββββ=====,,,,;若相对于得值表示为,根据式中得,可以表示为;因此1cos cosh (x)C (cos x cosh x)(sin x sinh x),1,2,...sin sinh n n n n n n n n n n l lW n l l ββββββββ⎡⎤+=---=⎢⎥+⎣⎦由此可得到悬臂梁得前五阶固有频率,分别将n=1,2,3,4,5带入可得:1112222221234441.875104() 4.694091()7.854757()EI EI EI Al Al Alωωωρρρ===,,, ;法二、铁摩辛柯梁梁理论1、悬臂梁得自由振动微分方程:;边界条件:;设方程得通解为:;易知边界条件(1)满足此通解,将通解带入上面得微分方程可得到频率方程为:;其中;若转动惯量与剪切变形得影响均忽略,上式得频率方程简化为;当n=1,2,3,4,5时可分别求得固有频率为:12345w w w w w =====多自由度系统频率得计算方法等效质量:连续系统悬臂梁简化为5个相等得集中质量。
结构动力计算课后习题答案

结构动力计算课后习题答案结构动力计算课后习题答案在学习结构动力学这门课程时,我们经常会遇到各种各样的习题。
这些习题旨在帮助我们巩固所学的知识,并提供实践的机会。
在这篇文章中,我将为大家提供一些结构动力计算课后习题的答案,希望能对大家的学习有所帮助。
1. 计算一个简支梁的固有频率。
答案:简支梁的固有频率可以通过以下公式计算:f = (1/2π) * √(k/m)其中,f为固有频率,k为刚度,m为质量。
在简支梁的情况下,刚度k等于弹性模量E乘以截面面积A除以长度L。
质量m等于密度ρ乘以截面面积A除以长度L。
2. 计算一个悬臂梁的固有频率。
答案:悬臂梁的固有频率可以通过以下公式计算:f = (1/2π) * √(3k/m)在悬臂梁的情况下,刚度k等于弹性模量E乘以截面面积A的三次方除以长度L的四次方。
质量m等于密度ρ乘以截面面积A除以长度L。
3. 计算一个简支梁的振动模态。
答案:简支梁的振动模态可以通过以下公式计算:f_n = (n^2 * v) / (2L)其中,f_n为第n个振动模态的频率,v为波速,L为长度。
n为振动模态的序号,从1开始。
4. 计算一个悬臂梁的振动模态。
答案:悬臂梁的振动模态可以通过以下公式计算:f_n = (2n-1) * (v/4L)其中,f_n为第n个振动模态的频率,v为波速,L为长度。
n为振动模态的序号,从1开始。
5. 计算一个简支梁的最大挠度。
答案:简支梁的最大挠度可以通过以下公式计算:δ_max = (5qL^4) / (384EI)其中,δ_max为最大挠度,q为均布载荷,L为长度,E为弹性模量,I为截面惯性矩。
6. 计算一个悬臂梁的最大挠度。
答案:悬臂梁的最大挠度可以通过以下公式计算:δ_max = (qL^4) / (8EI)其中,δ_max为最大挠度,q为均布载荷,L为长度,E为弹性模量,I为截面惯性矩。
以上是一些常见的结构动力计算课后习题的答案。
通过解答这些习题,我们可以更好地理解结构动力学的概念和原理,提高我们的计算能力和问题解决能力。
悬臂梁固有频率的计算

悬臂梁固有频率的计算若相对于n β的2C 值表示为2n C ,根据式中的1n C ,2n C 可以表示为21cos cosh ()sin sinh n n n n n n l lC C l lββββ+=-+;因此1cos cosh (x)C (cos x cosh x)(sin x sinh x),1,2,...sin sinh n n n n n n n n n n l lW n l l ββββββββ⎡⎤+=---=⎢⎥+⎣⎦由此可得到悬臂梁的前五阶固有频率,分别将n=1,2,3,4,5带入可得:1112222221234441.875104() 4.694091()7.854757()EI EI EI Al Al Alωωωρρρ===,,, 112222454410.995541()14.1372()EI EI Al Alωωρρ==,;法二、铁摩辛柯梁梁理论1.悬臂梁的自由振动微分方程:4242442224(,)(,)(1)0w x t w x t E w I wEI A I kG kG x t x t t ρρρ∂∂∂∂+-++=∂∂∂∂∂;边界条件:(0)(0)0w x x φ====(1),0x lx lw x x φφ==∂∂-==∂∂(2); 设方程的通解为:(,)Csincos n n xw x t w t lπ=;易知边界条件(1)满足此通解,将通解带入上面的微分方程可得到频率方程为:422222224442224r ()(1)0nnn r n r E n w w kG l l kG l ρππαπ-+++=;其中22I EI r A A αρ==,;若转动惯量与剪切变形的影响均忽略,上式的频率方程简化为222222=n n EI n w l A lαππρ=;当n=1,2,3,4,5时可分别求得固有频率为:222221234522222491625EI EI EI EI EI w w w w w A l A l A l A l A lπππππρρρρρ=====多自由度系统频率的计算方法等效质量:连续系统悬臂梁简化为5个相等的集中质量12345m 5m m m m m =====。
悬臂梁的模态频率计算公式

悬臂梁的模态频率计算公式悬臂梁是一种常见的结构形式,在工程中有着广泛的应用。
在设计和分析悬臂梁结构时,了解其模态频率是非常重要的。
模态频率是指结构在振动时的固有频率,它是结构动力学性能的重要指标之一。
本文将介绍悬臂梁的模态频率计算公式及其推导过程。
悬臂梁的模态频率计算公式可以通过结构动力学的理论推导得出。
在推导模态频率计算公式之前,我们需要先了解一些基本的悬臂梁结构参数。
悬臂梁的主要参数包括梁的长度L、截面惯性矩I、杨氏模量E等。
在进行模态频率计算时,我们通常采用梁的自由振动模型,即假设梁在受到外力作用后,可以在没有外力的情况下自由振动。
在结构动力学中,悬臂梁的自由振动模型可以用挠曲耦合方程描述。
在模态频率计算中,我们通常关注梁的前几个振动模态,因此可以简化挠曲耦合方程,得到梁的振动模态方程。
梁的振动模态方程可以通过分析梁的挠曲振动特性得到,其中包括梁的挠曲刚度和挠曲惯性。
悬臂梁的振动模态方程可以表示为:EIy''''(x) m(x) y(x) = 0。
其中,EI为梁的弯曲刚度,y(x)为梁的挠曲振动位移,m(x)为梁的分布质量。
通过对梁的振动模态方程进行适当的边界条件和加载条件的处理,可以得到梁的振动模态频率。
悬臂梁的模态频率计算公式可以通过解析方法或数值方法得到。
在此我们介绍一种常用的解析方法,即使用欧拉-伯努利梁理论和拉普拉斯变换法进行求解。
在使用欧拉-伯努利梁理论时,我们可以将梁的振动模态方程转化为标准的振动微分方程,然后应用拉普拉斯变换法进行求解。
通过欧拉-伯努利梁理论和拉普拉斯变换法,我们可以得到悬臂梁的振动模态频率计算公式。
悬臂梁的振动模态频率计算公式通常表示为:f = 1 / (2π) √(k / m)。
其中,f为梁的模态频率,k为梁的挠曲刚度,m为梁的总质量。
通过该公式,我们可以方便地计算出悬臂梁在不同振动模态下的固有频率。
需要注意的是,悬臂梁的模态频率计算公式是基于一些简化假设和前提条件得出的,因此在实际工程中应当结合实际情况进行验证和修正。
悬臂梁固有频率的计算

现罗列如下: 1丨=1.875104,讨=4.694091,'丨=7.854757, ■ 4^ 10.995541,冷丨=14.1372 ;若相对于哨C 2值表示为C 2n,根据式中的C 1",C 2^可以表示为C 2"= 6(册刖);悬臂梁固有频率的计算试求在X = 0处固定、X =1处自由的等截面悬臂梁振动的固有频率(求解前五阶)解:法一:欧拉-伯努利梁理论悬臂梁的运动微分方程为:EI 叫刀+ Jw^t )二o& a悬臂梁的边界条件为: dw c w w(x=0)=0(1),£(x=0)=0(2),x 2w = 0(3), (El —2- X ± :X :' X该偏微分方程的自由振动解为 w (x, t )二W (x )T (t ),将此解带入悬臂梁的运动微分方程可得到 W(x)二 G cos : x C 2sin : x C 3cosh : x C 4 sinh : x ,T(t)二 Acos wt Bsin wt ;其中:4 ::A 2 EI将边界条件(1)、( 2)带入上式可得 C 1+C 3=0,C 2 + C 4=0 ;进一步整理可得 W (x ) =G (cos Px —cosh 卩x )+C 2(s in Px —si nh ®x );再将边界条件(3 )、( 4)带入可得 -C 1 (cos : l cosh :丨)- C 2(sin :丨 sinh :丨)=0 ; -Cd - sin 11 sinh :丨)- C 2(cos : l cosh :丨)=0 要 求C i 和C 2有非零解,贝尼们的系数行列式必为零,即 -(cosBl +cosh B l) -(sin B l+sinhBl) -(-sin P l+sinhPl)-(cos P l+cosh P l) 所以得到频率方程为.COS (:n l)COSh (:n l) =-1 .该方程的根n l 表示振动系统的固有频率: W n =( :n l)2(-TA7)2,n=12…满足上式中的各'nl (n 二1,2,…)的值在书P443表8.4中给出,因此 Wi(x) =C 1n |(cosB n x —cosh B n x) -— (sin B n x-sinh B n x)〔 n = 1,2,...由此可得 sin E n l+sinhE 」到悬臂梁的前五阶固有频率,分别将 n=1,2,3,4,5带入可得:1 1 12EI 22El 专2El 专“ =1.875104 (4)2,2=4.694091 (4 )2,・3 =7.854757 (4 )2,WW ,^AlZ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
悬臂梁固有频率的计算
令狐采学
试求在0x =处固定、x l =处自由的等截面悬臂梁振动的固有频率(求解前五阶)。
解:法一:欧拉伯努利梁理论
悬臂梁的运动微分方程为:4242
(,)(,)
+0w x t w x t EI A x t ρ∂∂=∂∂;
悬臂梁的边界条件为:
2222(0)0(1),(0)0(2)0(3),(EI )0(4)x l x l
dw w w
w x x dx x x x ==∂∂∂======∂∂∂,;
该偏微分方程的自由振动解为(x,t)W(x)T(t)w =,将此解带入悬臂梁的运动微分方程可得到
1234(x)C cos sin cosh sinh W x C x C x C x ββββ=+++,
(t)Acos t Bsin t T w w =+;其中2
4
A EI
ρωβ=
将边界条件(1)、(2)带入上式可得13C 0C +=,24C 0C +=;进一步整理可得12(x)C (cos cosh )(sin sinh )W x x C x x ββββ=-+-;再将边界条件(3)、(4)带入可得
12(cos cosh )C (sin sinh )0C l l l l ββββ-+-+=;
12(sin sinh )C (cos cosh )0C l l l l ββββ--+-+=要求12C C 和有非零解,则
它们的系数行列式必为零,即
(cos cosh )(sin sinh )
=0(sin sinh )
(cos cosh )
l l l l l l l l ββββββββ-+-+--+-+
所以得到频率方程为:cos()cosh()1n
n
l l ββ=-;该方程的根n
l β表示振
动系统的固有频率:1
2
24()(),1,2,...n n EI w l n Al
βρ==满足上式中的各n l
β(1,2,...n =)的值在书P443表8.4中给出,现罗列如下:
123451.875104 4.6940917.85475710.99554114.1372
l l l l l βββββ=====,,,,;若相对于n β的2C 值表示为2n C ,根据式中的1n C ,2n C 可以表示为21cos cosh (
)sin sinh n n n n n n l l
C C l l
ββββ+=-+;因此
1cos cosh (x)C (cos x cosh x)(sin x sinh x),1,2,...
sin sinh n n n n n n n n n n l l
W n l l ββββββββ⎡⎤+=---=⎢⎥+⎣⎦
由此可得到悬臂梁的前五阶固有频率,分别将n=1,2,3,4,5带入可得:
1112
2222
2123444
1.875104() 4.694091()7.854757()EI EI EI Al Al Al
ωωωρρρ===,,, 11
2
2
224544
10.995541()14.1372()EI EI Al Al
ωωρρ==,; 法二、铁摩辛柯梁梁理论 1.悬臂梁的自由振动微分方程:
4242442224(,)(,)(1)0w x t w x t E w I w
EI A I kG kG x t x t t ρρρ∂∂∂∂+-++=∂∂∂∂∂;
边界条件:(0)(0)0w x x φ====(1),0x l
x l
w
x
x
φ
φ
==∂∂-=
=∂∂(2);
设方程的通解为:(,)Csin cos n n x w x t w t l
π=;易知边界条件(1)满
足此通解,将通解带入上面的微分方程可得到频率方程为:
4
222222244
42224
r ()(1)0n
n
n r n r E n w w kG l l kG l ρππαπ-+++=;其中22I EI r A A
αρ=
=,;若转动惯量与剪切变形的影响均忽略,上式的
频率方程简化为22
2n n w l
απ=;当n=1,2,3,4,5时可分别求
得固有频率为:
12345w w w w w =====
多自由度系统频率的计算方法
等效质量:连续系统悬臂梁简化为5个相等的集中质量
12345m
5
m m m m m =====。
1.邓克莱法 邓克莱公式为:
1112225552
11
a a a m m m ω≈++
+,其中
33333
11223344558964,,,,3753751253753l l l l l a a a a a EI EI EI EI EI
=====
,
12345m
5
m m m m m =====;将其代入上式可求得系统的基频为:1
21
4
2.887()EI w Al
ρ,此基频比用伯努利欧拉梁求得的一阶固有频
率1
2
2141.875104()EI Al
ωρ=偏小,误差为
17.42%,与邓克莱法的推导
预期相符。
2.瑞利法
系统的质量矩阵、刚度矩阵和柔度矩阵分别为
取静变形曲线为假设阵型,设(40141279436600)T
A =有
32
3
1122000EI 28401503l m 649418m,,75EI
T
T
T A MA A KA A M MA l ==∆= 所以44
8.648.57(A)=,(A)T T T T A KA EI A MA EI R R A MA l A M MA l ρρI II
===∆,此基频比用伯
努利欧拉梁求得的一阶固有频率1
2
2141.875104()EI Al
ωρ=偏大,误差
为15.23%,与瑞利法的推导预期相符。
3.里茨法
系统的质量矩阵和刚度矩阵由上面给出,设阵型为
12(12345)(13579)T T ψψ==,;
则可求出**,M K 分别为
将**,M K 代入
**2**
()0K w M A -=得**2*0K w M -=;可以求得:
*1w ==*
2
w ==*(1)*(2)11A ,A 0.5780.29⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭
;
所以系统前两阶主阵型的近似为
4.雅克比法
动力矩阵为333333
33333
33333
3
3333
l m l m 4l m
11l m 7l m 375EI 150EI 375EI 750EI 375EI l m
8l m 14l m 4l m 26l m 150EI 375EI 375EI 75EI 375EI 4l m 14l m
9l m 27l m 18l m 375EI 375EI 125EI 250EI 125EI 11l m 4l m 27l m 64l m 88l m 750EI 75EI 250EI 375EI 375EI 7l m 2375EI D M =∆=3
3336l m 18l m 88l m l m 375EI 125EI
375EI 3EI ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥
⎢⎥
⎢
⎥⎢⎥
⎢⎥
⎢⎥⎢⎥
⎢⎥
⎢⎥⎢⎥⎣
⎦
,由雅可比法求解其
特征值和特征向量为:其固有频率
2.93 0 0 0 0 0 18.70 0 0 0 0 0 52.7 0 0 0 0 0 100 0
0 0 0 0 158.11⎡⎤
⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
0.0459 0.1669 0.3387 0.5393 0.7513 0.2290 0.5589 0.5802 0.1677 -0.5201 -0.4879 -0.5446 0.2548 0.5306 -0.3448 -0.6481 0.1332 0.4650 -0.5539 0.19T
79 0.5361 -0.5878 0.5172 -0.3046 0.0833⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦。