悬臂梁固有频率的计算

合集下载

连续弹性体悬臂梁各阶固有频率及主振型测定(最全)word资料

连续弹性体悬臂梁各阶固有频率及主振型测定(最全)word资料

实验十二 连续弹性体悬臂梁各阶固有频率及主振型测定一、一、实验目的1、 1、 用共振法确定连续弹性体悬臂梁的各阶固有频率和主振型。

2、 2、 观察分析梁振动的各阶主振型。

情况下,梁的振动是无穷多个主振型的迭加。

如果给梁施加一个合适大小的激扰力,且该力的频率正好等于梁的某阶固有频率,就会产生共振,对应于这一阶固有频率确定的振动形态叫做这一阶主振型,这时其它各阶振型的影响小得可以忽略不计。

用共振法确定梁的各阶固有频率及振型,我们只要连续调节激扰力,当梁出现某阶纯振型且振动幅值最大即产生共振时,就认为这时的激扰力频率是梁的这一阶固有频率。

实际上,我们关心的通常中最低几阶固有频率及主振型,本实验是用共振法来测定悬臂梁的一、二、l i β①根据《振动力学》,刘延柱,陈文良,陈立群著,1998版。

136页,例6.2-2式(g)A — A — 梁横截面积(m 2)l ρ—材料线密度(kg/m) l ρ=ρAρ—材料密度(kg/m 3) I —梁截面弯曲惯性矩(m 4)对矩形截面,弯曲惯性矩:123bhI = (m 4) (2)式中: b —梁横截面宽度(m) h —梁横截面高度(m) 本实验取l =( ) m b=( ) m h=( ) mE=20×1011Pa ρ=7800kg/m 3 各阶固有频率之比:f 1:f 2:f 3:f 4……=1:6.27:17.55 (3)理论计算可得悬臂梁的一、二、三阶固有频率的振型如图(3)所示:0.10.20.30.40.50.60.70.80.91-10120 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-2020 0.10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.511.5beam transvers vibration with one end clasped四、四、实验方法1、 1、 选距固定端L/4之处为激振点,将激振器端面对准悬臂梁上的激振点,保持初始间隙δ=6~8mm 。

悬臂梁各阶固有频率及主振形的测定试验[整理版]

悬臂梁各阶固有频率及主振形的测定试验[整理版]

实验五 悬臂梁各阶固有频率及主振形的测定试验一、实验目的1、用共振法确定悬臂梁横向振动时的各阶固有频率。

2、熟悉和了解悬臂梁振动的规律和特点。

3、观察和测试悬臂梁振动的各阶主振型。

分析各阶固有频率及其主振型的实测值与理论计算值的误差。

二、基本原理悬臂梁的振动属于连续弹性体的振动,它具有无限多自由度及其相应的固有频率和主振型,其振动可表示为无穷多个主振型的叠加。

对于梁体振动时,仅考虑弯曲引起的变形,而不计剪切引起的变形及其转动惯量的影响,这种力学分析模型称为欧拉-伯努利梁。

运用分离变量法,结合悬臂梁一端固定一端自由的边界条件,通过分析可求得均质、等截面悬臂梁的频率方程1 L Lch cos -=ββ (5-1)式中:L ——悬臂梁的长度。

梁各阶固有园频率为AEIi i n 2ρβω= (5-2)对应i 阶固有频率的主振型函数为),3,2,1()sin (sin cos cos )( =-++--=i x x sh LL sh L L ch x x ch x X i i i i i i i i i ββββββββ (5-3)对于(5-1)式中的β,不能用解析法求解,用数值计算方法求得的一阶至四阶固有园频率和主振型的结果列于表5-1。

各阶固有园频率之比1f ﹕1f ﹕1f ﹕1f ﹕… = 1﹕6.269﹕17.56﹕34.41﹕… (5-4)A B x图5-1 悬臂梁振动模型表(5-1)给出了悬臂梁自由振动时i =1~4阶固有园频率及其相应主振型函数。

除了悬臂梁固定端点边界位移始终为零外,对于二阶以上主振型而言,梁上还存在一些点在振动过程中位移始终为零的振型节点。

i 阶振型节点个数等于i -1,即振型节点个数比其振型的阶数小1。

实验测试对象为矩形截面悬臂梁(见图5-2所示)。

在实验测试时,给梁体施加一个大小适当的激扰作用力,其频率正好等于梁体的某阶固有频率,则梁体便会产生共振,这时梁体变形即为该阶固有频率所对应的主振型,其它各阶振型的影响很小可忽略不计。

各类梁固有频率简易理论计算公式

各类梁固有频率简易理论计算公式

各类梁固有频率简易理论计算公式摘要:将虚拟仪器技术应用于悬臂梁固有频率的测量组成了基于虚拟仪器的测试系统介绍了测试系统的硬件、软件的构成开发了基于LabVIEW的测量程序。

测试实验采用力锤产生脉冲激励对等强度悬臂梁固有频率进行了测试对实验结果进行了分析并与有限元分析和理论公式计算结果作比较结果表明测试结果可靠测量精度高。

该测试系统提供了一种新的悬臂梁固有频率测试方法具有一定的参考价值。

关键词:虚拟仪器LabVIEW等强度悬臂梁力锤固有频率中图分类号:TP391文献标识码:AResearchonnaturalfrequencyofcantileverbeambasedonLabVIEWLiu Quan1GuoYingfu12ZhangYuelei3 YongManjiang41.Electro2mechanicalEngineeringSchoolHunanuniversity ofscienceandtechnologyXiangtan.XiaoxiangSchoolHunanuniversityofscie nceandtechnologyXiangtan.XiangtanElectricManufacturingCorporationLt d4.XiangtanCityspecialequipmenttestinglaboratoryXiangtanAbstract:App lyingthevirtualinstrumenttechnologyinthenaturalfrequencymeasuringexpe rimentofthecantileverbeamthevirtualinstrumentsystemwasformedbasedon virtualinstrument.Theconstitutionofthetestsystemhardwareandsoftwarewa sintroducedindetailandthetestprogrambasedonLabVIEWwasmade.Thistes tsystemusedthehammertogeneratethepulseexcitationandanalyzetheexperi mentalresultsandusedfiniteelementanalysisandtheoreticalcalculationresult sforcomparisonTheresultsshowthatthetestresultsisreliableandhighlyaccuracy.Thetestsystemprovidesanewtestingmethodandhasacertainreferencevalu e.Keywords:virtualinstrumentLabVIEWequal2strengthcantileverbeamha mmernaturalfrequency3基金项目:湖南省教育厅普通高校教学改革项目资助。

固有频率影响因素相关公式

固有频率影响因素相关公式

固有频率影响因素相关公式固有频率是指一个物体在没有外界干扰下自然振动的频率。

它是由物体的质量、弹性系数和几何形状等因素决定的。

在工程设计和研究中,对固有频率的分析对于了解物体的振动特性以及预防共振等问题非常重要。

下面,将介绍几种常见的固有频率影响因素相关的公式。

1.杆件的固有频率:杆件的固有频率与杆件的长度和弯曲刚度相关。

杆件的固有频率可以通过以下公式计算:f=(1/2π)*(√(EI/ρA))*(m/L^2)其中,f是固有频率,E是弹性模量,I是截面惯性矩,ρ是杆件的密度,A是截面面积,m是杆件的质量,L是杆件的长度。

2.简谐振子的固有频率:简谐振子是一个理想化的振动系统,它的固有频率只与它的质量和弹性系数有关。

简谐振子的固有频率可以通过以下公式计算:f=(1/2π)*(√(k/m))其中,f是固有频率,k是系统的弹性系数,m是系统的质量。

3.平面结构的固有频率:平面结构的固有频率与结构的刚度矩阵和质量矩阵有关。

平面结构的固有频率可以通过以下公式计算:K*X=ω^2*M*X其中,K和M分别是结构的刚度矩阵和质量矩阵,X是结构的振动模态矢量,ω是固有频率。

4.悬臂梁的固有频率:悬臂梁是一种常见的结构,在分析其固有频率时,需要考虑梁的长度、质量和截面形状等因素。

悬臂梁的固有频率可以通过以下公式计算:f=1.875^2*(E*I/(ρ*A*L^4))其中,f是固有频率,E是弹性模量,I是截面惯性矩,ρ是梁的密度,A是梁的截面面积,L是梁的长度。

以上所介绍的公式是几种常见的固有频率影响因素的相关公式。

它们可以用来计算不同类型物体的固有频率,并且可以帮助工程师和研究人员了解和分析物体振动的特性。

通过对固有频率的研究和分析,可以根据具体情况来优化设计,预防共振等振动问题的发生。

悬臂梁固有频率的计算

悬臂梁固有频率的计算

悬臂梁固有频率得计算试求在处固定、处自由得等截面悬臂梁振动得固有频率(求解前五阶)。

解:法一:欧拉-伯努利梁理论悬臂梁得运动微分方程为:;悬臂梁得边界条件为:2222(0)0(1),(0)0(2)0(3),(EI )0(4)x l x ldw w w w x x dx x x x ==∂∂∂======∂∂∂,; 该偏微分方程得自由振动解为,将此解带入悬臂梁得运动微分方程可得到,;其中将边界条件(1)、(2)带入上式可得,;进一步整理可得;再将边界条件(3)、(4)带入可得;要求有非零解,则它们得系数行列式必为零,即所以得到频率方程为:;该方程得根表示振动系统得固有频率:满足上式中得各()得值在书P443表8、4中给出,现罗列如下:123451.875104 4.6940917.85475710.99554114.1372l l l l l βββββ=====,,,,;若相对于得值表示为,根据式中得,可以表示为;因此1cos cosh (x)C (cos x cosh x)(sin x sinh x),1,2,...sin sinh n n n n n n n n n n l lW n l l ββββββββ⎡⎤+=---=⎢⎥+⎣⎦由此可得到悬臂梁得前五阶固有频率,分别将n=1,2,3,4,5带入可得:1112222221234441.875104() 4.694091()7.854757()EI EI EI Al Al Alωωωρρρ===,,, ;法二、铁摩辛柯梁梁理论1、悬臂梁得自由振动微分方程:;边界条件:;设方程得通解为:;易知边界条件(1)满足此通解,将通解带入上面得微分方程可得到频率方程为:;其中;若转动惯量与剪切变形得影响均忽略,上式得频率方程简化为;当n=1,2,3,4,5时可分别求得固有频率为:12345w w w w w =====多自由度系统频率得计算方法等效质量:连续系统悬臂梁简化为5个相等得集中质量。

固有频率公式

固有频率公式

固有频率公式
固有频率,又称自振频率,是指一个特定系统(如振子装置)存在的共振振动频率,这种共振振动是由该系统存在的惯性外力和弹性外力所致。

固有频率一般可以用一个公式来表达:
固有频率公式:f=1/2π√K/m
其中,K为振子装置的弹性力系数,m为振子装置的质量。

由此
可见,固有频率的大小取决于系统中的K和m值。

为了更好地理解固有频率,我们可以以一个刚架为例。

刚架是机械学中最简单的系统之一,由一个悬置在两支支架上的质点构成,其位置受到变形合力的作用,因此可以完全利用来解释固有频率的概念。

如果假设悬移质点的质量既定,而弹性力系数也定,则根据上面的固有频率公式可求出这个系统的固有频率。

固有频率在日常生活中也有很多应用,比如,工程桥梁的抗震设计中,需要根据现有建筑的质量和弹性系数,来确定合理的固有频率,以便在震动作用下受力合理,以减小结构损坏可能性。

此外,船只在海上航行过程中,也需要确定其固有频率,防止船只在大浪作用下频繁震荡,产生不安全因素。

另外,固有频率也被广泛应用于影响电子系统的稳定性的研究中,这些电子系统也出现在我们的家居中,如家用电器、家庭影院和机器人等,如果它们不能在最佳状态下工作,就会影响整个电子系统的正常运行。

总之,固有频率在物理和电子学方面都有着重要的作用,而其固
有频率公式正是衡量它们性能的主要标准。

因此,熟悉固有频率公式,学习运用它,对于我们更好地理解固有频率必不可少。

悬臂梁固有频率的计算

悬臂梁固有频率的计算

悬臂梁固有频率的计算若相对于n β的2C 值表示为2n C ,根据式中的1n C ,2n C 可以表示为21cos cosh ()sin sinh n n n n n n l lC C l lββββ+=-+;因此1cos cosh (x)C (cos x cosh x)(sin x sinh x),1,2,...sin sinh n n n n n n n n n n l lW n l l ββββββββ⎡⎤+=---=⎢⎥+⎣⎦由此可得到悬臂梁的前五阶固有频率,分别将n=1,2,3,4,5带入可得:1112222221234441.875104() 4.694091()7.854757()EI EI EI Al Al Alωωωρρρ===,,, 112222454410.995541()14.1372()EI EI Al Alωωρρ==,;法二、铁摩辛柯梁梁理论1.悬臂梁的自由振动微分方程:4242442224(,)(,)(1)0w x t w x t E w I wEI A I kG kG x t x t t ρρρ∂∂∂∂+-++=∂∂∂∂∂;边界条件:(0)(0)0w x x φ====(1),0x lx lw x x φφ==∂∂-==∂∂(2); 设方程的通解为:(,)Csincos n n xw x t w t lπ=;易知边界条件(1)满足此通解,将通解带入上面的微分方程可得到频率方程为:422222224442224r ()(1)0nnn r n r E n w w kG l l kG l ρππαπ-+++=;其中22I EI r A A αρ==,;若转动惯量与剪切变形的影响均忽略,上式的频率方程简化为222222=n n EI n w l A lαππρ=;当n=1,2,3,4,5时可分别求得固有频率为:222221234522222491625EI EI EI EI EI w w w w w A l A l A l A l A lπππππρρρρρ=====多自由度系统频率的计算方法等效质量:连续系统悬臂梁简化为5个相等的集中质量12345m 5m m m m m =====。

固有频率和功率谱密度的公式

固有频率和功率谱密度的公式

固有频率和功率谱密度的公式固有频率计算公式:Q=wL\R=2πfL\R(因为w=2πf)=1/wCR=1/2πfCR固有频率也称为自然频率。

1.定义与概念:固有频率是指物体在自由振动状态下的特定频率,也称为共振频率。

它是由物体的质量、刚度和几何形状决定的。

固有频率的计算涉及到一些基本的物理概念和公式。

2.简谐振动:固有频率的计算通常基于简谐振动的模型。

简谐振动是指物体在恢复力作用下,在一个平衡位置附近做来回振动的运动。

对于简谐振动,物体的位移随时间变化的关系可以用正弦或余弦函数表示。

3.基本公式:固有频率的计算公式可以用以下基本公式表示:f=1/2π*√(k/m)其中,f代表固有频率,k代表物体的弹性系数(刚度),m代表物体的质量。

这个公式表明,固有频率与物体的质量成反比,与物体的弹性系数成正比。

4.单自由度系统:上述公式适用于单自由度系统,即只含有一个振动自由度的系统。

对于复杂系统或多自由度系统,需要进行更复杂的计算,涉及到矩阵运算和特征值求解等方法。

5.不同物体的固有频率计算:不同形状、材料和结构的物体有不同的固有频率计算方法。

例如,对于弹簧的固有频率计算,可以使用胡克定律和弹簧的质量计算。

对于简谐振动的弦乐器,可以根据弦的长度、张力和质量线密度来计算固有频率。

对于悬臂梁的固有频率计算,可以使用欧拉-伯努利梁理论。

6.实际应用与影响因素:固有频率的计算在工程设计和物理实验中具有广泛的应用。

它可以用来设计合适的振动控制系统,评估结构的稳定性和安全性,以及研究物体的共振现象。

固有频率的计算受到物体的质量、刚度和几何形状的影响。

改变这些参数之一,可以显著改变物体的固有频率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

悬臂梁固有频率的计算试求在0x =处固定、x l =处自由的等截面悬臂梁振动的固有频率(求解前五阶)。

解:法一:欧拉-伯努利梁理论悬臂梁的运动微分方程为:4242(,)(,)+0w x t w x t EI A x t ρ∂∂=∂∂;悬臂梁的边界条件为:2222(0)0(1),(0)0(2)0(3),(EI )0(4)x l x ldw w ww x x dx x x x ==∂∂∂======∂∂∂,; 该偏微分方程的自由振动解为(x,t)W(x)T(t)w =,将此解带入悬臂梁的运动微分方程可得到1234(x)C cos sin cosh sinh W x C x C x C x ββββ=+++,(t)Acos t Bsin t T w w =+;其中24A EIρωβ=将边界条件(1)、(2)带入上式可得13C 0C +=,24C 0C +=;进一步整理可得12(x)C (cos cosh )(sin sinh )W x x C x x ββββ=-+-;再将边界条件(3)、(4)带入可得12(cos cosh )C (sin sinh )0C l l l l ββββ-+-+=;12(sin sinh )C (cos cosh )0C l l l l ββββ--+-+=要求12C C 和有非零解,则它们的系数行列式必为零,即(cos cosh )(sin sinh )=0(sin sinh )(cos cosh )l l l l l l l l ββββββββ-+-+--+-+所以得到频率方程为:cos()cosh()1n n l l ββ=-;该方程的根n l β表示振动系统的固有频率:1224()(),1,2,...n n EI w l n Al βρ==满足上式中的各n l β(1,2,...n =)的值在书P443表8.4中给出,现罗列如下:123451.875104 4.6940917.85475710.99554114.1372l l l l l βββββ=====,,,,;若相对于n β的2C 值表示为2n C ,根据式中的1n C ,2n C 可以表示为21cos cosh ()sin sinh n n n nn n l l C C l lββββ+=-+;因此1cos cosh (x)C (cos x cosh x)(sin x sinh x),1,2,...sin sinh n n n n n n n n n n l lW n l l ββββββββ⎡⎤+=---=⎢⎥+⎣⎦由此可得到悬臂梁的前五阶固有频率,分别将n=1,2,3,4,5带入可得:1112222221234441.875104() 4.694091()7.854757()EI EI EI Al Al Alωωωρρρ===,,, 112222454410.995541()14.1372()EI EI Al Alωωρρ==,;法二、铁摩辛柯梁梁理论1.悬臂梁的自由振动微分方程:4242442224(,)(,)(1)0w x t w x t E w I w EI A I kG kG x t x t t ρρρ∂∂∂∂+-++=∂∂∂∂∂;边界条件:(0)(0)0w x x φ====(1),0x lx lw x x φφ==∂∂-==∂∂(2); 设方程的通解为:(,)Csincos n n xw x t w t lπ=;易知边界条件(1)满足此通解,将通解带入上面的微分方程可得到频率方程为:422222224442224r ()(1)0nnn r n r E n w w kG l l kG l ρππαπ-+++=;其中22I EI r A Aαρ==,;若转动惯量与剪切变形的影响均忽略,上式的频率方程简化为222n n w l απ=;当n=1,2,3,4,5时可分别求得固有频率为:12345w w w w w =====多自由度系统频率的计算方法等效质量:连续系统悬臂梁简化为5个相等的集中质量12345m5m m m m m =====。

1.邓克莱法邓克莱公式为:111222555211a a a m m m ω≈+++ ,其中3333311223344558964,,,,3753751253753l l l l l a a a a a EI EI EI EI EI=====,12345m5m m m m m =====;将其代入上式可求得系统的基频为:12142.887()EI w Al ρ,此基频比用伯努利-欧拉梁求得的一阶固有频率122141.875104()EI Al ωρ=偏小,误差为17.42%,与邓克莱法的推导预期相符。

2.瑞利法系统的质量矩阵、刚度矩阵和柔度矩阵分别为0000000010000500000mmM m m m ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦33333333333333333333333341173751503757503758144261503753757537541492718375375125250125114276488750752503753757261888375375125375l l l l l EI EI EI EI EI l l l l l EI EI EI EI EI l l l l l EI EI EI EI EI l l l l l EI EI EI EI EI l l l l EI EI EI∆=33l EIEI⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦135177986279322212700045002258541811818627911172112447194500157505861931811813222112447156221261631422154933222442700094500261633827982500181181223118145001575014221825001811814418EI K l --------=∆=-----6029130⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦取静变形曲线为假设阵型,设(40141279436600)TA =有3231122000EI 28401503l m 649418m,,75EITTT A MA A KA A M MA l ==∆=所以448.648.57(A)=,(A)T T T T A KA EI A MA EIR R A MA l A M MA l ρρI II===∆,此基频比用伯努利-欧拉梁求得的一阶固有频率122141.875104()EI Al ωρ=偏大,误差为15.23%,与瑞利法的推导预期相符。

3.里茨法系统的质量矩阵和刚度矩阵由上面给出,设阵型为12(12345)(13579)T T ψψ==,;则可求出**,M K 分别为*T 33*T335595=9516578375EI 57375EI 181l 181l 57375EI 78375EI 181l 181l m m M M m m K K ψψψψ⎡⎤=⎢⎥⎣⎦⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦将**,M K 代入**2**()0K w M A -=得**2*0K w M -=;可以求得:*1w ==*2w ==*(1)*(2)11A ,A 0.5780.29⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;所以系统前两阶主阵型的近似为(1)*(1)(2)*(2)1.0000 1.0000 0.6303 1.5915A =A =0.422 0.2607,A =A =0.712.1831 -0.1090 2.7746 -0.47873.3662ψψ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦4.雅克比法动力矩阵为333333333333333333333l m l m4l m11l m 7l m 375EI 150EI 375EI 750EI 375EI l m8l m 14l m 4l m 26l m 150EI 375EI375EI 75EI 375EI 4l m 14l m9l m 27l m 18l m 375EI 375EI 125EI 250EI 125EI 11l m 4l m 27l m 64l m 88l m 750EI 75EI 250EI 375EI 375EI 7l m 2375EI D M =∆=33336l m 18l m 88l m l m 375EI125EI375EI 3EI ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,由雅可比法求解其特征值和特征向量为:其固有频率2.93 0 0 0 0 0 18.70 0 0 0 0 0 52.7 0 0 0 0 0 100 00 0 0 0 158.11⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦0.0459 0.1669 0.3387 0.5393 0.7513 0.2290 0.5589 0.5802 0.1677 -0.5201 -0.4879 -0.5446 0.2548 0.5306 -0.3448 -0.6481 0.1332 0.4650 -0.5539 0.19T79 0.5361 -0.5878 0.5172 -0.3046 0.0833⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦。

相关文档
最新文档