基于ds18b20的数字温度计设计
基于AT89C51DS18B20的数字温度计设计

基于AT89C51DS18B20的数字温度计设计一、本文概述Overview of this article本文旨在探讨基于AT89C51微控制器和DS18B20数字温度传感器的数字温度计设计。
我们将详细介绍如何利用这两种核心组件,结合适当的硬件电路设计和软件编程,实现一个能够准确测量和显示温度的数字温度计。
This article aims to explore the design of a digital thermometer based on AT89C51 microcontroller and DS18B20 digital temperature sensor. We will provide a detailed introduction on how to utilize these two core components, combined with appropriate hardware circuit design and software programming, to achieve a digital thermometer that can accurately measure and display temperature.我们将对AT89C51微控制器和DS18B20数字温度传感器进行简要介绍,包括它们的工作原理、主要特性和适用场景。
然后,我们将详细阐述硬件电路的设计,包括微控制器与温度传感器的连接方式、电源电路、显示电路等。
We will provide a brief introduction to the AT89C51 microcontroller and DS18B20 digital temperature sensor, including their working principles, main characteristics, and applicable scenarios. Then, we will elaborate on the hardware circuit design, including the connection method between the microcontroller and temperature sensor, power circuit, display circuit, etc.在软件编程方面,我们将介绍如何使用C语言对AT89C51微控制器进行编程,实现温度数据的读取、处理和显示。
基于DS18B20数字温度计设计报告正文

基于DS18B20数字温度计设计报告正文西华大学电气信息学院智能化电子系统设计报告目录1 前言 ................................................ .. (1)设计背景 ................................................ ......... 1 设计目标 ................................................ ......... 1 实施计划 ................................................ ......... 1 2 总体方案设计 ................................................ (2)方案比较 ................................................ (2)方案一基于热敏电阻的温度计设计 .............................. 2 方案二基于SHT71的数字温度计设计 ............................ 2 方案三基于DS18B20的数字温度计设计.......................... 3 方案论证 ................................................ ......... 3 方案选择 ................................................ ......... 4 3 硬件设计 ................................................ . (5)单元模块设计 ................................................ .. (5)时钟和复位电路 (5)报警电路 ................................................ .... 5 数码显示电路 ................................................6 电源电路 ................................................ ....7 按键电路 ................................................ .... 7 串口通信电8 核心器件介绍 ................................................ .. (8)单片机STC89C52介绍 (8)DS18B20介绍 (9)4 软件设计 ................................................ (11)温度采集模块 ................................................ .... 11 温度设定模块 ................................................ .... 14 报警模块 ................................................ ........ 15 5 系统整合调试 ................................................ .. (16)硬件调........ 16 软件调试 ................................................ .. (16)I西华大学电气信息学院智能化电子系统设计报告 6 系统功能、指标参数 ................................................ .. 18系统功能 ................................................ ........ 18 系统指标参数测试 ................................................18 系统功能及指标参数分析.......................................... 19 7 结论 ................................................ ................ 20 8 总结与体会 ................................................ .......... 21 9西华大学电气信息学院智能化电子系统设计报告积极小的芯片当中,实现了温度传感器的数字式输出、且免调试、免标定、免外围电路。
基于DS18B20的数字温度计课程设计

摘要在日常生活及工业生产过程中,经常要用到温度的检测及控制,温度是生产过程和科学实验中普遍而且重要的物理参数之一。
在生产过程中,为了高效地进行生产,必须对它的主要参数,如温度、压力、流量等进行有效的控制。
温度控制在生产过程中占有相当大的比例。
温度测量是温度控制的基础,技术已经比较成熟。
传统的测温元件有热电偶和二电阻。
而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,这些方法相对比较复杂,需要比较多的外部硬件支持。
我们用一种相对比较简单的方式来测量。
本文将介绍一种基于单片机控制的数字温度计,就是用单片机实现温度测量,进而达到数控制的目的。
传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进行处理。
本次采用DS18B20数字温度传感器来实现基于AT89C51单片机的数字温度计的设计用LED数码管以串口传送数据,实现温度显示,能准确达到以上要求,可以用于温度等非电信号的测量,主要用于对测温比较准确的场所,或科研实验室使用,能独立工作的单片机温度检测、温度控制系统已经广泛应用很多领域。
关键词温度计;单片机;数字控制;DS18B20ABSTRACTIn daily life and industrial production process, often used in the detection and control of temperature, temperature is the production process and scientific experiments in general and one of the important physical parameter. In the production process, in order to efficiently carry out the production, to be its main parameters, such as temperature, pressure, flow control, etc... Temperature control in the production process of a large proportion. Temperature measurement is the basis of temperature-controlled, more mature technology.Traditional thermocouple and temperature components are the second resistor.The thermocouple and thermal resistance are generally measured voltage, and then replaced by the corresponding temperature, these methods are relatively complex, requiring a relatively large number of external hardware support. We use a relatively simple way to measure.This article will introduce the single-chip microcomputer-based control of a digital thermometer is used to achieve single-chip temperature measurement, the traditional detection of most of the temperature thermistor for temperature sensor, but the poor reliability of thermistors, temperature measurement accuracy of low - , and must go through a special interface circuit to convert the digital signal processed by the single chip. The use of digital temperature sensor DS18B20 to AT89C51 microcontroller-based design of digital thermometer with LED digital control to the serial transmission of data, temperature display, accurate to achieve the above requirements, can be used for temperature measurement and other non-electrical signal, mainly used for more accurate temperature measurement sites, or research laboratory use, can work independently of the single-chip temperature detection, temperature control system has been widely used in many areasKey words Thermometer;Single-chip;Digital Control;DS18B20目录0 引言 (1)1 绪论 (2)2硬件介绍 (3)2.1 AT89C51单片机 (3)2.1.1概述 (3)2.1.2 基本参数 (3)2.1.3 功能特性 (3)2.1.4 引脚说明 (4)2.2 DS18B20 单线数字温度传感器 (5)2.2.1概述 (5)2.2.2 DS1820的应用 (5)2.2.3 DS18B20的结构介绍 (5)2.3 数码管 (6)3 硬件设计 (7)3.1 整体设计 (7)3.2 时钟振荡器 (8)3.3 DS18B20 的供电方式 (8)3.4 数码管的驱动方式 (9)4软件调试 (10)4.1 整体设计 (10)4.2 测温操作 (11)4.3 报警操作 (13)4.4 数码管使用编码 (14)5 设计过程中出现的问题 (16)6 结论 (17)致谢 (18)参考文献 (19)附录 (20)附录 A (20)附录B (28)0 引言随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。
DS18B20数字温度计的设计

基于DS18B20室内数字温度计日常生活中人们需要测量各种各样的温度。
环境温度对工业、农业、商业都有很大的影响。
传统的测温仪测量费时,准确度也较低,数字温度计与传统的温度计相比,具有读数速度快,测温范围广,其输出温度采用数字显示,便于用户使用。
随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,本设计所介绍的数字温度计使用单片机stc89C51,测温传感器使用DS18B20,用数码管实现温度显示,利用DS18B20和一片stc89C51单片机即可构成一个简洁但功能强大的低电压温度测量控制系统。
一、设计前言1.1 设计目的1.理论联系实际,单片机应用,尝试设计案例程序2.对主要元件功能有所了解3.学会用C语言编写程序4.培养设计项目程序流程图的思想5.掌握项目中所使用到的元器件的硬件原理,并用Proteus软件仿真,并用protell99se画PCB1.2设计内容1.所设计实验装置以MCS-51系列单片机为核心器件,组成一个数字式温度计。
2.所设计实验装置能够利用数码管直接显示出外界温度及温度变化。
3.所设计实验装置测试外界温度误差范围在±0.5℃之间。
4.手机充电器作稳压电源。
1.3设计要求1.独立设计原理图及相应的硬件电路。
2.独立焊接电路板并对电路板调试。
3.针对选择的设计题目,设计系统软件。
软件要做到:操作方便,实用性强,稳定可靠。
4.设计说明书格式规范,层次合理,重点突出。
并附上设计原理图、电路板图及相应的源程序。
二、设计方案2.1方案论证鉴于此设计题目,以下想到两种可能方案:方案一热敏电阻由于此设计是测温电路,所以想到使用热敏电阻,利用它的感温效应,在实验过程中记录在其温度变化时的电压或电流,进行A/D转换后,就可以用单片机进行数据处理,在显示电路上,就可以将被测温度显示出来。
方案二温度传感器此设计利用温度传感器,采用一只温度传感器DS18B20,控制器单片机AT89S51,用液晶显示器显示温度。
基于DS18B20数字温度计的设计

如果将8位1)第一阶段(1976-1978):单片机的探索阶段。以Intel公司的MCS–48为代表。MCS–48的推出是在工控领域的探索,参与这一控索的公司还有Motorola、Zilog等,都取得了满意的效果。这就是SCM的诞生年代,“单机片”一词即由此而来。
Keywords:microcontroller, digital control, thermometer
第
1.1
温度计是测温仪器的总称。根据所用测温物质的不同和测温范围的不同,有煤油温度计、酒精温度计、水银温度计、气体温度计、电阻温度计、温差电偶温度计、辐射温度计和光测温度计等。
最早的温度计是在1593年由意大利科学家伽利略(1564~1642)发明的。他的第一只温度计是一根一端敞口的玻璃管,另一端带有核桃大的玻璃泡。使用时先给玻璃泡加热,然后把玻璃管插入水中。随着温度的变化,玻璃管中的水面就会上下移动,根据移动的多少就可以判定温度的变化和温度的高低。这种温度计,受外界大气压强等环境因素的影响较大,所以测量误差大。
(1)CMOS化
摘要
随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术。对于温度的测量方法与装置的研究就凸显得非常重要。由单片机与温度传感器构成的测温系统可广泛应用于很多领域。
本文将介绍一种基于单片机控制的数字温度计,从硬件和软件两方面介绍了单片机温度控制系统的设计,对硬件原理图和程序框图作了简洁的描述。本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,该设计控制器使用单片机AT89C2051,测温传感器使用DS18B20,用4位共阳极LED数码管以串口传送数据,实现温度显示,能准确达到以上要求。DS18B20数字温度传感器是单总线器件与51单片机组成的测温系统,具有线路简单、体积小等特点,而且在一根通信线上,可以挂接多个DS18B20,因此可以构成多点温度测控系统。
基于DS18b20数字测温仪的设计

数字测温仪的设计摘要在日常生活及农业生产中,经常要用到温度的检测及控制,由此可见单片机在我们的生活中扮演十分重要的角色,让我们认识到单片机已经深入各个领域。
我们通过课程设计不仅能够加强自己动手操作能力和培养技术能力,而且加深对打片机的认识增加自己知识面和激发对单片机的学习热情以及对科学知识的探索。
本次设计的内容是基于单片机学习板的数字测温仪设计,采用温度传感器DS18B20作为环境温度检测元件,其中主控器为STC89C52RC、显示电路是经D8255AC-2扩展连接数码管,再由蜂鸣器作为温度报警部分。
温度传感器检测到环境温度进行转换保存高速缓存RAM中,主控器在发出命令后在读取数据进行处理,再输出数据到显示部分控制其显示的具体温度值。
关键词:STC89C52RC;DS18B20;D8255;主控制器;温度传感器;目录设计要求 ..................................................................................................错误!未定义书签。
1 方案论证与对比 ................................................................................错误!未定义书签。
1.1 方案一 ........................................................................................错误!未定义书签。
1.2 方案二 (1)1.3 设计方案对比与选择 (2)2 系统电路的设计 (2)2.1 主控制器 (2)2.2 显示电路 (2)2.3 温度传感器 (2)3 系统程序的设计 (7)3.1 主程序 (7)3.2 温度程序 (7)3.3 显示程序 (8)4系统调试及性能分析 (11)5 仪器件清单 ........................................................................................错误!未定义书签。
基于DS18B20的数字温度计设计与实现

1 DS18B20的特点及性能传统的温度测量系统通常采用热电偶或热电阻测量温度,而热电阻必须在一个良好的恒流源中才能保证温度测量的准确性;而热电偶发送的信号为模拟信号,必须经过A/D转换才能将其发送至CPU进行相应处理,且热电偶信号仅有十几个mA,由于过于微弱在A/D转换之前需要进行增益放大,因此应用热电偶或热电阻构成的温度测量系统比较复杂。
DS18B20是一种单线数字温度传感器芯片,由美国Dallas公司生产,与传统的温度传感器不同,DS18B20可将测得的温度信号直接转换为可供单片机处理的串行数字信号,因此可获得更高的工作效率。
通过编程,可通过DS18B20实现9~12位的温度读数,其温度测量范围在-55℃~+125℃,其中- 10℃~+ 85℃其测温准确度误差可控制在0.5℃。
相比其他温度测量元件,DS18B20的小体积、低功耗、强大的抗干扰能力、易连接微处理器等优势十分突出,其测量温度时无需其他硬件,仅需一根I/O口线即可实现与单片机的信息交换,其工作电源既可远端引入,也可采用寄生电源的方式而无需额外电源,可通过数据总线向其提供读写及温度转换功率等,大大简化了电路设计。
此外,每片DS18B20均设置对应的产品序列号,该序列号存放于其内部ROM中,由于DS18B20的序列号具有唯一性,单片机在识别序列号时通过简单的协议即可实现,正是其这一特点使得多个DS18B20可挂接于同一条单线总线,不仅占据较少微处理器的端口,而且可减少引线及逻辑电路的应用,在多点温度测控系统的应用中具有较大优势。
2 DS18B20温度测量原理达拉斯公司将其特有的温度测量技术融入到DS18B20中,其内部具有低温度系数振荡器及高温度系数振荡器,应用过程中该低温振荡器可产生频率信号f,而被测温度会将高温度系数振荡器转换成频率信号f,DS18B20计数门的开通时间由高温系数振荡器来决定,计数门打开时DS18B20对f计数;测温过程中频率会存在非线性,DS18B20内部设置为斜率累加器用于补偿频率的非线性。
基于ds18b20的数字温度计设计报告

基于ds18b20的数字温度计设计报告
一、引言
随着科技的进步,温度的测量和控制变得越来越重要。
DS18B20是一款数字温度传感器,具有测量准确度高、体积小、接口简单等优点,广泛应用于各种温度测量场合。
本报告将介绍基于DS18B20的数字温度计设计。
二、DS18B20简介
DS18B20是一款由美国Dallas公司生产的数字温度传感器,可以通过数据线与微处理器进行通信,实现温度的测量。
DS18B20的测量范围为-55℃~+125℃,精度为±0.5℃。
三、数字温度计设计
1.硬件设计
数字温度计的硬件部分主要包括DS18B20温度传感器、微处理器、显示模块等。
其中,DS18B20负责采集温度数据,微处理器负责处理数据并控制显示模块显示温度。
2.软件设计
软件部分主要实现DS18B20与微处理器的通信和控制显示模块显示。
首先,微处理器通过数据线向DS18B20发送命令,获取温度数据。
然后,微处理器将数据处理后发送给显示模块,实现温度的实时显示。
四、测试结果
经过测试,该数字温度计的测量精度为±0.5℃,符合设计要求。
同时,该温度
计具有测量速度快、体积小、使用方便等优点,可以广泛应用于各种温度测量场合。
五、结论
基于DS18B20的数字温度计具有高精度、低成本、使用方便等优点,可以实现高精度的温度测量和控制。
随着科技的发展,数字温度计的应用将越来越广泛,具有广阔的市场前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录(一)设计内容及要求 (2)(二)系统的硬件选择及设计 (3)2.1核心处理器的设计 (3)1、AT89C51引脚图 (3)2、AT89C51引脚功能介绍 (3)2.2温度采集电路的设计 (5)1、单线技术 (5)2、DS18B20的简介 (6)3、DS18B20内部结构 (8)4、DS18B20测温原理 (11)5、温度采集电路 (12)2.3温度显示电路的设计 (13)1、LED数码管的操作 (13)2、温度显示电路 (13)(三)系统的软件设计 (15)3.1概述 (15)3.2 DS18B20的单线协议和命令 (15)(1)初始化 (15)(2)ROM操作命令 (15)(3)内存操作命令 (16)3.3温度采集程序流程图的设计 (18)3.4温度显示程序流程图的设计 (19)(四) 结论 (19)(五)汇编代码 (20)(六)参考文献 (27)基于DS18B20的数字温度计设计摘要:在本设计中选用AT89C51型单片机作为主控制器件,采用DS18B20数字温度传感器作为测温元件,通过两位共阴极LED数码显示管并行传送数据,实现温度显示。
本设计的内容主要分为两部分,一是对系统硬件部分的设计,包括温度采集电路和显示电路;二是对系统软件部分的设计,应用汇编语言实现温度的采集与显示。
通过DS18B20直接读取被测温度值,送入单片机进行数据处理,之后进行输出显示,最终完成了数字温度计的总体设计。
其系统构成简单,信号采集效果好,数据处理速度快,便于实际检测使用。
关键词:单片机AT89C51;温度传感器DS18B20;LED数码管;数字温度计(一)设计内容及要求本设计主要介绍了用单片机和数字温度传感器DS18B20相结合的方法来实现温度的采集,以单片机AT89C51芯片为核心,辅以温度传感器DS18B20和LED 数码管及必要的外围电路,构成了一个多功能单片机数字温度计。
本次设计的主要思路是利用51系列单片机,数字温度传感器DS18B20和LED 数码显示器,构成实现温度检测与显示的单片机控制系统,即数字温度计。
通过对单片机编写相应的程序,达到能够实时检测周围温度的目的。
通过对本课题的设计能够熟悉数字温度计的工作原理及过程,了解各功能器件(单片机、DS18B20、LED)的基本原理与应用,掌握各部分电路的硬件连线与程序编写,最终完成对数字温度计的总体设计。
其具体的要求如下:1、根据设计要求,选用AT89C51单片机为核心器件;2、温度检测器件采用DS18B20数字式温度传感器,利用单总线式连接方式与单片机的P2.2引脚相连;3、显示电路采用两位LED数码管以串口并行输出方式动态显示。
(二)系统的硬件选择及设计2.1核心处理器的设计1、AT89C51引脚图芯片AT89C51的引脚排列和逻辑符号如图2.1 所示。
图 2.1 AT89C51单片机引脚图2、AT89C51引脚功能介绍单片机芯片AT89C51为40引脚双列直插式封装。
本设计使用的其各个引脚功能介绍如下:(1) VCC:供电电压;(2) GND:接地;(3) P0口:一个8位漏级开路双向I/O口,每个管脚可吸收8TTL门电流。
本设计中使用P0作为两个共阴极LED数码管的位选和段选输出控制口,其中用到74HC573作为输出锁存,将段选和位选分开控制,由P2.7,P2.8开启。
电路图如下:(4) P1口:一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口被拉为低电平时将输出电流。
本设计中只用到P1.0管脚,当所测量温度超过预设报警温度时点亮LED灯,其中用到74HC573作为输出锁存,由P2.5开启该锁存器。
电路图如下:(5) P2口:一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流。
本设计中使用P2.2管脚和DS18B20的DQ管脚相连作为通信总线,AT89C51和 DS18B20都能对该线电平拉高和拉低操作来进行通信,当电平为高时总线传输“1”,当电平为低时总线传输“0”;P2.7,P2.8开启数码管的位选和段选的P0口的锁存;P2.5开启报警LED灯的P1口的锁存。
(6) RST:复位输入端。
当振荡器复位时,要保持RST脚两个机器周期的高电平时间。
2.2温度采集电路的设计1、单线技术该技术采用单根信号线,即可传输时钟,又能传输数据,而且数据传输时是双向的,因而这种单线技术具有线路简单,硬件开销少,成本低廉。
便于扩展的优点。
单线技术适用以单主机系统,单主机能够控制一个或多个从机设备。
主机可以是微控制器,从机可以是单线器件,它们之间的数据交换,控制都由这根线完成。
主机或从机通过一个漏极开路或三态端口连至该数据线,以允许设备在不发送数据时能够释放线,而让其它设备使用。
单线通常要求外接一个约5kΩ的上拉电阻,这样,当该线闲置时,器件状态为高电平。
主机和从机之间的通信主要分为3个步骤:初始化单线器件,识别单线器件和单线数据传输。
由于只有一根线通信,所以它们必须是严格的主从结构,只有主机呼叫从机时,从机才能应答,主机访问每个单线器件都必须严格遵循单线命令序列,从机遵守上述三个步骤的顺序。
如果命令序列混乱,单线器件将不会响应主机。
所有的单线器件都有遵循严格的协议,以保证数据的完整性。
单线协议有复位脉冲,其他均由主机发起,并且所有命令和数据都是字节的低位在前。
2、DS18B20的简介DALLAS 最新单线数字温度传感器DS18B20是一种新型的”一线器件”,其体积更小、更适用于多种场合、且适用电压更宽、更经济。
温度测量范围为-55~+125 摄氏度,可编程为9位~12 位转换精度,测温分辨率可达0.0625摄氏度,分辨率设定参数以及用户设定的报警温度存储在EEPROM 中,掉电后依然保存。
被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可以在远端引入,也可以采用寄生电源方式产生;多个DS18B20可以并联到3 根或2 根线上,CPU只需一根端口线就能与诸多DS18B20 通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。
因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。
DS18B20 的性能特点如下:▲独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条总线即可实现微处理器与DS18B20的双向通讯;▲ DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温;▲ DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内;▲适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电;▲测温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃;▲零待机功耗;▲可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温;▲在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快;▲用户可定义报警设置;▲报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;▲测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力;▲负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作以上特点使DS18B20非常适用与多点、远距离温度检测系统。
DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。
DS18B20的管脚排列、各种封装形式如图 2.4 所示。
其中,DQ 为数据输入/输出引脚,也可用作开漏单总线接口引脚,当被用在寄生电源工作方式下,可以向器件提供电源;GND为地信号;VDD 为可选择的电源引脚,当工作于寄生电源时,此引脚必须接地。
其电路图 2.5所示。
图2.4 外部封装形式图2.5 传感器电路图3、DS18B20内部结构图2.6为DS1820的内部结构框图,它主要包括寄生电源、温度传感器、64位激光ROM单线接口、存放中间数据的高速暂存器(内含便笺式RAM),用于存储用户设定的温度上下限值的TH和TL触发器存储与控制逻辑、8位循环冗余校验码(CRC)发生器等七部分。
图2.6 DS18B20内部结构框图DS18B20采用3脚PR-35封装或8脚SOIC封装。
(1)64 bit闪速ROM的结构如下:8bit 校验CRC 48bit 序列号8bit 工厂代码MSB LSB MSB LSB MSB LSB开始的8位是产品类型的编号,接着是每个器件的惟一的序号,共有48 位,最后8位是前面56 位的CRC 检验码,这也是多个DS18B20可以采用一线进行通信的原因。
温度报警触发器TH和TL,可通过软件写入户报警上下限。
主机操作ROM 的命令有五种,在软件设计时会提到。
(2)高速暂存RAM的结构为8字节的存储器结构如图2.7所示。
图2.7 高速暂存RAM结构图其中,前2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。
第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。
DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。
暂存存储器的第5个字节是配置寄存器,可以通过相应的写命令进行配置,其内容如下:0 R1 R0 1 1 1 1 1 1MSB LSB其中R0和R1是温度值分辨率位,可按表2.3进行配置。
表2.3 温度值分辨率配置表R1 R0 分辨率最大转换时间(ms)0 0 9位93.75ms(tconv/8)0 1 10位183.50ms(tconv/4)1 0 11位375ms(tconv/2)1 1 12位750ms(t)conv 当DS18B20接收到温度转换命令后,开始启动转换。
转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。
单片机可通过单线接口读到该数据,读取时低位在前、高位在后,数据格式以0.0625℃/LSB形式表示。
温度值格式如下:低232221202-12-22-32-4高S S S S S 262524MSB LSB这是12位转化后得到的12位数据,存储在DS18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。