2018年上海高三数学二模分类汇编

合集下载

2018青浦高三二模数学(2021年整理)

2018青浦高三二模数学(2021年整理)

2018青浦高三二模数学(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018青浦高三二模数学(word 版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018青浦高三二模数学(word版可编辑修改)的全部内容。

上海市青浦区2018届高三二模数学试卷2018。

04一. 填空题(本大题共12题,1—6每题4分,7-12每题5分,共54分) 1. 不等式|3|2x -<的解集为2. 若复数z 满足2315z i -=+(i 是虚数单位),则z =3。

若1sin 3α=,则cos()2πα-=4. 已知两个不同向量(1,)OA m =,(1,2)OB m =-,若OA AB ⊥,则实数m = 5。

在等比数列{}n a 中,公比2q =,前n 项和为n S ,若51S =,则10S =6。

若x 、y 满足21020x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则2z x y =-的最小值为7. 如图所示,一个圆柱的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个圆柱的体积为8。

621(1)(1)x x++展开式中2x 的系数为 9. 高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A +的概率分别为78、34、512,这三门科目考试成绩的结果互不影响,则这 位考生至少得2个A +的概率是10。

已知()f x 是定义在[2,2]-上的奇函数,当(0,2]x ∈时,()21x f x =-,函数2()2g x x x m =-+,如果对于任意的1[2,2]x ∈-,总存在2[2,2]x ∈-,使得12()()f x g x ≤,则实数m 的取值范围是 11.已知曲线:C y =:2l y =,若对于点(0,)A m ,存在C 上的点P 和l 上的点Q ,使得0AP AQ +=,则m 取值范围是12. 已知22sin 1cos 1a a M a a θθ-+=-+(,a θ∈R ,0a ≠),则M 的取值范围是二。

上海市杨浦区2018届高三下学期质量调研(二模)数学试题(解析版)

上海市杨浦区2018届高三下学期质量调研(二模)数学试题(解析版)
二.选择题(本大题共4题,每题5分,共20分)
13.已知函数 的图象如图所示,则 的值为()
A. B. D.
【答案】C
【解析】
由函数 的图象可知:

故选
14.设A、B是非空集合,定义: 且 .
已知 , ,则 等于( )
A. B. C. D.
【答案】A
【解析】
求出集合 中的函数的定义域得到:
,即
【解析】
试题分析: 直接代入令 ,解出 的值即可
根据条件列出不等式求出 的值,即可得到结论
解析:(1)要使营运累计收入高于800元,令 ,
解得 .
所以营运天数的取值范围为40到80天之间
(2)
当且仅当 时等号成立,解得
所以每辆单车营运400天时,才能使每天的平均营运利润最大,最大为20元每天
18.如图,在棱长为1的正方体 中,点E是棱AB上的动点.
21.记函数 的定义域为D.如果存在实数 、 使得 对任意满
足 且 的x恒成立,则称 为 函数.
(1)设函数 ,试判断 是否为 函数,并说明理由;
(2)设函数 ,其中常数 ,证明: 是 函数;
(3)若 是定义在 上的 函数,且函数 的图象关于直线 (m为常数)对称,试判断 是否为周期函数?并证明你的结论.
A. B.
C. D.
【答案】D
【解析】
设三条棱
, ,
整理可得
最短棱长为 ,体对角线长为
故选
点睛:本题以长方体为载体,考查了不等式的运用,根据题目意思给出三边的数量关系,利用基本不等式代入消元,将三元变为二元,二元变为一元,从而求出变量范围,结合问题求出角的最大值
三.解答题(本大题共5题,共14+14+14+16+18=76分)

2018年上海市黄浦区高考数学二模试卷含详解

2018年上海市黄浦区高考数学二模试卷含详解

2018年上海市黄浦区高考数学二模试卷一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对前6题得4分、后6题得5分,否则一律得零分.1.(4分)已知集合A={1,2,3},B={1,m},若3﹣m∈A,则非零实数m的数值是.2.(4分)不等式|1﹣x|>1的解集是.3.(4分)若函数是偶函数,则该函数的定义域是.4.(4分)已知△ABC的三内角A、B、C所对的边长分别为a、b、c,若a2=b2+c2﹣2bcsinA,则内角A的大小是.5.(4分)已知向量在向量方向上的投影为﹣2,且,则=.(结果用数值表示)6.(4分)方程的解x= .7.(5分)已知函数,则函数f(x)的单调递增区间是.8.(5分)已知α是实系数一元二次方程x2﹣(2m﹣1)x+m2+1=0的一个虚数根,且|α|≤2,则实数m的取值范围是.9.(5分)已知某市A社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是人.10.(5分)将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是.(结果用数值表示)11.(5分)已知数列{a n}是共有k个项的有限数列,且满足,若a1=24,a2=51,a k=0,则k=.12.(5分)已知函数f(x)=ax2+bx+c(0<2a<b)对任意x∈R恒有f(x)≥0成立,则代数式的最小值是.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)在空间中,“直线m⊥平面α”是“直线m与平面α内无穷多条直线都垂直”的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件14.(5分)二项式的展开式中,其中是有理项的项数共有()A.4项B.7项C.5项D.6项15.(5分)实数x、y满足线性约束条件,则目标函数w=2x+y﹣3的最大值是()A.0B.1C.﹣2D.316.(5分)在给出的下列命题中,是假命题的是()A.设O、A、B、C是同一平面上的四个不同的点,若(m ∈R),则点A、B、C必共线B.若向量是平面α上的两个不平行的向量,则平面α上的任一向量都可以表示为,且表示方法是唯一的C.已知平面向量满足||=r(r>0),且=,则△ABC是等边三角形D.在平面α上的所有向量中,不存在这样的四个互不相等的非零向量,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.17.(14分)在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC∥AD,BC=1,CD=.(1)画出四棱锥P﹣ABCD的主视图;(2)若PA=BC,求直线PB与平面PCD所成角的大小.(结果用反三角函数值表示)18.(14分)某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD挖去扇形OBC后构成的).已知OA=10米,OB=x 米(0<x<10),线段BA、线段CD与弧、弧的长度之和为30米,圆心角为θ弧度.(1)求θ关于x的函数解析式;(2)记铭牌的截面面积为y,试问x取何值时,y的值最大?并求出最大值.19.(14分)已知动点M(x,y)到点F(2,0)的距离为d1,动点M(x,y)到直线x=3的距离为d2,且.(1)求动点M(x,y)的轨迹C的方程;(2)过点F作直线l:y=k(x﹣2)(k≠0)交曲线C于P、Q两点,若△OPQ的面积(O是坐标系原点),求直线l的方程.20.(16分)已知函数(1)求函数f(x)的反函数f﹣1(x);(2)试问:函数f(x)的图象上是否存在关于坐标原点对称的点,若存在,求出这些点的坐标;若不存在,说明理由;(3)若方程的三个实数根x1、x2、x3满足:x1<x2<x3,且x3﹣x2=2(x2﹣x1),求实数a的值.21.(18分)定义:若数列{c n}和{d n}满足,则称数列{d n}是数列{c n}的“伴随数列”.已知数列{b n}是数列{a n}的伴随数列,试解答下列问题:(1)若,,求数列{a n}的通项公式a n;(2)若,为常数,求证:数列是等差数列;(3)若,数列{a n}是等比数列,求a1、b1的数值.2018年上海市黄浦区高考数学二模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对前6题得4分、后6题得5分,否则一律得零分.1.(4分)已知集合A={1,2,3},B={1,m},若3﹣m∈A,则非零实数m的数值是2.【考点】12:元素与集合关系的判断.【专题】11:计算题;32:分类讨论;4O:定义法;5J:集合.【分析】利用元素与集合的关系及集合中元素的互异性能求出非零实数m的数值.【解答】解:∵集合A={1,2,3},B={1,m},3﹣m∈A,∴或或,解得m=2.∴非零实数m的数值是2.故答案为:2.【点评】本题考查实数值的求法,考查元素与集合的关系及集合中元素的互异性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.(4分)不等式|1﹣x|>1的解集是(﹣∞,0)∪(2,+∞).【考点】R5:绝对值不等式的解法.【专题】38:对应思想;4R:转化法;59:不等式的解法及应用.【分析】去掉绝对值,求出不等式的解集即可.【解答】解:∵|1﹣x|>1,∴1﹣x>1或1﹣x<﹣1,∴x<0或x>2,故答案为:(﹣∞,0)∪(2,+∞).【点评】本题考查了解绝对值不等式问题,考查转化思想,是一道基础题.3.(4分)若函数是偶函数,则该函数的定义域是[﹣2,2] .【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题;34:方程思想;35:转化思想;51:函数的性质及应用.【分析】根据题意,由函数奇偶性的定义可得=,分析可得a的值,即可得f(x)=,据此分析函数的定义域即可得答案.【解答】解:函数,则f(﹣x)=f(x),则有=,解可得a=0,则函数f(x)=,有8﹣2x2≥0,解可得﹣2≤x≤2,则函数f(x)的定义域为[﹣2,2];故答案为:[﹣2,2].【点评】本题考查函数的奇偶性的性质,注意函数的奇偶性的定义.4.(4分)已知△ABC的三内角A、B、C所对的边长分别为a、b、c,若a2=b2+c2﹣2bcsinA,则内角A的大小是.【考点】HR:余弦定理.【专题】11:计算题;35:转化思想;49:综合法;58:解三角形.【分析】利用余弦定理,化简已知条件,然后求解即可.【解答】解:△ABC的三内角A、B、C所对的边长分别为a、b、c,a2=b2+c2﹣2bcsinA,又a2=b2+c2﹣2bccosA,可得sinA=cosA,所以A=.故答案为:.【点评】本题考查三角形的解法,余弦定理的应用,考查计算能力.5.(4分)已知向量在向量方向上的投影为﹣2,且,则=﹣6.(结果用数值表示)【考点】9O:平面向量数量积的性质及其运算.【专题】38:对应思想;49:综合法;5A:平面向量及应用.【分析】根据向量的投影公式计算.【解答】解:设的夹角为θ,则向量在向量方向上的投影为||•cosθ=||•==﹣2,∴=﹣2||=﹣6.故答案为:﹣6.【点评】本题考查了平面向量的数量积运算,属于基础题.6.(4分)方程的解x= 2.【考点】53:函数的零点与方程根的关系.【专题】33:函数思想;34:方程思想;49:综合法;51:函数的性质及应用.【分析】利用对数运算法则以及指数运算法则求解即可.【解答】解:方程,化为:3•2x+5=4x+1,解得(2x+1)(2x﹣4)=0,即2x﹣4=0,解得x=2,故答案为:2.【点评】本题考查对数运算法则的应用,指数运算法则的应用,方程的解法,考查计算能力.7.(5分)已知函数,则函数f(x)的单调递增区间是.【考点】H5:正弦函数的单调性.【专题】35:转化思想;57:三角函数的图像与性质.【分析】根据矩阵的运算可得f(x)=2sinxcosx+cos2x,利用二倍角辅助角化简即可求解f(x)的单调递增区间.【解答】解:由题意,f(x)=2sinxcosx+cos2x=sin2x+cos2x=sin(2x+),令≤2x+≤,k∈Z.可得:≤x≤.函数f(x)的单调递增区间为.故答案为:.【点评】本题主要考查三角函数的图象和性质,二倍角辅助角化简能力.属于基础题.8.(5分)已知α是实系数一元二次方程x2﹣(2m﹣1)x+m2+1=0的一个虚数根,且|α|≤2,则实数m的取值范围是.【考点】&S:实系数多项式虚根成对定理.【专题】34:方程思想;59:不等式的解法及应用;5N:数系的扩充和复数.【分析】α是实系数一元二次方程x2﹣(2m﹣1)x+m2+1=0的一个虚数根,可得也是实系数一元二次方程x2﹣(2m﹣1)x+m2+1=0的一个虚数根,由△<0,=|α|2=m2+1≤4,解得m范围.【解答】解:α是实系数一元二次方程x2﹣(2m﹣1)x+m2+1=0的一个虚数根,则也是实系数一元二次方程x2﹣(2m﹣1)x+m2+1=0的一个虚数根,∴△=[﹣(2m﹣1)]2﹣4(m2+1)<0,解得m.=|α|2=m2+1≤4,解得.则.则实数m的取值范围是.故答案为:.【点评】本题考查了实系数一元二次方程虚数根成对原理及其与判别式的关系,考查了推理能力与计算能力,属于中档题.9.(5分)已知某市A社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是140人.【考点】B3:分层抽样方法.【专题】36:整体思想;4O:定义法;5I:概率与统计.【分析】根据条件求出抽取比例,结合比例关系进行求解即可.【解答】解:抽取比例为750÷50=15,则抽取总人数为(450+750+900)÷15=2100÷15=140人,故答案为:140.【点评】本题主要考查分层抽样的应用,根据条件求出抽取比例是解决本题的关键.10.(5分)将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是.(结果用数值表示)【考点】CB:古典概型及其概率计算公式.【专题】11:计算题;34:方程思想;4O:定义法;5I:概率与统计.【分析】利用n次独立重复试验中事件A恰好发生k次概率计算公式直接求解.【解答】解:将一枚质地均匀的硬币连续抛掷5次,则恰好有3次出现正面向上的概率是:p==.故答案为:.【点评】本题考查概率的求法,考查n次独立重复试验中事件A恰好发生k次概率计算公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.11.(5分)已知数列{a n}是共有k个项的有限数列,且满足,若a1=24,a2=51,a k=0,则k=50.【考点】8H:数列递推式.【专题】11:计算题;34:方程思想;35:转化思想;54:等差数列与等比数列.=a n﹣1﹣变形可得a n+1a n﹣a n﹣1a n=﹣n,据此可得(a3a2【分析】根据题意,将a n+1﹣a2a1)=﹣2,(a4a3﹣a3a2)=﹣3,……a k a k﹣1﹣a k﹣1a k﹣2=﹣(k﹣1),用累加法分析可得a k a k﹣1﹣a1a2=﹣[1+2+3+……(k﹣1)],代入数据变形可得k2﹣k﹣2450=0,解可得k的值,即可得答案.【解答】解:根据题意,数列{a n}满足a n+1=a n﹣1﹣,变形可得:a na n﹣a n﹣1a n=﹣n,+1则有(a3a2﹣a2a1)=﹣2,(a4a3﹣a3a2)=﹣3,(a5a4﹣a4a3)=﹣4,……a k a k﹣1﹣a k﹣1a k﹣2=﹣(k﹣1),相加可得:a k a k﹣1﹣a1a2=﹣[1+2+3+……(k﹣1)],又由a1=24,a2=51,a k=0,则有k2﹣k﹣2450=0,解可得:k=50或﹣49(舍);故k=50;故答案为:50.=a n﹣1﹣的变形.【点评】本题考查数列的递推公式的应用,关键是对a n+112.(5分)已知函数f(x)=ax2+bx+c(0<2a<b)对任意x∈R恒有f(x)≥0成立,则代数式的最小值是3.【考点】3V:二次函数的性质与图象.【专题】51:函数的性质及应用.【分析】由二次函数的性质得,代入化简得:≥,设t=,由0<2a<b得t>2,利用基本不等式的性质就能求得最小值.【解答】解:因为∀x∈R,f(x)=ax2+bx+c≥0恒成立,0<2a<b,所以,得b2≤4ac,又0<2a<b,所以,所以=≥===,设t=,由0<2a<b得,t>2,则≥==[(t﹣1)++6]≥=3,当且仅当时取等号,此时t=4,取最小值是3,故答案为:3.【点评】本题主要考查二次函数的性质,基本不等式的应用,以及换元法,式子的变形是解题的关键和难点,属于难题.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)在空间中,“直线m⊥平面α”是“直线m与平面α内无穷多条直线都垂直”的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】36:整体思想;4O:定义法;5L:简易逻辑.【分析】根据线面垂直的定义,以及充分条件和必要条件的定义进行判断即可.【解答】解:直线m⊥平面α,则直线m与平面α内所有直线,即直线m与平面α内无穷多条直线都垂直成立,若平面α内无穷多条直线都是平行的,则当直线m与平面α内无穷多条直线都垂直时,直线m⊥平面α也不一定成立,即“直线m⊥平面α”是“直线m与平面α内无穷多条直线都垂直”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,结合线面垂直的定义是解决本题的关键.14.(5分)二项式的展开式中,其中是有理项的项数共有()A.4项B.7项C.5项D.6项【考点】DA:二项式定理.【专题】11:计算题;34:方程思想;4A:数学模型法;5P:二项式定理.【分析】写出二项展开式的通项,由为整数求得r值,可得有理项的项数.【解答】解:二项式的展开式的通项为=.∵0≤r≤40,且r∈N,∴当r=0、6、12、18、24、30、36时,∈Z.∴二项式的展开式中,其中是有理项的项数共有7项.故选:B.【点评】本题考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.15.(5分)实数x、y满足线性约束条件,则目标函数w=2x+y﹣3的最大值是()A.0B.1C.﹣2D.3【考点】7C:简单线性规划.【专题】38:对应思想;4R:转化法;59:不等式的解法及应用.【分析】先画出可行域;将目标函数变形;画出目标函数对应的直线;将直线平移由图求出w的最大值即可.【解答】解:画出命题条件的平面区域,如图示:,将w=2x+y﹣3转化为y=﹣2x+w+3,平移直线y=﹣2x,结合图象直线过(3,0)时,w最大,故w max=3,故选:D.【点评】不等式组表示的平面区域、利用图形求二元函数的最值.16.(5分)在给出的下列命题中,是假命题的是()A.设O、A、B、C是同一平面上的四个不同的点,若(m ∈R),则点A、B、C必共线B.若向量是平面α上的两个不平行的向量,则平面α上的任一向量都可以表示为,且表示方法是唯一的C.已知平面向量满足||=r(r>0),且=,则△ABC是等边三角形D.在平面α上的所有向量中,不存在这样的四个互不相等的非零向量,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直【考点】2K:命题的真假判断与应用.【专题】38:对应思想;4O:定义法;5A:平面向量及应用.【分析】对于A,根据共线定理判断A、B、C三点共线即可;对于B,根据平面向量的基本定理,判断命题正确;对于C,根据平面向量的线性表示与数量积运算得出命题正确;对于D,举例说明命题错误.【解答】解:对于命题A,(m∈R),∴﹣=m(﹣),∴=m,且有公共点C,∴则点A、B、C共线,命题A正确;对于B,根据平面向量的基本定理知,向量是一组基底,则平面α上的任一向量,都可表示为,且表示方法唯一,B正确;对于C,平面向量满足||=r(r>0),且=,∴+=﹣,即+=,∴+2•+=,即r2+2r2•cos<,>+r2=r2,∴cos<,>=﹣,∴、的夹角为120°,同理、的夹角也为120°,∴△ABC是等边三角形,C正确;对于D,如=(0,1),=(1,1),=(﹣1,1),=(﹣1,0),满足(+)•(+)=1×(﹣2)+2×1=0,∴(+)⊥(+),D错误.故选:D.【点评】本题利用命题真假的判断考查了平面向量的综合应用问题,是中档题.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.17.(14分)在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC∥AD,BC=1,CD=.(1)画出四棱锥P﹣ABCD的主视图;(2)若PA=BC,求直线PB与平面PCD所成角的大小.(结果用反三角函数值表示)【考点】L7:简单空间图形的三视图;MI:直线与平面所成的角.【专题】11:计算题;31:数形结合;49:综合法;5F:空间位置关系与距离;5G:空间角.【分析】(1)由题意能作出主视图.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出直线PB与平面PCD所成角的大小.【解答】(本题满分14分)本题共有2个小题,第1小题满分(4分),第2小题满分(10分).解(1)在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC∥AD,BC=1,CD=.作出主视图如下:(2)根据题意,可算得AB=1,AD=2.又PA=BC=1,以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,可得,A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1).于是,有.设平面PCD的法向量为,则即令z=2,可得y=1,x=1,故平面PCD的一个法向量为.设直线PB与平面PCD所成角的大小为θ,则.所以直线PB与平面PCD所成角的大小为.【点评】本题考查主视图的作法,考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18.(14分)某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD挖去扇形OBC后构成的).已知OA=10米,OB=x 米(0<x<10),线段BA、线段CD与弧、弧的长度之和为30米,圆心角为θ弧度.(1)求θ关于x的函数解析式;(2)记铭牌的截面面积为y,试问x取何值时,y的值最大?并求出最大值.【考点】5C:根据实际问题选择函数类型.【专题】33:函数思想;49:综合法;51:函数的性质及应用.【分析】(1)根据弧长公式和周长列方程得出θ关于x的函数解析式;(2)根据面积公式求出y关于x的函数值,从而得出y的最大值.【解答】解:(1)根据题意,可算得弧BC=x•θ(m),弧AD=10θ(m).∴2(10﹣x)+x•θ+10θ=30,∴.(2)依据题意,可知,化简得:y=﹣x2+5x+50=.∴当,(m2).答:当米时铭牌的面积最大,且最大面积为平方米.【点评】本题考查了函数解析式的求解,函数最值的计算,属于中档题.19.(14分)已知动点M(x,y)到点F(2,0)的距离为d1,动点M(x,y)到直线x=3的距离为d2,且.(1)求动点M(x,y)的轨迹C的方程;(2)过点F作直线l:y=k(x﹣2)(k≠0)交曲线C于P、Q两点,若△OPQ的面积(O是坐标系原点),求直线l的方程.【考点】KH:直线与圆锥曲线的综合;KK:圆锥曲线的轨迹问题.【专题】11:计算题;34:方程思想;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(1)结合题意求出.通过,求动点M(x,y)的轨迹C的方程.(2)联立方程组,设点P(x1,y1)、Q(x2,y2),利用韦达定理以及弦长公式,结合点O到直线l的距离.求解三角形的面积,推出结果即可.【解答】(本题满分14分)本题共有2个小题,第1小题满分(6分),第2小题满分(8分).解:(1)结合题意,动点M(x,y)到点F(2,0)的距离为d1,动点M(x,y)到直线x=3的距离为d2,可得.又,于是,,化简得.因此,所求动点M(x,y)的轨迹C的方程是.(2)联立方程组得(1+3k2)x2﹣12k2x+12k2﹣6=0.设点P(x1,y1)、Q(x2,y2),则于是,弦,点O到直线l的距离.由,得=,化简得k4﹣2k2+1=0,解得k=±1,且满足△>0,即k=±1都符合题意.因此,所求直线的方程为x﹣y﹣2=0或x+y﹣2=0.【点评】本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法.考查转化思想以及计算能力.20.(16分)已知函数(1)求函数f(x)的反函数f﹣1(x);(2)试问:函数f(x)的图象上是否存在关于坐标原点对称的点,若存在,求出这些点的坐标;若不存在,说明理由;(3)若方程的三个实数根x1、x2、x3满足:x1<x2<x3,且x3﹣x2=2(x2﹣x1),求实数a的值.【考点】4R:反函数;53:函数的零点与方程根的关系;57:函数与方程的综合运用.【专题】33:函数思想;49:综合法;51:函数的性质及应用.【分析】(1)用y表示出x,即可得出反函数;(2)设出对称的两点横坐标坐标,令函数值的和为0求出点的横坐标,从而得出两点坐标;(3)判断f(x)与2的大小,求出x1、x2、x3的值,根据得x3﹣x2=2(x2﹣x1)得出a的值.【解答】解:(1)∵∴当﹣1≤x<0时,f(x)=﹣2x,且0<f(x)≤2.由y=﹣2x,得,互换x与y,可得.当0≤x≤1时,f(x)=x2﹣1,且﹣1≤f(x)≤0.由y=x2﹣1,得,互换x与y,可得.∴(2)函数图象上存在两点关于原点对称.设点A(x0,y0)(0<x0≤1)、B(﹣x0,﹣y0)是函数图象上关于原点对称的点,则f(x0)+f(﹣x0)=0,即,解得,且满足0<x≤1.因此,函数图象上存在点关于原点对称.(3)令f(x)=2,解得x=﹣,①当时,有,原方程可化为﹣4x﹣2ax﹣4=0,解得,令,解得:.②当时,,原方程可化为,化简得(a2+4)x2+4ax=0,解得,又,∴.∴.由x3﹣x2=2(x2﹣x1),得,解得a=﹣(舍)或a=.因此,所求实数.【点评】本题考查了反函数的求解,考查函数的对称性,函数零点的计算,属于中档题.21.(18分)定义:若数列{c n}和{d n}满足,则称数列{d n}是数列{c n}的“伴随数列”.已知数列{b n}是数列{a n}的伴随数列,试解答下列问题:(1)若,,求数列{a n}的通项公式a n;(2)若,为常数,求证:数列是等差数列;(3)若,数列{a n}是等比数列,求a1、b1的数值.【考点】8M:等差数列与等比数列的综合.【专题】32:分类讨论;49:综合法;55:点列、递归数列与数学归纳法.【分析】(1)根据题意,有.由,,即可求解数列{a n}的通项公式.(2)通过逐项递推关系,可得,n∈N*.,n∈N*.即可正数列是首项为、公差为1的等差数列.(3)由题意,求解:.{a n}是等比数列,且a n>0,设公比为r(r >0),则.对其进行讨论,从而求解满足题意的a1、b1的数值.【解答】解:(1)根据题意,有.由,,得,n∈N*.所以,n∈N*.证明:(2)∵,,∴,,n∈N*.∴,n∈N*.∴数列是首项为、公差为1的等差数列.解:(3)由,,由,得.∵{a n}是等比数列,且a n>0,设公比为r(r>0),则.∴当r>1,即,与矛盾.因此,r>1不成立.当0<r<1,即,与矛盾.因此,0<r<1不成立.∴r=1,即数列{a n}是常数列,于是,a n=a1().∴.∵b n>0,∴b1>0,数列{b n}也是等比数列,设公比为q(q>0),有.∴,可化为,n∈N*.∵,∴关于x的一元二次方程有且仅有两个非负实数根.一方面,q n(n∈N*)是方程的根;另一方面,若q≠1(q>0),则无穷多个互不相等的q,q2,q3,q4,…,q n,…都是该二次方程的根.这与该二次方程有且仅有两个非负实数根矛盾!∴q=1,即数列{b n}也是常数列,于是,b n=b1,n∈N*.∴由,得.把,代入,解得.∴.【点评】本题考查等差、等比数列的通项公式和综合能力的运用,考查运算能力,属于中档偏难的题.。

2018年杨浦区高三二模数学Word版(附解析)

2018年杨浦区高三二模数学Word版(附解析)

2018年杨浦区高三二模数学W o r d版(附解析)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN上海市杨浦区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 函数lg 1y x =-的零点是 2. 计算:2lim41n nn →∞=+3. 若(13)n x +的二项展开式中2x 项的系数是54,则n =4. 掷一颗均匀的骰子,出现奇数点的概率为5. 若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为6. 若复数z 满足1z =,则z i -的最大值是7. 若一个圆锥的主视图(如图所示)是边长为3、3、2则该圆锥的体积是8. 若双曲线2221613x y p-=(0)p >的左焦点在抛物线22y px =的准线上,则p =9. 若3sin()cos cos()sin 5x y x x y x ---=,则tan 2y 的值为10. 若{}n a 为等比数列,0n a >,且20182a =,则2017201912a a +的最小值为 11. 在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,2a =,2sin sin A C =.若B 为钝角,1cos24C =-,则ABC ∆的面积为12. 已知非零向量OP 、OQ 不共线,设111mOM OP OQ m m =+++,定义点集{|}||||FP FM FQ FMA F FP FQ ⋅⋅==. 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ上时,不等式12||||F F k PQ ≤恒成立,则实数k 的最小值为二. 选择题(本大题共4题,每题5分,共20分)13. 已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为( )A. 4πB. 2πC. 2π- D. 3π-14. 设A 、B 是非空集合,定义:{|A B x x A B ⨯=∈且x 已知{|A x y ==,{|1}B x x =>,则A B ⨯等于( ) A.[0,1](2,)+∞ B. [0,1)(2,)+∞ C.[0,1] D. [0,2]15. 已知22110a b +≠,22220a b +≠,则“11220a b a b =”是“直线1111:0l a x b y c ++=与 2222:0l a x b y c ++=平行”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要 16. 已知长方体的表面积为452,棱长的总和为24. 则长方体的体对角线与棱所成角的最大 值为( )A. 1arccos 3B. arccos 3C.D.三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用,据市场分析,每辆单车的营运累计利润y (单位:元)与营运天数x ()x ∈*N 满足函数关系式21608002y x x =-+-.(1)要使营运累计利润高于800元,求营运天数的取值范围; (2)每辆单车营运多少天时,才能使每天的平均营运利润yx的值最大?18. 如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱AB 上的动点.(1)求证:11DA ED ⊥;(2)若直线1DA 与平面1CED 所成的角是45,请你确定点E 的位置,并证明你的结论.19. 已知数列{}n a ,其前n 项和为n S ,满足12a =,1n n n S na a λμ-=+,其中2n ≥,n ∈*N ,λ,μ∈R .(1)若0λ=,4μ=,12n n n b a a +=-(n ∈*N ),求数列{}n b 的前n 项和; (2)若23a =,且32λμ+=,求证:数列{}n a 是等差数列.20. 已知椭圆222:9x y m Ω+=(0)m >,直线l 不过原点O 且不平行于坐标轴,l 与Ω有两个交点A 、B ,线段AB 的中点为M .(1)若3m =,点K 在椭圆Ω上,1F 、2F 分别为椭圆的两个焦点,求12KF KF ⋅的范围;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值;(3)若l 过点(,)3mm ,射线OM 与Ω交于点P ,四边形OAPB 能否为平行四边形若能,求此时l 的斜率;若不能,说明理由.21. 记函数()f x 的定义域为D . 如果存在实数a 、b 使得()()f a x f a x b -++=对任意满足a x D -∈且a x D +∈的x 恒成立,则称()f x 为ψ函数.(1)设函数1()1f x x =-,试判断()f x 是否为ψ函数,并说明理由; (2)设函数1()2x g x t=+,其中常数0t ≠,证明:()g x 是ψ函数;(3)若()h x 是定义在R 上的ψ函数,且函数()h x 的图象关于直线x m =(m 为常数)对称,试判断()h x 是否为周期函数?并证明你的结论.上海市杨浦区2018届高三二模数学试卷2018.04一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 函数lg 1y x =-的零点是 【解析】lg 1010x x -=⇒=2. 计算:2lim41n nn →∞=+【解析】123. 若(13)n x +的二项展开式中2x 项的系数是54,则n =【解析】223544nC n =⇒=4. 掷一颗均匀的骰子,出现奇数点的概率为【解析】125. 若x 、y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则目标函数2f x y =+的最大值为【解析】三个交点为(1,1)、(0,0)、(2,0),所以最大值为3 6. 若复数z 满足1z =,则z i -的最大值是【解析】结合几何意义,单位圆上的点到(0,1)7. 若一个圆锥的主视图(如图所示)是边长为3、3、2则该圆锥的体积是【解析】13V π=⋅⋅=8. 若双曲线2221613x y p-=(0)p >的左焦点在抛物线22y px =的准线上,则p =【解析】2234164p p p +=⇒=9. 若3sin()cos cos()sin 5x y x x y x ---=,则tan 2y 的值为【解析】3sin 5y =-,3tan 4y =±,24tan 27y =±10. 若{}n a 为等比数列,0n a >,且2018a =2017201912a a +的最小值为 【解析】20192017220172019201820182124a a a a a ++=≥= 11. 在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,2a =,2sin sin A C =.若B 为钝角,1cos24C =-,则ABC ∆的面积为【解析】2a =,4c =,21cos212sin sin C C C =-=-⇒=cos C =,sin A =cos A =sin sin()B A C =+=,1242S =⨯⨯=12. 已知非零向量OP 、OQ 不共线,设111m OM OP OQ m m =+++,定义点集 {|}||||FP FM FQ FMA F FP FQ ⋅⋅==. 若对于任意的3m ≥,当1F ,2F A ∈且不在直线PQ上时,不等式12||||F F k PQ ≤恒成立,则实数k 的最小值为【解析】建系,不妨设(1,0)P -,(1,0)Q ,∴1(,0)1m M m -+,3m ≥,11[,1)12m m -∈+, ∴3FP MP FQ MQ =≥,设(,)F x y ,∴2222(1)9(1)x y x y ++≥-+,即2259()416x y -+≤,点F 在此圆内,∴12max 33||242F F =⨯=,33224k k ≤⇒≥二. 选择题(本大题共4题,每题5分,共20分)13. 已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示,则ϕ的值为( )A. 4πB. 2π C. 2π- D. 3π-【解析】T π=,2ω=,()122f ππϕ=⇒=-,选C 14. 设A 、B 是非空集合,定义:{|A B x x A B ⨯=∈且}x A B ∉.已知{|A x y =,{|1}B x x =>,则A B ⨯等于( ) A.[0,1](2,)+∞ B. [0,1)(2,)+∞ C.[0,1] D. [0,2]【解析】[0,2]A =,[0,)A B =+∞,(1,2]A B =,选A 15. 已知22110a b +≠,22220a b +≠,则“11220a b a b =”是“直线1111:0l a x b y c ++=与 2222:0l a x b y c ++=平行”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要 【解析】11220a b a b =推出直线平行或重合,选B 16. 已知长方体的表面积为452,棱长的总和为24. 则长方体的体对角线与棱所成角的最大 值为( )A. 1arccos 3B. arccos 3C.D.【解析】设三条棱a b c ≤≤,∴454ab ac bc ++=,6a b c ++=,222272a b c ++=, 222224522[(6)]4a b c a bc a a a ++≥+=+--,整理得2430a a -+≤,∴12a ≤≤,∴最短棱长为1,cos 9θ==,选D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用,据市场分析,每辆单车的营运累计利润y (单位:元)与营运天数x ()x ∈*N 满足函数关系式21608002y x x =-+-.(1)要使营运累计利润高于800元,求营运天数的取值范围; (2)每辆单车营运多少天时,才能使每天的平均营运利润yx的值最大?【解析】(1)要使营运累计收入高于800元,令80080060212>-+-x x , ……2分 解得8040<<x . ………………………………………5分 所以营运天数的取值范围为40到80天之间 .………………………………7分(2)6080021+--=x x x y 6020≤-= …………………………………9分 当且仅当18002x x=时等号成立,解得400x = (12)分所以每辆单车营运400天时,才能使每天的平均营运利润最大,最大为20元每天 .…14分18. 如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱AB 上的动点. (1)求证:11DA ED ⊥;(2)若直线1DA 与平面1CED 所成的角是45,请你确定点E 的位置,并证明你的结论.【解析】以D 为坐标原点,建立如图所示的坐标系,则(0,0,0)D ,(1,0,0)A ,(1,1,0)B ,C (0,1,0) ,D 1(0,1,2) ,A 1(1,0,1),设(1,,0)E m (01)m ≤≤ (1)证明:1(1,0,1)DA =,1(1,,1)ED m =--………2分 111(1)0()110DA ED m ⋅=⨯-+⨯-+⨯=………4分 所以DA 1⊥ED 1. ……………6分另解:1ADA AE 平面⊥,所以D A AE 1⊥. ……………2分 又11AD D A ⊥,所以AE D D A 11平面⊥. ……………………………4分 所以11DA ED ⊥……………………………6分(2)以A 为原点,AB 为x 轴、AD 为y 轴、AA 1为z 轴建立空间直角坐标系…………7分所以)1,0,0(1A 、)0,1,0(D 、)0,1,1(C 、)1,1,0(1D ,设t AE =,则)0,0,(t E ………8分 设平面CED 1的法向量为),,(z y x n =,由⎪⎩⎪⎨⎧=⋅=⋅01CD 可得⎩⎨⎧=--=+-0)1(0y x t z x ,所以⎩⎨⎧-==xt y xz )1(,因此平面CED 1的一个法向量为)1,1,1(-t ………10分由直线1DA 与平面1CED 所成的角是45,可得||||45sin 11n DA =︒……11分 可得1)1(12|11|222+-+⋅+-=t t ,解得21=t ………13分 由于AB =1,所以直线1DA 与平面1CED 所成的角是45时,点E 在线段AB 中点处. …14分19. 已知数列{}n a ,其前n 项和为n S ,满足12a =,1n n n S na a λμ-=+,其中2n ≥,n ∈*N ,λ,μ∈R .(1)若0λ=,4μ=,12n n n b a a +=-(n ∈*N ),求数列{}n b 的前n 项和; (2)若23a =,且32λμ+=,求证:数列{}n a 是等差数列.【解析】(1)14-=n n a S ,所以n n a S 41=+.两式相减得1144-+-=-n n n n a a S S . 即1144-+-=n n n a a a………2分所以)2(2211-+-=-n n n n a a a a ,即12-=n n b b ,………3分又8412==a S ,所以6122=-=a S a ,得22121=-=a a b ………4分 因此数列{}n b 为以2为首项,2为公比的等比数列.n n b 2=,前n 项和为221-+n …7分(2)当n = 2时,1222a a S μλ+=,所以μλ2623+=+. 又32λμ+=,可以解得12λ=,1μ=………9分所以12-+=n n n a a n S ,n n n a a n S ++=++1121,两式相减得111221-++-+-+=n n n n n a a a na n a 即112221-++-=-n n n a a n a n . 猜想1+=n a n ,下面用数学归纳法证明: (10)分① 当n = 1或2时,1121+==a ,1232+==a ,猜想成立; ② 假设当k n ≤(2,*≥∈k N k )时,1k a k =+ 成立 则当1+=k n 时,2))1(22(12)22(1211+=++--=+--=-+k k k k k a a k k a k k k 猜想成立. 由①、②可知,对任意正整数n ,1+=n a n .………13分所以11=-+n n a a 为常数,所以数列{}n a 是等差数列.………14分另解:若23a =,由12212a a a a +=+λμ,得562=+λμ,又32+=λμ,解得112==,λμ. ………9分 由12a =,23a =,12λ= ,1μ=,代入1n n n S na a λμ-=+得34a =,所以1a ,2a ,3a 成等差数列,由12n n n n S a a -=+,得1112n n n n S a a +++=+, 两式相减得:111122n n n n n n n a a a a a ++-+=-+-,即11(1)(2)20n n n n a n a a +-----= 所以 21(1)20n n n na n a a ++---= ………11分相减得:2112(1)(2)220n n n n n na n a n a a a ++---+--+=所以2111(2)2(2)0n n n n n n n a a a a a a +++--++-+= 所以221111-222(2)(2)(2)(1)n n n n n n n n n a a a a a a a a a n n n +++---+=--+=-+- 1321(2)(2)(1)2n a a a n n --==-+-, 因为12320a a a -+=,所以2120n n n a a a ++-+=,即数列{}n a 是等差数列.………14分20. 已知椭圆222:9x y m Ω+=(0)m >,直线l 不过原点O 且不平行于坐标轴,l 与Ω有两个交点A 、B ,线段AB 的中点为M . (1)若3m =,点K 在椭圆Ω上,1F 、2F 分别为椭圆的两个焦点,求12KF KF ⋅的范围;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值;(3)若l 过点(,)3m m ,射线OM 与Ω交于点P ,四边形OAPB 能否为平行四边形若能,求此时l 的斜率;若不能,说明理由.【解析】(1)椭圆99:22=+Ωy x ,两个焦点)22,0(1F 、)22,0(2-F ,设),(y x K 所以8)22,()22,(2221-+=---⋅--=⋅y x y x y x KF KF由于9922=+y x ,所以2299x y -=,188)99(22221+-=--+=⋅x x x KF …3分由椭圆性质可知11≤≤-x ,所以]1,7[21-∈⋅KF KF……………5分 (2)设直线b kx y l +=:(0,0≠≠k b ),),(11y x A ,),(22y x B ,),(00y x M ,所以21x x 、为方程222)(9m b kx x =++的两根,化简得02)9(2222=-+++m b kbx x k , 所以922210+-=+=k kb x x x ,99922200+=++-=+=k b b k b k b kx y . ……………8分 kx y k OM 900-==,所以直线OM 的斜率与l 的斜率的乘积等于9-为定值. …………10分(3)∵直线l 过点(,)3m m ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠.设),(p p y x P 设直线m m x k y l +-=)3(:(0,0≠≠k m ),即m mk kx y +-=3. 由(2)的结论可知x ky OM 9:-=,代入椭圆方程2229m y x =+得8192222+=k k m x p …12分 由(2)的过程得中点)9)3(9,9)3((22+-+--k km m k k mk m M , ……………14分 若四边形OAPB 为平行四边形,那么M 也是OP 的中点,所以p x x =02, 得819)93(4222222+=+-k k m k mk mk ,解得74±=k 所以当l的斜率为44OAPB 为平行四边形. ……………16分21. 记函数()f x 的定义域为D . 如果存在实数a 、b 使得()()f a x f a x b -++=对任意满足a x D -∈且a x D +∈的x 恒成立,则称()f x 为ψ函数.(1)设函数1()1f x x=-,试判断()f x 是否为ψ函数,并说明理由; (2)设函数1()2x g x t =+,其中常数0t ≠,证明:()g x 是ψ函数; (3)若()h x 是定义在R 上的ψ函数,且函数()h x 的图象关于直线x m =(m 为常数)对称,试判断()h x 是否为周期函数?并证明你的结论.【解析】(1)1()1f x x=-是ψ函数 . ……1分理由如下:1()1f x x=-的定义域为{|0}x x ≠, 只需证明存在实数a ,b 使得()()f a x f a x b -++=对任意x a ≠±恒成立. 由()()f a x f a x b -++=,得112b a x a x +-=-+,即2()()a x a x b a x a x ++-+=-+. 所以22(2)()2b a x a +-=对任意x a ≠±恒成立. 即2,0.b a =-= 从而存在0,2a b ==-,使()()f a x f a x b -++=对任意x a ≠±恒成立. 所以1()1f x x=-是ψ函数. …………4分 (2)记()g x 的定义域为D ,只需证明存在实数a ,b 使得当a x D -∈且a x D +∈时,()()g a x g a x b -++=恒成立,即1122a x a x b t t -++=++恒成立.所以22(2)(2)a x a x a x a x t t b t t +-+-+++=++, ……5分 化简得,22(1)(22)(2)2a x a x a bt b t t +--+=+-.所以10bt -=,22(2)20a b t t +-=. 因为0t ≠,可得1b t=,2log ||a t =, 即存在实数a ,b 满足条件,从而1()2x g x t=+是ψ函数. …………10分 (3)函数)(x h 的图象关于直线x m =(m 为常数)对称, 所以)()(x m h x m h +=- (1), ……………12分 又因为b x a h x a h =++-)()( (2),所以当a m ≠时,)]2([)22(a m x m h a m x h -++=-+由(1) )]([)2()]2([x a a h x a h a m x m h -+=-=-+-=由(2) )()]([x h b x a a h b -=---= (3)所以)22(]22)22[()44(a m x h b a m a m x h a m x h -+-=-+-+=-+ (取a m x t 22-+=由(3)得)再利用(3)式,)()]([)44(x h x h b b a m x h =--=-+.所以()f x 为周期函数,其一个周期为a m 44-. ……………15分 当a m =时,即)()(x a h x a h +=-,又)()(x a h b x a h +-=-, 所以2)(b x a h =+为常数. 所以函数)(x h 为常数函数, 2)()1(b x h x h ==+,)(x h 是一个周期函数. ……………17分 综上,函数)(x h 为周期函数 ……………18分(其他解法参考评分标准,酌情给分)。

2018届静安区高三二模数学Word版.docx

2018届静安区高三二模数学Word版.docx

上海市静安区2018 届高三二模数学试卷一 . 填空题(本大题共12 题, 1-6 每题 4 分, 7-12 每题 5 分,共 54 分)1.已知集合 A {1,3,5,7,9} , B {0,1,2,3,4,5} ,则图中阴影部分集合用列举法表示的结果是2. 若复数z满足z(1i ) 2i ( i 是虚数单位),则 | z |3.函数 y lg( x 2)的定义域为4.在从 4 个字母a、b、c、d中任意选出 2 个不同字母的试验中,其中含有字母 d 事件的概率是5.下图中的三个直角三角形是一个体积为20 cm3的几何体的三视图,则h6.如上右图,以长方体 ABCD A1 B1 C1 D1的顶点D为坐标原点,过 D 的三条棱所在的直线uuur uuur为坐标轴,建立空间直角坐标系,若DB1的坐标为 (4,3,2) ,则BD1的坐标为7.方程 cos2 x 3的解集为28.已知抛物线顶点在坐标原点,焦点在y 轴上,抛物线上一点 M ( a, 4) (a0) 到焦点F的距离为5,则该抛物线的标准方程为9.秦九韶是我国南宋时期数学家,他在所着的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,右边的流程图是秦九韶算法的一个实例. 若输入n、x 的值分别为4、 2,则输出q 的值为(在算法语言中用“ ”表示乘法运算符号,例如 5 2 10)10. 已知等比数列{ a n}的前n项和为S n(n N *),且S619, a4 a215,则 a3的S388值为11. 在直角三角形 ABC 中,A, AB 3, AC4 , E 为三角形 ABC 内一点,2且 AEuuuruuur uuur4 的最大值等于2 ,若 AEAB AC ,则 3212. 已知集合 A {( x, y ) | ( xy)2x y 20} ,B {( x, y) |( x2a)2 ( y a 1)2a 2a} ,若 A I B,则实数 a 取值范围为2二 . 选择题(本大题共 4 题,每题 5 分,共 20 分)13. 能反映一组数据的离散程度的是()A. 众数B. 平均数C. 中位数D. 方差14. 若实系数一元二次方程 z 2 zm 0 有两虚数根,,且 ||3 ,那么实数 m的值是()5 B. 1C.1D.5A.2215. 函数 f (x) Asin( x) ( A 0, 0) 的部分图像如图所示,则f ( ) 的值为( )3A.23 C.6 D. 0B.22 216. 已知函数 f ( x) x 3x 10 ,实数 x 1 、x 2 、x 3 满足 x 1 x 2 0 ,x 2 x 30,x 3 x 1 0 ,则 f (x 1 )f ( x 2 )f ( x 3 ) 的值()A. 一定大于 30B. 一定小于 30C. 等于 30D. 大于 30、小于 30 都有可能三 . 解答题(本大题共 5 题,共 14+14+14+16+18=76 分)17. 某峡谷中一种昆虫的密度是时间t 的连续函数(即函数图像不间断). 昆虫密度 C 是指1000(cos( t4 ) 2)2 990, 8t 16每平方米的昆虫数量,已知函数C (t)2,m,0 t或t248 16这里的 t 是从午夜开始的小时数, m 是实常数, m C (8).(1)求 m 的值;( 2)求出昆虫密度的最小值并指出出现最小值的时刻.18. 已知椭圆的中心在坐标原点,长轴在x 轴上,长轴长是短轴长的 2 倍,两焦点分别为F1和 F2,椭圆上一点到F1和F2的距离之和为12.R )的圆心为A k.圆 A k: x2y 22kx 4 y21 0( k(1)求△A k F1 F2的面积;.(2)若椭圆上所有点都在一个圆内,则称圆包围这个椭圆问:是否存在实数k 使得圆A k包围椭圆请说明理由.19. 如图,四棱锥P ABCD 的底面ABCD 是菱形,AC 与BD交于点O ,OP底面ABCD ,点 M为 PC 中点,AC 2 , BD 1 , OP 2 .(1)求异面直线AP与BM所成角的余弦值;(2)求平面ABM与平面PAC所成锐二面角的余弦值 .20. 已知数列{ a n }中,a1 a (a R, a 1)2, a n2a n 111n n(n1), n 2 , n N *.又数列{b n }满足:b n a n1n1, n N *.(1)求证:数列{ b n } 是等比数列;(2)若数列{ a n }是单调递增数列,求实数 a 的取值范围;(3)若数列{ b n }的各项皆为正数,c n log1 b n,设T n是数列{ c n } 的前 n 和,问:是否存2在整数 a ,使得数列{T n }是单调递减数列若存在,求出整数 a ;若不存在,请说明理由.21. 设函数f(x)|2x7 |ax1(a为实数).(1)若a1,解不等式 f (x)0 ;(2)若当x0时,关于 x 的不等式 f (x) 1 成立,求a的取值范围;1x(3)设g( x)2x1g( x) 成立,求a的取值范围.a x,若存在 x 使不等式 f (x)1参考答案一 . 填空1. {0,2,4}2.23. [ 1,) 1 5. 44.26. ( 4,3,2)7. { x | x k5 ,k Z}8. x 24y129. 5010. 911. 112. [19109 ,0]414二 . 13. D14. A15. C16. B三 . 解答17. 解( 1) m C (8)=1000(cos0+2) 2 990 8010 ;⋯⋯ 4 分(2)当 cos((t 8))1 , C 达到最小 ,得2(t 8)(2k+1) ,kZ ,⋯⋯ 8 分2又 t [8,16] ,解得 t 10或 14.所以在 10: 00 或者 14: 00 ,昆虫密度达到最小10. ⋯⋯ 14 分18. 解:( 1) 方程 :x 2 y 2 1(a b 0),⋯⋯ 1 分a2b2由已知有 2a12, a2b ,⋯⋯2分所以 方程 :x 2y 2 1 ,⋯⋯3 分369心 A k ( k, 2)⋯⋯ 5 分所以,△A k F 1F 2 的面 S A k F 1F 21 F 1 F2 yA K1 6 3 26 3⋯⋯ 6 分222 )当 k 0 ,将 点(6 0)代入 方程得:(,62 02 12k 0 21 1512k 0 ,可知 点(6 , 0)在 外;⋯⋯ 10 分当 k 0 , (6)2 02 12k 0 2115 12k0 ,可知 点(-6, 0)在 外;所以,不kkΓ取何 , A都不可能包 .⋯⋯ 14 分19. 解:( 1)因 ABCD 是菱形,所以 AC BD .又 OP 底面 ABCD ,以 O 原点,直 OA, OB,OP分 x , y , z ,建立如 所示空 直角坐 系.⋯⋯ 1 分A(1,0,0) , B(0, 1,0) , P(0,0,2) , C ( 1,0,0) , M (1,0,1) .2 2uuur (uuuur ( 1 1 ,1) , uuur uuuur 5 所以 AP 1,0, 2) , BM 2 ,AP BM , 22uuur 5 uuuur|6 .| AP |, | BM ⋯⋯3分2 uuuuruuur uuuuruuur530cosAP BMAP, BMuuur uuuur56.| AP || BM |6故异面直 AP 与 BM 所成角的余弦30⋯⋯ 6 分uuuruuuur6( 1, 1( 1 , 1,1) .(2) AB,0) , BM2 r 2 2平面 ABM 的一个法向量( x, y, z) ,n r uuurx1 yn AB22 ,得 y4 , z 3 .,令 xruuuur ,得11n BMx y z 02 2得平面 ABM 的一个法向量 r (2, 4,3)n. ⋯⋯9分又平面 PAC 的一个法向量uuur(0, 1,0) ,OB⋯⋯ 10分ruuur2 r uuur r uuurr uuur1n OB4 4 所以n OB2 , | n |29 , |OB |. cosn,OBruuur2929 .2| n || OB | 29故平面 ABM 与平面 PAC 所成 二面角的余弦4 29 .⋯⋯ 14 分2920. 解:( 1) a n12a n 1 11 1 2a n 1111n n(n 1) n 11n 1n n n 1 n 12 1⋯⋯ 2 分即 b n2⋯⋯ 3 分2a n 12( a n 1)bn 1nn又 b 1 a 11 1 ,由 a 1a2 , b 122所以 { b n } 是以 b 11 a2首 , 2 公比的等比数列. ⋯⋯ 4 分(2) b n(a1 ) 2n 1 ,所以 a n a 12n 11 ⋯⋯ 6 分22n 1若 { a n } 是 增数列, 于n N * , a n 1 a n 0 恒成立 ⋯⋯ 7 分an 1a na1 2n 1 a1 2n 112 n 2 2n 1= a1 2n 1 n 1 1 = a 1 2n 1(n 12)⋯⋯ 8 分2 1 n221)(n由 a1 2n 110 ,得 a112) 于 n N * 恒成立, 2(n 1)(n 2)22n 1 (n 1)(n∵1增,且1 0 , lim[1 ] 0 , n 1n 1n 1 2 (n 1)(n 2)2 ( n 1)(n 2) n 2(n 1)(n 2)所以 a1 0 ,又 a1 , a1⋯⋯ 10 分2 2 .21 (3)因 数列 { b n } 的各 皆 正数,所以a0 ,21. c n1)2 n 1 ]1) ,alog 1 [( a n 1 log 2 (a ⋯⋯ 13 分2 22 2 若数列 {T n } 是 减数列, T 2 T 1 ,即2log 2 ( a 1 1 log 2 (a 1 1 ) 11 1 ) ),log2 (a 2,即 a ,12 22 2 所以a 0 .不存在整数 a ,使得数列 { T n } 是 减数列. ⋯⋯ 16 分 2 21. 解:( 1)由 f ( x) 0 得 2 x 7 x 1 ,⋯⋯ 1 分解不等式得x | x8或x 6⋯⋯ 4 分3(利用 像求解也可)x 0 解得 0 x 1 .由 f ( x)1得 | 2x 7 | ax 0 ,(2)由1 x当 0 x 1 , 不等式即(a 2) x 7 0 ;⋯⋯ 5 分当 a=2 ,符合 条件; ⋯⋯ 6 分下面 a 2 的情形,当 a 2 ,符合 要求;⋯⋯ 7 分当 a2 , x7 ,由 意得 7 1,解得 2 a5;a 2 a2上 ,得 数a 的取 范a | a 5⋯⋯ 10 分2x 11 a(x 1),(3)由 g( x)=2 x⋯⋯ 12 分a x1代入 f (x) g( x) 得 | 2x 7 | 2 | x 1| 1a ,令 h(x)| 2x 7 | 2 | x 1| 1 ,6, x 1h( x)4x 10,1x 7 ,4 h( 7) h( x) h(1) 6 ,2 24, x72∴ h( x) min4⋯⋯ 15 分若存在 x 使不等式 f ( x) g( x) 成立, h(x)min a,即 a 4 . ⋯⋯ 18 分。

2018年上海市徐汇区高考数学二模试卷含详解

2018年上海市徐汇区高考数学二模试卷含详解

2018年上海市徐汇区高考数学二模试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)已知全集U=R,集合A={x|x2﹣2x﹣3>0},则∁U A=.2.(4分)在的二项展开式中,常数项是.3.(4分)函数f(x)=lg(3x﹣2x)的定义域为.4.(4分)已知抛物线x2=ay的准线方程是,则a=.5.(4分)若一个球的体积为,则该球的表面积为.6.(4分)已知实数x,y满足,则目标函数z=x﹣y的最小值为.7.(5分)函数f(x)=的最小正周期是.8.(5分)若一圆锥的底面半径为3,体积是12π,则该圆锥的侧面积等于.9.(5分)将两颗质地均匀的骰子抛掷一次,记第一颗骰子出现的点数是m,记第二颗骰子出现的点数是n,向量,向量,则向量的概率是.10.(5分)已知直线l1:mx﹣y=0,l2:x+my﹣m﹣2=0.当m在实数范围内变化时,l1与l2的交点P恒在一个定圆上,则定圆方程是.11.(5分)若函数的最大值和最小值分别为M、m,则函数g(x)=(M+m)x+sin[(M+m)x﹣1]图象的一个对称中心是.12.(5分)已知向量的夹角为锐角,且满足|、|,若对任意的(x,y)∈,都有|x+y|≤1成立,则的最小值为.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)在四边形ABCD中,=,且•=0,则四边形ABCD()A.矩形B.菱形C.直角梯形D.等腰梯形14.(5分)若无穷等比数列{a n}的前n项和为S n,首项为1,公比为,且,(n∈N*),则复数(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限15.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“∠C=90°”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件16.(5分)如图,圆C分别与x轴正半轴,y轴正半轴相切于点A,B,过劣弧上一点T作圆C的切线,分别交x轴正半轴,y轴正半轴于点M,N,若点Q (2,1)是切线上一点,则△MON周长的最小值为()A.10B.8C.D.12三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)如图在长方体ABCD﹣A1B1C1D1中,AB=2,AD=4,,点M 为AB的中点,点N为BC的中点.(1)求长方体ABCD﹣A1B1C1D1的体积;(2)求异面直线A1M与B1N所成角的大小(用反三角函数表示).18.(14分)如图:某快递小哥从A地出发,沿小路AB→BC以平均时速20公里/小时,送快件到C处,已知BD=10(公里),∠DCB=45°,∠CDB=30°,△ABD 是等腰三角形,∠ABD=120°.(1)试问,快递小哥能否在50分钟内将快件送到C处?(2)快递小哥出发15分钟后,快递公司发现快件有重大问题,由于通讯不畅,公司只能派车沿大路AD→DC追赶,若汽车平均时速60公里/小时,问,汽车能否先到达C处?19.(14分)已知函数f(x)=x2﹣3tx+1,其定义域为[0,3]∪[12,15],(1)当t=2时,求函数y=f(x)的反函数;(2)如果函数y=f(x)在其定义域内有反函数,求实数t的取值范围.20.(16分)如图,A,B是椭圆长轴的两个端点,M,N是椭圆上与A,B均不重合的相异两点,设直线AM,BN,AN的斜率分别是k1,k2,k3.(1)求k2•k3的值;(2)若直线MN过点,求证:;(3)设直线MN与x轴的交点为(t,0)(t为常数且t≠0),试探究直线AM与直线BN的交点Q是否落在某条定直线上?若是,请求出该定直线的方程;若不是,请说明理由.21.(18分)已知数列{a n}的前n项和A n满足,且a1=1,数列{b n}满足b n+2﹣2b n+1+b n=0(n∈N*),b3=2,其前9项和为36.(1)求数列{a n}和{b n}的通项公式;(2)当n为奇数时,将a n放在b n的前面一项的位置上;当n为偶数时,将b n 放在a n前面一项的位置上,可以得到一个新的数列:a1,b1,b2,a2,a3,b3,b4,a4,a5,b5,…,求该数列的前n项和S n;(3)设c n=,对于任意给定的正整数k(k≥2),是否存在正整数l,m(k <l<m),使得c k,c l,c m成等差数列?若存在,求出l,m(用k表示);若不存在,请说明理由.2018年上海市徐汇区高考数学二模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)已知全集U=R,集合A={x|x2﹣2x﹣3>0},则∁U A=[﹣1,3] .【考点】1D:并集及其运算.【专题】59:不等式的解法及应用.【分析】由题意求出集合A,然后直接写出它的补集即可.【解答】解:全集U=R,集合A={x|x2﹣2x﹣3>0}={x|x<﹣1或x>3},所以∁U A={x|﹣1≤x≤3},即∁U A=[﹣1,3].故答案为:[﹣1,3].【点评】本题考查集合的基本运算,补集的求法,考查计算能力.2.(4分)在的二项展开式中,常数项是20.【考点】DA:二项式定理.【专题】11:计算题;38:对应思想;4A:数学模型法;5P:二项式定理.【分析】写出二项展开式的通项,由x的指数为0求得r值,则答案可求.【解答】解:由.由6﹣2r=0,得r=3.∴常数项是.故答案为:20.【点评】本题考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.3.(4分)函数f(x)=lg(3x﹣2x)的定义域为(0,+∞).【考点】33:函数的定义域及其求法.【专题】35:转化思想;4O:定义法;51:函数的性质及应用.【分析】根据函数f(x)的解析式,列出使解析式有意义的不等式,求出解集即可.【解答】解:函数f(x)=lg(3x﹣2x),∴3x﹣2x>0,∴3x>2x,∴>1,∴f(x)的定义域为(0,+∞).故答案为:(0,+∞).【点评】本题考查了求函数定义域的应用问题,是基础题.4.(4分)已知抛物线x2=ay的准线方程是,则a=1.【考点】K8:抛物线的性质.【专题】11:计算题;34:方程思想;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】根据题意,由抛物线的标准方程求出其准线方程,结合题意可得﹣=﹣,解可得a的值,即可得答案.【解答】解:根据题意,抛物线的方程为:x2=ay,则其准线方程为y=﹣,又由抛物线x2=ay的准线方程是,则有﹣=﹣,解可得a=1;故答案为:1【点评】本题考查抛物线的标准方程以及准线方程的求法,5.(4分)若一个球的体积为,则该球的表面积为16π.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由球的体积,由球的体积公式能求出这个球的半径,再由球的表面积的计算公式能求出结果.【解答】解:一个球的体积V=π×r3=,设这个球的半径r=2,则4πr2=16π,故答案为:16π.【点评】本题考查球的体积和表面积的应用,解题时要认真审题,仔细解答.6.(4分)已知实数x,y满足,则目标函数z=x﹣y的最小值为﹣1.【考点】7C:简单线性规划.【专题】11:计算题;38:对应思想;44:数形结合法;59:不等式的解法及应用.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域,化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过点A(0,1)时,直线在y轴上的截距最大,z有最小值为﹣1.故答案为:﹣1.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.7.(5分)函数f(x)=的最小正周期是π.【考点】H1:三角函数的周期性.【专题】35:转化思想;49:综合法;57:三角函数的图像与性质.【分析】根据行列式的运算化简函数的解析式,再利用正弦函数的周期性,得出结论.【解答】解:函数f(x)==(sinx+cosx)2+1=2+sin2x,故它的最小正周期为=π,故答案为:π.【点评】本题主要考查行列式的运算,正弦函数的周期性,属于基础题.8.(5分)若一圆锥的底面半径为3,体积是12π,则该圆锥的侧面积等于15π.【考点】LE:棱柱、棱锥、棱台的侧面积和表面积.【专题】11:计算题;34:方程思想;49:综合法;5Q:立体几何.【分析】首先根据圆锥的体积求出圆锥的高度,然后求出母线长度,根据侧面积公式解答.【解答】解:由已知得到圆锥的体积12π=,解得h=4,所以圆锥的母线长度为=5,所以圆锥的侧面积为=15π;故答案为:15π.【点评】本题考查了圆锥的体积和侧面积公式的运用;属于基础题.9.(5分)将两颗质地均匀的骰子抛掷一次,记第一颗骰子出现的点数是m,记第二颗骰子出现的点数是n,向量,向量,则向量的概率是.【考点】9O:平面向量数量积的性质及其运算;CC:列举法计算基本事件数及事件发生的概率.【专题】11:计算题;38:对应思想;4O:定义法;5I:概率与统计.【分析】易得总的基本事件有36种,由向量垂直可得m﹣n=0,共6种,由概率公式可得.【解答】解:将一颗质地均匀的骰子先后抛掷2次出现的点数情况共6×6=36种,由,向量,由于向量,所以m﹣2+2﹣n=0,即m﹣n=0,上述满足m﹣n=0的有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)共6种,故所求概率为P==故答案为:【点评】本题考查古典概型及其概率公式和向量垂直的条件,属基础题.10.(5分)已知直线l1:mx﹣y=0,l2:x+my﹣m﹣2=0.当m在实数范围内变化时,l1与l2的交点P恒在一个定圆上,则定圆方程是(x﹣1)2+(y﹣)2=.【考点】J2:圆的一般方程.【专题】35:转化思想;49:综合法;5B:直线与圆.【分析】联立两条直线方程,消去m,即得到l1和l2的交点P的方程,判断对m ∈R,l1与l2的交点P在一个定圆上.【解答】解:如图所示:l1:mx﹣y=0,过定点O(0,0),k=m;l2:x+my﹣m﹣2=0,m(y﹣1)+x﹣2=0,过定点A(2,1),k=﹣,∵k•k=﹣1,∴直线与直线互相垂直,故有PO⊥PA,∴直线与直线的交点P必在以O(0,0),A(2,1)为一条直径端点的圆上,且圆心为AO线段的中点C(1,),半径r=OA==,∴圆的方程为(x﹣1)2+(y﹣)2=,故答案为:(x﹣1)2+(y﹣)2=.【点评】本题通过恒过定点问题来考查学生方程转化的能力及直线系的理解,曲线轨迹方程的求法,考查计算能力,转化思想的应用.11.(5分)若函数的最大值和最小值分别为M、m,则函数g(x)=(M+m)x+sin[(M+m)x﹣1]图象的一个对称中心是.【考点】H2:正弦函数的图象.【专题】35:转化思想;51:函数的性质及应用;57:三角函数的图像与性质.【分析】对函数f(x)进行化简,结合奇偶性考虑最值,可求出M+m,从而可得函数g(x)的对称中心;【解答】解:函数==2+令h(x)=由h(﹣x)==g(x),∴h(x)是奇函数,∴h(x)的最大值h(x)mxx,最小值h(x)min即h(x)mxx+h(x)min=0那么:函数f(x)的最大值M=2+h(x)mxx,最小值为m=2+h(x)min∴:M+m=2+h(x)mxx+2+h(x)min=4可得:函数g(x)=(M+m)x+sin[(M+m)x﹣1]=4x+sin(4x﹣1).令4x﹣1=kπ,k∈Z.可得x=,当k=0时,可得x=,此时g()=1,故得一个对称中心为.故答案为:.【点评】本题考查了函数的最值问题和奇偶性的应用.将函数化简,转化为奇函数的最值之和是关键.12.(5分)已知向量的夹角为锐角,且满足|、|,若对任意的(x,y)∈,都有|x+y|≤1成立,则的最小值为.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;35:转化思想;4R:转化法;5A:平面向量及应用.【分析】设单位向量的夹角为锐角θ,由||=1,xy>0,得(2x+ycosθ)2+(ysinθ)2=,由|x+y|≤1,得[(2x+ycosθ)2+(ysinθ)2][()2]≥(x+y)2=1,令t=cosθ,得≥,求不等式解集可得结果.【解答】解:设单位向量的夹角为锐角θ,由||=1,xy>0,得=1,∴,∴(2x+ycosθ)2+(ysinθ)2=,由|x+y|≤1,利用柯西不等式得:[(2x+ycosθ)2+(ysinθ)2][()2]≥(x+y)2=1,令t=cosθ,得≥,化简,得64t2﹣60t+11≤0,解得,∴=,∴的最小值为.故答案为:.【点评】本题考查平面向量数量积与不等式的角法与应用问题,考查柯西不等式等基础知识,考查函数与方程思想,考查学生分析解决问题的能力,属于中档题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)在四边形ABCD中,=,且•=0,则四边形ABCD()A.矩形B.菱形C.直角梯形D.等腰梯形【考点】91:向量的概念与向量的模;9T:数量积判断两个平面向量的垂直关系.【专题】11:计算题.【分析】由,可得四边形ABCD的对边AB∥CD且AB=CD,四边形ABCD 为平行四边形=0,可得平行四边形的对角线AC⊥BD,从而可得四边形ABCD为菱形【解答】解:∵=即一组对边平行且相等,•=0即对角线互相垂直;∴该四边形ABCD为菱形.故选:B.【点评】利用向量的知识进行判断是解决本题的关键,本题主要考查了由向量相等及向量垂直的知识进行判断四边形的知识14.(5分)若无穷等比数列{a n}的前n项和为S n,首项为1,公比为,且,(n∈N*),则复数(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】88:等比数列的通项公式.【专题】15:综合题;38:对应思想;4O:定义法;54:等差数列与等比数列;5N:数系的扩充和复数.【分析】由无穷递缩等比数列所有项和公式求得a,再由复数代数形式的乘除运算化简求得z的坐标得答案.【解答】解:由题意,,即a=2.∴=,∴复数在复平面上对应的点的坐标为(),位于第四象限.故选:D.【点评】本题考查无穷递缩等比数列所有项和公式的应用,考查了复数的代数表示法及其几何意义,是基础题.15.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“∠C=90°”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】根据三角函数的诱导公式以及充分条件和必要条件的定义即可得到结论.【解答】解:若C=90°,则A+B=90°,则B=90°﹣A,cosB+sinB=cos(90°﹣A)+sin(90°﹣A)=sinA+cosA,即必要性成立.若A=B=30°,满足cosA+sinA=cosB+sinB,但C=90°不成立,即充分性不成立,故“cosA+sinA=cosB+sinB”是“∠C=90°”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据三角函数的诱导公式是解决本题的关键.16.(5分)如图,圆C分别与x轴正半轴,y轴正半轴相切于点A,B,过劣弧上一点T作圆C的切线,分别交x轴正半轴,y轴正半轴于点M,N,若点Q (2,1)是切线上一点,则△MON周长的最小值为()A.10B.8C.D.12【考点】J7:圆的切线方程.【专题】34:方程思想;48:分析法;5B:直线与圆.【分析】可设切线方程为+=1(a>0,b>0),代入点(2,1),求得周长关于a的式子:t=a+b+(t>2),运用平方和二次方程的判别式大于等于0,解不等式可得周长的最小值.【解答】解:可设切线方程为+=1(a>0,b>0),由切线经过点(2,1),可得:+=1,可得b=,a>2,则周长为t=a+b+(t>2),即为(t﹣a﹣b)2=a2+b2,化为t2﹣2(a+b)t+2ab=0,即有t2﹣2(a+)t+2a()=0,即(2﹣2t)a2+(2t+t2)a﹣2t2=0,△=(2t+t2)2+8t2(2﹣2t)≥0,化为t2﹣12t+20≥0,解得t≥10或t≤2(舍去),可得a=,b=时,△MON的周长取得最小值10.故选:A.【点评】本题考查直线方程的运用,考查最值的求法,注意运用转化思想和二次方程的判别式大于等于0,考查运算能力,属于中档题.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)如图在长方体ABCD﹣A1B1C1D1中,AB=2,AD=4,,点M 为AB的中点,点N为BC的中点.(1)求长方体ABCD﹣A1B1C1D1的体积;(2)求异面直线A1M与B1N所成角的大小(用反三角函数表示).【考点】LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5F:空间位置关系与距离;5G:空间角.【分析】(1)连AC、AC1,推导出C1C⊥BC,C1C⊥CD,从而C1C⊥平面ABCD,进而C1C⊥AC.由此能求出CC1.从而能求出长方体ABCD﹣A1B1C1D1的体积.(2)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1M与B1N 所成的角.【解答】解:(1)连AC、AC1.∵△ABC 是直角三角形,∴AC==2.∵ABCD﹣A1B1C1D1是长方体,∴C1C⊥BC,C1C⊥CD,又DC∩BC=C,C1C⊥平面ABCD,∴C1C⊥AC.又在Rt△ACC1中,AC1=,AC=2,∴CC1=1,.﹣﹣﹣﹣﹣﹣﹣﹣6分∴长方体ABCD﹣A1B1C1D1的体积V=S矩形ABCD×CC1=AB×AD×CC1=2×4×1=8.(2)如图,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,则A1(4,0,1),M(4,1,0),B1(4,2,1),N(2,2,0),∴=(0,1,﹣1),=(﹣2,0,﹣1),10分则向量与所成角θ满足cosθ==.异面直线A1M与B1N 所成的角等于arccos.14分【点评】本题考查长方体的体积的求法,考查异面直线所成角的求法,考查几何体的体积、空间角等基础知识,考查运算求解能力,考查统计与概率思想、函数与方程思想,是基础题.18.(14分)如图:某快递小哥从A地出发,沿小路AB→BC以平均时速20公里/小时,送快件到C处,已知BD=10(公里),∠DCB=45°,∠CDB=30°,△ABD 是等腰三角形,∠ABD=120°.(1)试问,快递小哥能否在50分钟内将快件送到C处?(2)快递小哥出发15分钟后,快递公司发现快件有重大问题,由于通讯不畅,公司只能派车沿大路AD→DC追赶,若汽车平均时速60公里/小时,问,汽车能否先到达C处?【考点】HT:三角形中的几何计算.【专题】35:转化思想;56:三角函数的求值;58:解三角形.【分析】(1)首先利用正弦定理求出结果.(2)直接利用正弦定理和余弦定理求出结果.【解答】解:(1)已知:AB=10 (公里),在△BCD中,由,得BC=5(公里).于是,由于:>50,快递小哥不能在50分钟内将快件送到C处.(2)在△ABD中,)=300,得AD=10(公里),在△BCD中,∠CBD=105°,由:,得CD=5(1+)(公里),由:≈45.98<51.21(分钟)知,汽车能先到达C 处.【点评】本题考查的知识要点:正弦定理和余弦定理的应用.19.(14分)已知函数f(x)=x2﹣3tx+1,其定义域为[0,3]∪[12,15],(1)当t=2时,求函数y=f(x)的反函数;(2)如果函数y=f(x)在其定义域内有反函数,求实数t的取值范围.【考点】4R:反函数.【专题】11:计算题;33:函数思想;4R:转化法;51:函数的性质及应用.【分析】(1)根据反函数的定义即可求出,(2)分类讨论,即可求出t的范围.【解答】解:(1)当t=2,f(x)=x2﹣6x+1,其定义域为[0,3]∪[12,15],∴y=;(2)若,即t≤0,则y=f(x)在定义域上单调递增,所以具有反函数;若,即t≥10,则y=f(x)在定义域上单调递减,所以具有反函数;当3,即2≤t≤8时,由于区间[0,3]关于对称轴的对称区间是[3t﹣3,3t],于是当或,即t∈[2,4)或t∈(6,8]时,函数在定义域上满足1﹣1对应关系,具有反函数.综上,t∈(﹣∞,0]∪[2,4)∪(6,8]∪[10,+∞).【点评】本题考查了反函数的定义和函数解析函式的求法,考查了分类讨论的能力,属于中档题.20.(16分)如图,A,B是椭圆长轴的两个端点,M,N是椭圆上与A,B均不重合的相异两点,设直线AM,BN,AN的斜率分别是k1,k2,k3.(1)求k2•k3的值;(2)若直线MN过点,求证:;(3)设直线MN与x轴的交点为(t,0)(t为常数且t≠0),试探究直线AM与直线BN的交点Q是否落在某条定直线上?若是,请求出该定直线的方程;若不是,请说明理由.【考点】K4:椭圆的性质.【专题】31:数形结合;34:方程思想;5E:圆锥曲线中的最值与范围问题.【分析】(1)设N(x0,y0),由于A,B,由点N在椭圆C 上,可得+=1,于是=﹣2,利用斜率计算公式可得:k2•k3=•=,即可得出.(2)设直线MN的方程为:x=my+,M(x1,y1),N(x2,y2),与椭圆方程联立得(m2+2)y2+my﹣=0,利用根与系数的关系、斜率计算公式即可得出.(3)由于直线MN 与x 轴的交点为(t,0),于是MN:x=my+t,与椭圆方程联立得(m2+2)y2+2mty+t2﹣2=0,直线AM:y=(x+),直线BN:y=(x﹣),两式相除,可知:=•=•=,把根与系数的关系代入化简即可得出.【解答】(1)解:设N(x0,y0),由于A,B,∵点N在椭圆C 上,∴+=1,于是=﹣2,∴k2•k3=•==﹣.(2)证明:设直线MN的方程为:x=my+,M(x1,y1),N(x2,y2),联立,得(m2+2)y2+my﹣=0,于是y1+y2=﹣,y1y2=﹣,∴k1•k3=•====﹣.(3)解:由于直线MN 与x 轴的交点为(t,0),于是MN:x=my+t,联立直线MN:,可得:得(m2+2)y2+2mty+t2﹣2=0,于是:y1+y2=﹣,y1y2=.∵直线AM:y=(x+),直线BN:y=(x﹣),两式相除,可知:=•=•====•=.于是xt=2,所以x=,即直线与直线BN的交点Q落在定直线x=上.【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于难题.21.(18分)已知数列{a n}的前n项和A n满足,且a1=1,数列{b n}满足b n+2﹣2b n+1+b n=0(n∈N*),b3=2,其前9项和为36.(1)求数列{a n}和{b n}的通项公式;(2)当n为奇数时,将a n放在b n的前面一项的位置上;当n为偶数时,将b n 放在a n前面一项的位置上,可以得到一个新的数列:a1,b1,b2,a2,a3,b3,b4,a4,a5,b5,…,求该数列的前n项和S n;(3)设c n=,对于任意给定的正整数k(k≥2),是否存在正整数l,m(k <l<m),使得c k,c l,c m成等差数列?若存在,求出l,m(用k表示);若不存在,请说明理由.【考点】8E:数列的求和.【专题】32:分类讨论;35:转化思想;54:等差数列与等比数列.【分析】(1)根据定义求出数列的通项公式.(2)利用(1)的结论和分类讨论思想求出结果.(3)利用分类讨论思想和整除问题求出数列为等差数列.【解答】解:(1)因为,于是数列{}是首项为1,公差为的等差数列,所以,则:,当n≥2时,a n=A n﹣A n﹣1=n,又因为a1=1,所以a n=n,﹣2b n+1+b n=0,又因为b n+2于是数列{b n}是等差数列,设{b n}的前n 项和为B n,由于B9=9b5=36,则:b5=4,由于:b3=2,则:2d=b5﹣b3=2,解得:d=1.所以:b n=2+(n﹣3)=n﹣1;(2)当n为奇数时,将a n放在b n的前面一项的位置上;当n为偶数时,将b n放在a n前面一项的位置上,可以得到一个新的数列:a1,b1,b2,a2,a3,b3,b4,a4,a5,b5,…,则:数列{a n}的前n项和.当n=2k时,=.当n=4k﹣3时,=k(2k﹣1)+(2k﹣3)(k﹣1)=4k2﹣6k+3.当n=4k﹣1时,S n=S4k﹣1=A2k﹣1+B2k=(2k﹣1)k+(2k﹣1)k=4k2﹣2k;进一步整理得:S n=.(3)由(1)可知:,若对于任意给定的正整数k(k≥2)存在正整数l,m(k<l<m),使得c k,c l,c m成等差数列.则:2c l=c m+c k,即:,解得:m==,即:.则对于任意的正整数k(k≥2)4k﹣2l﹣1能整除(2k﹣1)2,且4k﹣2l﹣1>0.由于当k≥2时,2k﹣1中存在多个质数.所以:4k﹣2l﹣1只能取1和2k﹣1或(2k﹣1)2.若4k﹣2l﹣1=1时,则l=2k﹣1,m=4k2﹣5k+2.于是,m﹣l=4k2﹣7k+3=(4k﹣3)(k﹣1)>0,符合k<l<m.若4k﹣2l﹣1=2k﹣1时,k=l出现矛盾,则舍去.若4k﹣2l﹣1=(2k﹣1)2,则:m+k=2,于是m≤0,出现矛盾,故舍去.综上所述:当k≥2时,存在正整数l=2k﹣1,m=4k2﹣5k+2,满足k<l<m,使得c k,c l,c m成等差数列.【点评】本题考查的知识要点:数列的通项公式的求法及应用,分类讨论思想的应用.。

(完整版)2018年上海市浦东新区高三二模数学试卷(含答案),推荐文档

(完整版)2018年上海市浦东新区高三二模数学试卷(含答案),推荐文档

5. ( x 1 )9 二项展开式中的常数项为________. 84 x
6.椭圆
x y
2cos , 3 sin

为参数)的右焦点为________.
(1, 0)
x 2y 4
7.满足约束条件
2
x
x 0
y
3
的目标函数
f
3x 2 y 的最大值为________. 16 3
y 0
8.函数 f (x) cos2 x
BOC
上的一点, O 为圆心, D 是 AB 的中点,且
2;
(1)求圆锥的全面积;
(2)求直线 CD 与平面 AOB 所成角的大小.(结果用反三角函数值表示)
解:(1)圆锥的底面积 S1 r2 4 ……………3 分 圆锥的侧面积 S2 rl 4 10 ……………3 分
圆锥的全面积 S S1 S2 4(1 10) ……………1 分 (2) Q BOC OC OB 且 OC OA , OC 平面 AOB ……………2 分
D.既非充分又非必要条件
16.设 P, Q 是 R 上的两个非空子集,如果存在一个从 P 到 Q 的函数 y f (x) 满足:
(1) Q f (x) | x P;(2)对任意 x1, x2 P ,当 x1 x2 时,恒有 f (x1) f (x2 ) ;
那么称这两个集合构成“ P Q 恒等态射”。以下集合可以构成“ P Q 恒等态射”的是( )D
rr r r
rr r r rr
a b a b ,(3) (a b) c a (b c) ;正确的个数是( )B
A. 0
B. 1
C. 2
D. 3
15.唐代诗人杜牧的七绝唐诗中两句诗为“今来海上升高望,不到蓬莱不成仙。”其中后一句中“成仙”

2018年上海市青浦区高考数学二模试卷含详解

2018年上海市青浦区高考数学二模试卷含详解

2018年上海市青浦区高考数学二模试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)不等式|x﹣3|<2的解集为.2.(4分)若复数z满足2﹣3=1+5i(i是虚数单位),则z=.3.(4分)若,则=.4.(4分)已知两个不同向量,,若,则实数m=.5.(4分)在等比数列{a n}中,公比q=2,前n项和为S n,若S5=1,则S10=.6.(4分)若x,y满足.则z=2x﹣y的最小值为.7.(5分)如图所示,一个圆柱的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个圆柱的体积为.8.(5分)展开式中x2的系数为.9.(5分)高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A+的概率分别为、、,这三门科目考试成绩的结果互不影响,则这位考生至少得2个A+的概率是.10.(5分)已知f(x)是定义在[﹣2,2]上的奇函数,当x∈(0,2]时,f(x)=2x﹣1,函数g(x)=x2﹣2x+m.如果对于任意的x1∈[﹣2,2],总存在x2∈[﹣2,2],使得f(x1)≤g(x2),则实数m的取值范围是.11.(5分)已知曲线C:y=﹣,直线l:y=2,若对于点A(0,m),存在C上的点P和l上的点Q,使得=,则m取值范围是.12.(5分)已知,则M的取值范围是.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)设α,β是两个不同的平面,b是直线且b⊊β.则“b⊥α”是“α⊥β”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件14.(5分)若已知极限,则的值为()A.﹣3B.C.﹣1D.15.(5分)已知函数f(x)是R上的偶函数,对于任意x∈R都有f(x+6)=f(x)+f(3)成立,当x1,x2∈[0,3],且x1≠x2时,都有.给出以下三个命题:①直线x=﹣6是函数f(x)图象的一条对称轴;②函数f(x)在区间[﹣9,﹣6]上为增函数;③函数f(x)在区间[﹣9,9]上有五个零点.问:以上命题中正确的个数有()A.0个B.1个C.2个D.3个16.(5分)如图所示,将一圆的八个等分点分成相间的两组,连接每组的四个点得到两个正方形.去掉两个正方形内部的八条线段后可以形成一正八角星.设正八角星的中心为O,并且.若将点O到正八角星16个顶点的向量都写成的形式,则λ+μ的取值范围为()A.B.C.D.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)如图,在正四棱锥P﹣ABCD中,,E,F分别为PB,PD 的中点.(1)求正四棱锥P﹣ABCD的全面积;(2)若平面AEF与棱PC交于点M,求平面AEMF与平面ABCD所成锐二面角的大小(用反三角函数值表示).18.(14分)已知向量,,设函数.(1)若,,求x的值;(2)在△ABC中,角A,B,C的对边分别是a,b,c且满足,求f(B)的取值范围.19.(14分)已知椭圆的一个顶点坐标为A(2,0),且长轴长是短轴长的两倍.(1)求椭圆C的方程;(2)过点D(1,0)且斜率存在的直线交椭圆于G、H,G关于x轴的对称点为G',求证:直线G'H恒过定点(4,0).20.(16分)设函数.(1)求函数的零点;(2)当a=3时,求证:f(x)在区间(﹣∞,﹣1)上单调递减;(3)若对任意的正实数a,总存在x0∈[1,2],使得f(x0)≥m,求实数m的取值范围.21.(18分)给定数列{a n},若数列{a n}中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.(1)已知数列{a n}的通项公式为,试判断{a n}是否为封闭数列,并说明理由;(2)已知数列{a n}满足a n+2+a n=2a n+1且a2﹣a1=2,设S n是该数列{a n}的前n项和,试问:是否存在这样的“封闭数列”{a n},使得对任意n∈N*都有S n≠0,且,若存在,求数列{a n}的首项a1的所有取值;若不存在,说明理由;(3)证明等差数列{a n}成为“封闭数列”的充要条件是:存在整数m≥﹣1,使a1=md.2018年上海市青浦区高考数学二模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)不等式|x﹣3|<2的解集为(1,5).【考点】7E:其他不等式的解法.【专题】35:转化思想;49:综合法;59:不等式的解法及应用.【分析】由题意利用绝对值不等式的基本性质,求得不等式|x﹣3|<2的解集.【解答】解:不等式|x﹣3|<2,即﹣2<x﹣3<2,求得1<x<5,故答案为:(1,5).【点评】本题主要考查绝对值不等式的解法,绝对值不等式的基本性质,属于基础题.2.(4分)若复数z满足2﹣3=1+5i(i是虚数单位),则z=2﹣.【考点】A5:复数的运算.【专题】38:对应思想;4A:数学模型法;5N:数系的扩充和复数.【分析】由已知求得,再由共轭复数的概念求得z.【解答】解:由2﹣3=1+5i,得,∴,则z=2﹣.故答案为:2﹣.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(4分)若,则=.【考点】GF:三角函数的恒等变换及化简求值.【专题】35:转化思想;49:综合法;56:三角函数的求值.【分析】由题意利用利用诱导公式化简要求的式子,可的结果.【解答】解:若,则=cos(﹣α)=sinα=,【点评】本题主要考查利用诱导公式进行化简求值,属于基础题.4.(4分)已知两个不同向量,,若,则实数m=1.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;34:方程思想;5A:平面向量及应用.【分析】根据题意,由向量垂直与向量数量积的关系,分析可得若,则有=1×(m﹣1)+2m=3m﹣1=0,解可得m的值,即可得答案.【解答】解:根据题意,向量,,则=﹣=(m﹣2,2﹣m)若,则有=1×(m﹣2)+m(2﹣m)=(m﹣2)(1﹣m)=0,解可得m=1或2;又由m=2时,=,则m=1;故答案为:1.【点评】本题考查向量数量积的坐标计算,关键是掌握向量数量积的坐标计算公式.5.(4分)在等比数列{a n}中,公比q=2,前n项和为S n,若S5=1,则S10=33.【考点】89:等比数列的前n项和.【专题】34:方程思想;48:分析法;54:等差数列与等比数列.【分析】运用求和公式,解方程可得首项,计算可得所求和.【解答】解:在等比数列{a n}中,公比q=2,前n项和为S n,若S5=1,则S5==1,可得a1=,S10===33.【点评】本题考查等比数列的求和公式的运用,考查方程思想和运算能力,属于基础题.6.(4分)若x,y满足.则z=2x﹣y的最小值为.【考点】7C:简单线性规划.【专题】11:计算题;38:对应思想;44:数形结合法;59:不等式的解法及应用.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域,联立,解得A(,),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过A时,直线在y轴上的截距最大,z有最小值为.故答案为:.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.7.(5分)如图所示,一个圆柱的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个圆柱的体积为.【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;49:综合法;5F:空间位置关系与距离.【分析】利用已知条件,直接求解几何体的体积即可.【解答】解:一个圆柱的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个圆柱的体积为:=.故答案为:.【点评】本题考查几何体的三视图与直观图的对应关系,圆柱的体积的求法,考查计算能力.8.(5分)展开式中x2的系数为30.【考点】DA:二项式定理.【专题】11:计算题;35:转化思想;49:综合法;5P:二项式定理.【分析】分析展开式中x2的项的两种可能的来由,结合二项式定理求系数.【解答】解:当(1+)选择1时,(1+x)6展开式选择x2的项为;当(1+)选择时,(1+x)6展开式选择为C,所以(1+)(1+x)6展开式=30;故答案为:30.【点评】本题考查了二项式定理的运用;关键是明确展开式得到x2的两种情况.9.(5分)高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A+的概率分别为、、,这三门科目考试成绩的结果互不影响,则这位考生至少得2个A+的概率是.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题;34:方程思想;4O:定义法;5I:概率与统计.【分析】设这位同学在物理、化学、政治科目考试中达A+的事件分别为A,B,C,则P(A)=,P(B)=,P(C)=,这位考生至少得2个A+的概率:P=P (AB)+P(A C)+P()+P(ABC).【解答】解:设这位同学在物理、化学、政治科目考试中达A+的事件分别为A,B,C,∵这位同学在物理、化学、政治科目考试中达A+的概率分别为、、,∴P(A)=,P(B)=,P(C)=,这三门科目考试成绩的结果互不影响,则这位考生至少得2个A+的概率:P=P(AB)+P(A C)+P()+P(ABC)=+++=.故答案为:.【点评】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率加法公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.10.(5分)已知f(x)是定义在[﹣2,2]上的奇函数,当x∈(0,2]时,f(x)=2x﹣1,函数g(x)=x2﹣2x+m.如果对于任意的x1∈[﹣2,2],总存在x2∈[﹣2,2],使得f(x1)≤g(x2),则实数m的取值范围是m≥﹣5.【考点】2I:存在量词和特称命题.【专题】35:转化思想;49:综合法;5L:简易逻辑.【分析】求出函数f(x)的值域,根据条件,确定两个函数的最值之间的关系即可得到结论.【解答】解:∵f(x)是定义在[﹣2,2]上的奇函数,∴f(0)=0,当x∈(0,2]时,f(x)=2x﹣1∈(0,3],则当x∈[﹣2,2]时,f(x)∈[﹣3,3],若对于∀x1∈[﹣2,2],∀x2∈[﹣2,2],使得g(x2)≥f(x1),则等价为g(x)max≥3,∵g(x)=x2﹣2x+m=(x﹣1)2+m﹣1,x∈[﹣2,2],∴g(x)max=g(﹣2)=8+m,则满足8+m≥3 解得m≥﹣5故答案为:m≥﹣5.【点评】本题主要考查函数奇偶性的应用,以及函数最值之间的关系,综合性较强.11.(5分)已知曲线C:y=﹣,直线l:y=2,若对于点A(0,m),存在C上的点P和l上的点Q,使得=,则m取值范围是[﹣,1] .【考点】J9:直线与圆的位置关系.【专题】38:对应思想;4R:转化法;5B:直线与圆.【分析】通过曲线方程判断曲线特征,通过=,说明A是PQ的中点,结合y的范围,求出m的范围即可.【解答】解:曲线C:y=﹣,是以原点为圆心,3为半径的圆,并且y P∈[﹣3,0],对于点A(0,m),存在C上的点P和l上的Q使得=,说明A是PQ的中点,Q的纵坐标y=2,∴m=∈[﹣,1].故答案为:[﹣].【点评】本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想.12.(5分)已知,则M的取值范围是[,] .【考点】34:函数的值域.【专题】15:综合题;33:函数思想;4R:转化法;51:函数的性质及应用.【分析】化M=为aMcosθ﹣asinθ﹣(M﹣1)(a2+1)=0,可得直线aMx﹣ay﹣(M﹣1)(a2+1)=0与圆x2+y2=1有公共点,即,得到≤,转化为关于M的不等式求解.【解答】解:化M=为aMcosθ﹣asinθ﹣(M﹣1)(a2+1)=0,可得直线aMx﹣ay﹣(M﹣1)(a2+1)=0与圆x2+y2=1有公共点,∴,得到≤(当且仅当|a|=1时,等号成立).故3M2﹣8M+3≤0.解得:≤M≤.∴M的取值范围是[,].【点评】本题考查了函数的几何意义的应用及基本不等式的应用,属于中档题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)设α,β是两个不同的平面,b是直线且b⊊β.则“b⊥α”是“α⊥β”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】36:整体思想;4O:定义法;5L:简易逻辑.【分析】根据线面垂直和面面垂直的定义和性质进行判断即可.【解答】解:由线面垂直的定义得若⊊β.则b⊥α时,α⊥β成立,即充分性成立,反之若α⊥β,则b⊥α不一定成立,即必要性不成立,故“b⊥α”是“α⊥β”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,结合线面垂直和面面垂直的性质和定义是解决本题的关键.14.(5分)若已知极限,则的值为()A.﹣3B.C.﹣1D.【考点】6F:极限及其运算.【专题】11:计算题;35:转化思想;49:综合法.【分析】根据,对分子分母同除以n,再求极限即可.【解答】解:∵;∴=.故选:D.【点评】考查极限的概念及求法,以及极限的运算.15.(5分)已知函数f(x)是R上的偶函数,对于任意x∈R都有f(x+6)=f(x)+f(3)成立,当x1,x2∈[0,3],且x1≠x2时,都有.给出以下三个命题:①直线x=﹣6是函数f(x)图象的一条对称轴;②函数f(x)在区间[﹣9,﹣6]上为增函数;③函数f(x)在区间[﹣9,9]上有五个零点.问:以上命题中正确的个数有()A.0个B.1个C.2个D.3个【考点】3P:抽象函数及其应用.【专题】11:计算题;35:转化思想;51:函数的性质及应用.【分析】根据题意,利用特殊值法分析可得f(﹣3+6)=f(﹣3)+f (3),结合函数的奇偶性可得f(3)=0,进而可得f (x+6)=f (x),所以f(x)的周期为6;据此分析三个命题,综合即可得答案.【解答】解:根据题意,对于任意x∈R,都有f (x+6)=f (x)+f (3)成立,令x=﹣3,则f(﹣3+6)=f(﹣3)+f (3),又因为f(x)是R上的偶函数,所以f(3)=0,则有f (x+6)=f (x),所以f (x)的周期为6;据此分析三个命题:对于①,函数为偶函数,则函数的一条对称轴为y轴,又由函数的周期为6,则直线x=﹣6是函数f(x)图象的一条对称轴,①正确;对于②,当x1,x2∈[0,3],且x1≠x2时,都有,则函数y=f(x)在[0,3]上为增函数,因为f(x)是R上的偶函数,所以函数y=f(x)在[﹣3,0]上为减函数,而f(x)的周期为6,所以函数y=f(x)在[﹣9,﹣6]上为减函数;②错误;对于③,f(3)=0,f(x)的周期为6,所以f(﹣9)=f(﹣3)=f(3)=f(9)=0,函数y=f(x)在[﹣9,9]上有四个零点;③错误;三个命题中只有①是正确的;故选:B.【点评】本题考查抽象函数的性质以及应用,关键是求出f(3)的值,分析函数的周期与对称性.16.(5分)如图所示,将一圆的八个等分点分成相间的两组,连接每组的四个点得到两个正方形.去掉两个正方形内部的八条线段后可以形成一正八角星.设正八角星的中心为O,并且.若将点O到正八角星16个顶点的向量都写成的形式,则λ+μ的取值范围为()A.B.C.D.【考点】9H:平面向量的基本定理.【专题】31:数形结合;44:数形结合法;5A:平面向量及应用.【分析】根据平面向量加法的平行四边形法则求出λ+μ的最大值和最小值即可.【解答】解:以O为原点,以OA为x轴建立平面直角坐标系,如图所示:设圆O的半径为1,则OM=1,过M作MN∥OB,交x轴于N,则△OMN为等腰直角三角形,∴ON=OM=,∴=+,此时λ+μ=1+.同理可得:=﹣,此时λ+μ=﹣1﹣.∴λ+μ的最大值为1+,最小值为﹣1﹣.故选:C.【点评】本题考查了平面向量的基本定理,属于中档题.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)如图,在正四棱锥P﹣ABCD中,,E,F分别为PB,PD 的中点.(1)求正四棱锥P﹣ABCD的全面积;(2)若平面AEF与棱PC交于点M,求平面AEMF与平面ABCD所成锐二面角的大小(用反三角函数值表示).【考点】MJ:二面角的平面角及求法.【专题】15:综合题;31:数形结合;41:向量法;5Q:立体几何.【分析】(1)取AB的中点G,连接PG,由已知可得PG=,由全面积等于底面积+侧面积求解;(2)连接AC,BD,记AC∩BD=O,由OA,OB,OP两两互相垂直,建立空间直角坐标系O﹣xyz,由已知求得OA=OP=2,再求出所用点的坐标,然后分别求出平面AEMF与平面ABCD的一个法向量,由两法向量所成角的余弦值可得平面AEMF与平面ABCD所成锐二面角的大小.【解答】解:(1)∵取AB的中点G,连接PG,∵PA=AB=,∴PG=,∴;(2)连接AC,BD,记AC∩BD=O,∵OA,OB,OP两两互相垂直,建立如图所示空间直角坐标系O﹣xyz,∵PB=AB=2,∴Rt△POB≌Rt△AOB,∴OA=OP=2,∴A(2,0,0),B(0,2,0),C(﹣2,0,0),D(0,﹣2,0),P(0,0,2),E(0,1,1),F(0,﹣1,1),∴,.设平面AEMF的一个法向量为,由,取x=1,得,∵平面ABCD的一个法向量为,∴cos<>=,∴平面AEMF与平面ABCD所成锐二面角的大小为arccos.【点评】本题考查多面体的全面积的求法,考查利用空间向量求解二面角的平面角,是中档题.18.(14分)已知向量,,设函数.(1)若,,求x的值;(2)在△ABC中,角A,B,C的对边分别是a,b,c且满足,求f(B)的取值范围.【考点】9P:平面向量数量积的坐标表示、模、夹角;GL:三角函数中的恒等变换应用.【专题】11:计算题.【分析】(1)利用两个向量的数量积公式以及三角函数的恒等变换化简函数f(x)的解析式为sin(x﹣)+1,由f(x)=,求得sin(x﹣)=,可得x ﹣=arcsin,求得x结果.(2)在△ABC中,由条件2bcosA≤2c﹣ a 可得2sinAcosB≥sinA,故cosB ≥,B∈(0,],由此求得f(B)的取值范围.【解答】解:(1)函数f(x)=+1=sin cos﹣cos2+1=﹣+1=sin(x﹣)+.∵f(x)=,∴sin(x﹣)=.又∵x∈[0,],∴x﹣=arcsin即x=+arcsin.(2)在△ABC中,由2bcosA≤2c﹣a,可得2sinBcosA≤2sinC﹣sinA,∴2sinBcosA≤2sin(A+B)﹣sinA,∴2sinBcosA≤2(sinAcosB+cosAsinB)﹣sinA,2sinAcosB≥sinA,∴cosB≥,∴B∈(0,].∴sin(B﹣)∈(﹣,0],即f(B)=sin(B﹣)+,∴f(B)∈(0,].【点评】本题主要考查三角函数的恒等变换及化简求值,两个向量的数量积公式的应用,两角和差的正弦、余弦公式,正弦函数的定义域和值域,属于中档题.19.(14分)已知椭圆的一个顶点坐标为A(2,0),且长轴长是短轴长的两倍.(1)求椭圆C的方程;(2)过点D(1,0)且斜率存在的直线交椭圆于G、H,G关于x轴的对称点为G',求证:直线G'H恒过定点(4,0).【考点】K4:椭圆的性质.【专题】38:对应思想;4P:设而不求法;5D:圆锥曲线的定义、性质与方程.【分析】(1)根据椭圆长短轴得出a,b的值即可;(2)设直线GH的斜率为k,求出G′H的方程,把(4,0)代入方程验证即可.【解答】解:(1)∵椭圆的焦点在x轴上,且A(2,0)为椭圆的顶点,∴a=2,又长轴长是短轴长的两倍,∴b=1.∴椭圆的方程为:+y2=1.(2)证明:设GH的直线方程为y=k(x﹣1),G(x1,y1),H(x2,y2),则G′(x1,﹣y1),联立方程组,消元得:(1+4k2)x2﹣8k2x+4k2﹣4=0,∴x1+x2=,x1x2=,直线G′H的方程为:y+y1=(x﹣x1),∴当x=4时,y=﹣y1+(4﹣x1)====0,∴直线G'H恒过定点(4,0).【点评】本题考查了椭圆的性质,直线与椭圆的位置关系,属于中档题.20.(16分)设函数.(1)求函数的零点;(2)当a=3时,求证:f(x)在区间(﹣∞,﹣1)上单调递减;(3)若对任意的正实数a,总存在x0∈[1,2],使得f(x0)≥m,求实数m的取值范围.【考点】5B:分段函数的应用.【专题】35:转化思想;48:分析法;51:函数的性质及应用.【分析】(1)讨论a=0,a≥﹣且a≠0,a<﹣,解方程可得零点;(2)可令g(x)=﹣3x+5,运用单调性的定义,证得g(x)在x<﹣1递减,可得g(x)>6,即可得到证明;(3)由题意可得f(x0)max≥m,由绝对值的含义,化简f(x),得到在x>0的单调性,即有f(x)max=max{f(1),f(2)},运用绝对值不等式的性质,可得f(x)的最大值,即可得到m的范围.【解答】解:(1)当a=0时,f(x)=|+5|的零点为x=﹣;当a≥﹣且a≠0,f(x)的零点为x=;当a<﹣,f(x)无零点;(2)证明:当a=3时,f(x)=|﹣3x+5|,可令g(x)=﹣3x+5,任取x1<x2<﹣1,g(x1)﹣g(x2)=﹣3x1+5﹣+3x2﹣5=,由x1<x2<﹣1,可得x2﹣x1>0,x1x2>0,进而>0,即g(x1)﹣g(x2)>0,可得g(x)在(﹣∞,﹣1)上递减,可得x<﹣1时,g(x)>g(﹣1)=6,则f(x)=|﹣3x+5|=g(x),即f(x)在区间(﹣∞,﹣1)上单调递减;(3)对任意的正实数a,总存在x0∈[1,2],使得f(x0)≥m,即f(x0)max≥m,当x>0时,f(x)=,则f(x)在(0,)递减,在(,+∞)递增,可得f(x)max=max{f(1),f(2)}=max{|7﹣a|,|6﹣2a|},由于a>0,设t=max{|7﹣a|,|6﹣2a|},可得|7﹣a|≤t,|6﹣2a|≤2t,可得|14﹣2t|+|6﹣2a|≤3t,即有|14﹣2t|+|6﹣2a|≥|14﹣2t﹣6+2t|=8,可得t≥,则m≤.【点评】本题考查含绝对值函数的零点和单调性,考查存在性问题的解法,注意运用分类讨论思想方法,以及绝对值不等式的性质,考查化简整理的运算能力,属于难题.21.(18分)给定数列{a n},若数列{a n}中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.(1)已知数列{a n}的通项公式为,试判断{a n}是否为封闭数列,并说明理由;(2)已知数列{a n}满足a n+2+a n=2a n+1且a2﹣a1=2,设S n是该数列{a n}的前n项和,试问:是否存在这样的“封闭数列”{a n},使得对任意n∈N*都有S n≠0,且,若存在,求数列{a n}的首项a1的所有取值;若不存在,说明理由;(3)证明等差数列{a n}成为“封闭数列”的充要条件是:存在整数m≥﹣1,使a1=md.【考点】8K:数列与不等式的综合.【专题】34:方程思想;54:等差数列与等比数列;59:不等式的解法及应用.【分析】(1)数列{a n}不为封闭数列.由n=1,2时,a1+a2=3+9=12,可得a1+a2≠3m,m∈N*,可得a1+a2∉{a n},即可得出结论.(2)数列{a n}满足a n+2+a n=2a n+1且a2﹣a1=2,可得数列{a n}为等差数列,公差为2.a n=a1+2(n﹣1).又{a n}是“封闭数列”,得:对任意m,n∈N*,必存在p ∈N*使a1+2(n﹣1)+a1+2(m﹣1)=a1+2(p﹣1),得a1=2(p﹣m﹣n+1),故a1是偶数,又由已知,,故<,可得a1.(3)要证明充分必要条件的问题,本题需要从两个方面来证明,一是证明充分性,二是证明必要性,证明时注意所取得数列的项来验证时,项要具有一般性.【解答】解:(1)数列{a n}不为封闭数列.∵n=1,2时,a1+a2=3+9=12,32<12<33,可得a1+a2≠3m,m∈N*,∴a1+a2∉{a n},因此{a n}不是封闭数列.(2)数列{a n}满足a n+2+a n=2a n+1且a2﹣a1=2,∴数列{a n}为等差数列,公差为2.∴a n=a1+2(n﹣1).又{a n}是“封闭数列”,得:对任意m,n∈N*,必存在p∈N*使a1+2(n﹣1)+a1+2(m﹣1)=a1+2(p﹣1),得a1=2(p﹣m﹣n+1),故a1是偶数,又由已知,,故<,可得:<S1<8,可得a1=4或a1=6或a1=2,经过验证可得:a1=4或a1=6.(3)证明:(必要性)若存在整数m≥﹣1,使a1=md,则任取等差数列的两项a s,a t(s≠t),于是a s+a t=a1+(s﹣1)d+md+(t﹣1)d=a1+(s+m+t﹣2)d=a s+m+t﹣1,由于s+t≥3,m≥﹣1,∴s+t+m﹣1∈N*为正整数,∈{a n},∴{a n}是封闭数列.∴a s+m+t﹣1(充分性)任取等差数列的两项a s,a t(s≠t),若存在a k使a s+a t=a k,则2a1+(s+t﹣2)d=a1+(k﹣1)d⇒a1=(k﹣s﹣t+1)d,故存在m=k﹣s﹣t+1∈Z,使a1=md,下面证明m≥﹣1.当d=0时,显然成立.对d≠0,若m<﹣1,则取p=﹣m≥2,对不同的两项a1和a p,存在a q使a1+a p=a q,即2md+(﹣m﹣1)d=md+(q﹣1)d⇒qd=0,这与q>0,d≠0矛盾,故存在整数m≥﹣1,使a1=md.【点评】本题考查了等差数列与等比数列的通项公式求和公式、数列递推关系、充要条件,考查了推理能力与计算能力,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年上海高三数学二模分类汇编 1 / 85 2018届上海市高三数学二模分类汇编 一、填空题 1.集合 1.设全集RU,若集合2,1,0A,21|xxB,BCAU . 【答案】2

【来源】18届宝山二模1 【难度】集合、基础题

2.集合02xxxA,{|}BxxZ,则AB等于 . 【答案】1或1xx 【来源】18届奉贤二模1 【难度】集合、基础题

3. 已知(,]Aa,[1,2]B,且AB,则实数a的范围是

【答案】1a 【来源】18届虹口二模1 【难度】集合、基础题 4.已知集合1,2,31,ABm,,若3mA,则非零实数m的数值是 .

【答案】2 【来源】18届黄浦二模1 【难度】集合、基础题 2018年上海高三数学二模分类汇编 2 / 85 5.已知集合},2,1{mA,}4,2{B,若}4,3,2,1{BA,则实数m_______. 【答案】3

【来源】18届长嘉二模1 【难度】集合、基础题

6. 设集合1|,2xMyyxR,1|1112,121Nyyxmxxm





,若NM,则实数m的

取值范围是 .

【答案】(1,0) 【来源】18届普陀二模11 【难度】集合、中档题 7.已知全集RU,集合0322xxxA,则ACU . 【答案】]3,1[ 【来源】18届徐汇二模1 【难度】集合、基础题

8. 已知集合{|(1)(3)0}Pxxx,{|||2}Qxx,则PQ 【答案】(2,3)

【来源】18届金山二模3 【难度】集合、基础题

9.已知集合{1,0,1,2,3}U,{1,0,2}A,则UCA 2018年上海高三数学二模分类汇编 3 / 85 【答案】{1,3} 【来源】18届崇明二模1 【难度】集合、基础题 2.命题、不等式 1.不等式|1|1x的解集是 .

【答案】(,0)(2,) 【来源】18届黄浦二模2 【难度】不等式、基础题

2.已知函数2()(02)fxaxbxcab对任意Rx恒有()0fx成立,则代数式(1)(0)(1)fff的最小值是 .

【答案】3 【来源】18届黄浦二模2 【难度】不等式、压轴题

3.不等式|3|2x的解集为__________________. 【答案】15xx或1,5 【来源】18届青浦二模1 【难度】不等式、基础题

4.若为等比数列,0na,且201822a,则2017201912aa的最小值为 . {}na2018年上海高三数学二模分类汇编

4 / 85 【答案】4 【来源】18届杨浦二模10 【难度】不等式、中档题

5. 函数9yxx,(0,)x的最小值是 【答案】6 【来源】18届金山二模4 【难度】不等式、基础题

3.函数 1.给出下列函数:①1yxx;②xxy2;③2xy;④23yx;⑤xytan;⑥sinarccosyx;⑦2lg4lg2yxx.从这7个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是 .

【答案】37

【来源】18届奉贤二模9 【难度】函数、中档题

2.已知函数xxf2sin5,2,0,5,0x,若函数3xfxF的所有零点依次记为nxxxx,,,,321,且nnxxxxx1321,*Nn若2

83222212321nnnxxxxxx,则 .

【答案】9 2018年上海高三数学二模分类汇编

5 / 85 【来源】18届奉贤二模12 【难度】函数、压轴题

3.已知函数20()210xxxfxx,则11[(9)]ff 【答案】-2 【来源】18届虹口二模5 【难度】函数、基础题

4.若函数2()82fxaxx是偶函数,则该函数的定义域是 . 【答案】[2,2]

【来源】18届黄浦二模3 【难度】函数、基础题 5.已知函数)1lg()(2axxxf的定义域为R,则实数a的取值范围是_________.

【答案】]1,1[ 【来源】18届长嘉二模10 【难度】函数、中档题

6.若函数1()21fxxm是奇函数,则实数m________. 2018年上海高三数学二模分类汇编

6 / 85 【答案】12 【来源】18届普陀二模2 【难度】函数、基础题 7.若函数()23fxx的反函数为()gx,则函数()gx的零点为________.

【答案】3x 【来源】18届普陀二模3 【难度】函数、基础题

8.已知()fx是定义在[2,2]上的奇函数,当(0,2]x时,()21xfx,函数 2()2gxxxm

. 如果对于任意的1[2,2]x,总存在2[2,2]x,使得

12()()fxgx,则实数m的取值范围是 .

【答案】5m

【来源】18届青浦二模10 【难度】函数、中档题

9.若函数222(1)sin()1xxfxx的最大值和最小值分别为M、m,则函数()sin1gxMmxMmx

图像的一个对称中心是 .

【答案】114, 【来源】18届徐汇二模11 【难度】函数、中档题 2018年上海高三数学二模分类汇编 7 / 85 10.设()fx是定义在R上以2为周期的偶函数,当[0,1]x时,2()log(1)fxx,则函数()fx在[1,2]上的解析式是

【答案】2()log(3)fxx 【来源】18届崇明二模9 【难度】函数、中档题

4.指数函数、对数函数 1.方程33log(325)log(41)0xx的解x .

【答案】2 【来源】18届黄浦二模6 【难度】对数函数、基础题 2.[]x是不超过x的最大整数,则方程271(2)[2]044xx满足1x的所有实数解是

【答案】12x或1x 【来源】18届虹口二模11 【难度】指数函数、中档题

3.若实数x、y满足112244yxyx,则yxS22的取值范围是____________. 【答案】]4,2( 【来源】18届长嘉二模12 【难度】指数函数、压轴题 2018年上海高三数学二模分类汇编 8 / 85 4.函数()lg(32)xxfx的定义域为_____________. 【答案】(0,) 【来源】18届徐汇二模3 【难度】对数函数、基础题

5.定义在R上的函数()21xfx的反函数为1()yfx,则1(3)f 【答案】2 【来源】18届松江二模4 【难度】指数函数、基础题

6.若函数2()log(1)afxxax(0a且1a)没有最小值,则a的取值范围 【答案】0,12, 【来源】18届松江二模10 【难度】指数函数、中档题 7.函数lg1yx的零点是 .

【答案】10x 【来源】18届杨浦二模1 【难度】对数函数、基础题

8.函数lgyx的反函数是 【答案】1()10xfx 【来源】18届金山二模2 【难度】对数函数、基础题 2018年上海高三数学二模分类汇编 9 / 85 5. 三角函数

1.已知在ABC中,a,b,c分别为AB,,C所对的边.若2222bcabc

,则A= .

【答案】4或045

【来源】18届奉贤二模5 【难度】三角函数、基础题

2.已知ABC的三内角ABC、、所对的边长分别为abc、、,若2222sinabcbcA,则内角A的大小是 .

【答案】4

【来源】18届黄浦二模4 【难度】三角函数、基础题

3.若1sin3,则cos2_______________. 【答案】13 【来源】18届青浦二模3 【难度】三角函数、基础题 4.在锐角三角形ABC中,角A、B、C的对边分别为a、b、c,若222()tanbcaAbc

,则角A的大小为________.

【答案】6 【来源】18届普陀二模5 【难度】三角函数、基础题

相关文档
最新文档