2017上海高三数学二模难题学生版
上海市杨浦区2017届高考数学二模试卷(详解版)

2017年上海市杨浦区高考数学二模试卷一、填空题1.(4分)三阶行列式中,5的余子式的值是.2.(4分)若实数ω>0,若函数f(x)=cos(ωx)+sin(ωx)的最小正周期为π,则ω=.3.(4分)已知圆锥的底面半径和高均为1,则该圆锥的侧面积为.4.(4分)设向量=(2,3),向量=(6,t),若与夹角为钝角,则实数t的取值范围为.5.(4分)集合A={1,3,a2},集合B={a+1,a+2},若B∪A=A,则实数a=.6.(4分)设z1、z2是方程z2+2z+3=0的两根,则|z1﹣z2|=.7.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)<﹣5的解为.8.若变量x、y满足约束条件,则z=y﹣x的最小值为.9.小明和小红各自掷一颗均匀的正方体骰子,两人相互独立地进行,则小明掷出的点数不大于2或小红掷出的点数不小于3的概率为.10.设A是椭圆+=1(a>0)上的动点,点F的坐标为(﹣2,0),若满足|AF|=10的点A有且仅有两个,则实数a的取值范围为.11.已知a>0,b>0,当(a+4b)2+取到最小值时,b=.12.设函数f a(x)=|x|+|x﹣a|,当a在实数范围内变化时,在圆盘x2+y2≤1内,且不在任一f a(x)的图象上的点的全体组成的图形的面积为.二、选择题13.设z∈C且z≠0,“z是纯虚数”是“z2∈R”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既不充分也不必要条件14.设等差数列{a n}的公差为d,d≠0,若{a n}的前10项之和大于其前21项之和,则()A.d<0 B.d>0 C.a16<0 D.a16>015.如图,N、S是球O直径的两个端点,圆C1是经过N和S点的大圆,圆C2和圆C3分别是所在平面与NS垂直的大圆和小圆,圆C1和C2交于点A、B,圆C1和C3交于点C、D,设a、b、c分别表示圆C1上劣弧CND的弧长、圆C2上半圆弧AB的弧长、圆C3上半圆弧CD的弧长,则a、b、c的大小关系为()A.b>a=c B.b=c>a C.b>a>c D.b>c>a16.对于定义在R上的函数f(x),若存在正常数a、b,使得f(x+a)≤f(x)+b 对一切x∈R均成立,则称f(x)是“控制增长函数”,在以下四个函数中:①f (x)=x2+x+1;②f(x)=; ③f(x)=sin(x2);④f(x)=x•sinx.是“控制增长函数"的有()A.②③B.③④C.②③④D.①②④三、解答题17.(14分)如图,正方体ABCD﹣A1B1C1D1中,AB=4,P、Q分别是棱BC与B1C1的中点.(1)求异面直线D1P和A1Q所成角的大小;(2)求以A1、D1、P、Q四点为四个顶点的四面体的体积.18.(14分)已知函数f(x)=.(1)判断函数f(x)的奇偶性,并证明;(2)若不等式f(x)>log9(2c﹣1)有解,求c的取值范围.19.(14分)如图,扇形ABC是一块半径为2千米,圆心角为60°的风景区,P 点在弧BC上,现欲在风景区中规划三条商业街道,要求街道PQ与AB垂直,街道PR与AC垂直,线段RQ表示第三条街道.(1)如果P位于弧BC的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ、PR、RQ每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)20.(16分)设数列{a n}满足a n=A•4n+B•n,其中A、B是两个确定的实数,B ≠0.(1)若A=B=1,求{a n}的前n项之和;(2)证明:{a n}不是等比数列;(3)若a1=a2,数列{a n}中除去开始的两项之外,是否还有相等的两项?证明你的结论.21.(18分)设双曲线Γ的方程为x2﹣=1,过其右焦点F且斜率不为零的直线l1与双曲线交于A、B两点,直线l2的方程为x=t,A、B在直线l2上的射影分别为C、D.(1)当l1垂直于x轴,t=﹣2时,求四边形ABDC的面积;(2)当t=0,l1的斜率为正实数,A在第一象限,B在第四象限时,试比较和1的大小,并说明理由;(3)是否存在实数t∈(﹣1,1),使得对满足题意的任意直线l1,直线AD和直线BC的交点总在x轴上,若存在,求出所有的t的值和此时直线AD与BC交点的位置;若不存在,说明理由.2017年上海市杨浦区高考数学二模试卷参考答案与试题解析一、填空题1.三阶行列式中,5的余子式的值是﹣12.【考点】OU:特征向量的意义.【分析】去掉5所在行与列,即得5的余子式,从而求值.【解答】解:由题意,去掉5所在行与列得:=﹣12故答案为﹣12.【点评】本题以三阶行列式为载体,考查余子式,关键是理解余子式的定义.2.若实数ω>0,若函数f(x)=cos(ωx)+sin(ωx)的最小正周期为π,则ω=2.【考点】H1:三角函数的周期性及其求法.【分析】利用两角和的正弦公式化简函数的解析式,再利用正弦函数的周期性,求得ω的值.【解答】解:实数ω>0,若函数f(x)=cos(ωx)+sin(ωx)=sin(ωx+)的最小正周期为π,∴=π,∴ω=2,故答案为:2.【点评】本题主要考查两角和的正弦公式,正弦函数的周期性,属于基础题.3.已知圆锥的底面半径和高均为1,则该圆锥的侧面积为.【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的侧面积公式代入求出即可.【解答】解:∵圆锥的底面半径为1,高为1,∴母线长l为:=,∴圆锥的侧面积为:πrl=π×1×=π,故答案为:π.【点评】题考查了圆锥的侧面积的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.4.设向量=(2,3),向量=(6,t),若与夹角为钝角,则实数t的取值范围为(﹣∞,﹣4).【考点】9S:数量积表示两个向量的夹角.【分析】由题意可得<0,且、不共线,即,由此求得实数t的取值范围.【解答】解:若与夹角为钝角,向量=(2,3),向量=(6,t),则<0,且、不共线,∴,求得t<﹣4,故答案为:(﹣∞,﹣4).【点评】本题主要考查两个向量的数量公式,两个向量共线的性质,属于基础题.5.集合A={1,3,a2},集合B={a+1,a+2},若B∪A=A,则实数a=2.【考点】18:集合的包含关系判断及应用.【分析】根据并集的意义,由A∪B=A得到集合B中的元素都属于集合A,列出关于a的方程,求出方程的解得到a的值.【解答】解:由A∪B=A,得到B⊆A,∵A={1,3,a2},集合B={a+1,a+2},∴a+1=1,a+2=a2,或a+1=a2,a+2=1,或a+1=3,a+2=a2,或a+1=a2,a+2=3,解得:a=2.故答案为2.【点评】此题考查了并集的意义,以及集合中元素的特点.集合中元素有三个特点,即确定性,互异性,无序性.学生做题时注意利用元素的特点判断得到满足题意的a的值.6.设z1、z2是方程z2+2z+3=0的两根,则|z1﹣z2|=2.【考点】A7:复数代数形式的混合运算.【分析】求出z,即可求出|z1﹣z2|.【解答】解:由题意,z=﹣1±i,∴|z1﹣z2|=|2i|=2,故答案为2.【点评】本题考查复数的运算与球模,考查学生的计算能力,比较基础.7.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)<﹣5的解为(﹣∞,﹣3).【考点】3L:函数奇偶性的性质.【分析】根据函数奇偶性的性质求出当x<0的解析式,讨论x>0,x<0,x=0,解不等式即可.【解答】解:若x<0,则﹣x>0,∵当x>0时,f(x)=2x﹣3,∴当﹣x>0时,f(﹣x)=2﹣x﹣3,∵f(x)是定义在R上的奇函数,∴f(﹣x)=2﹣x﹣3=﹣f(x),则f(x)=﹣2﹣x+3,x<0,当x>0时,不等式f(x)<﹣5等价为2x﹣3<﹣5即2x<﹣2,无解,不成立;当x<0时,不等式f(x)<﹣5等价为﹣2﹣x+3<﹣5即2﹣x>8,得﹣x>3,即x<﹣3;当x=0时,f(0)=0,不等式f(x)<﹣5不成立,综上,不等式的解为x<﹣3.故不等式的解集为(﹣∞,﹣3).故答案为(﹣∞,﹣3).【点评】本题主要考查不等式的解集的求解,根据函数奇偶性的性质求出函数的解析式是解决本题的关键.8.若变量x、y满足约束条件,则z=y﹣x的最小值为﹣4.【考点】7C:简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(8,4),化目标函数z=y﹣x,得y=x+z,由图可知,当直线y=x+z过点A(8,4)时,直线在y轴上的截距最小,z有最小值为﹣4.故答案为:﹣4.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.9.小明和小红各自掷一颗均匀的正方体骰子,两人相互独立地进行,则小明掷出的点数不大于2或小红掷出的点数不小于3的概率为.【考点】CC:列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数n=6×6=36,再求出小明掷出的点数不大于2或小红掷出的点数不小于3包含的基本事件个数m=2×6+6×4﹣2×4=28,由此能求出小明掷出的点数不大于2或小红掷出的点数不小于3的概率.【解答】解:小明和小红各自掷一颗均匀的正方体骰子,两人相互独立地进行,基本事件总数n=6×6=36,小明掷出的点数不大于2或小红掷出的点数不小于3包含的基本事件个数:m=2×6+6×4﹣2×4=28,∴小明掷出的点数不大于2或小红掷出的点数不小于3的概率为:p==.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.10.设A是椭圆+=1(a>0)上的动点,点F的坐标为(﹣2,0),若满足|AF|=10的点A有且仅有两个,则实数a的取值范围为8<a<12.【考点】K4:椭圆的简单性质.【分析】由题意,F是椭圆的焦点,满足|AF|=10的点A有且仅有两个,可得a ﹣2<10<a+2,即可得出结论.【解答】解:由题意,F是椭圆的焦点,∵满足|AF|=10的点A有且仅有两个,∴a﹣2<10<a+2,∴8<a<12,故答案为:8<a<12.【点评】本题考查椭圆的方程与性质,考查学生的计算能力,比较基础.11.已知a>0,b>0,当(a+4b)2+取到最小值时,b=.【考点】7F:基本不等式.【分析】根据基本不等式,,a=4b时取等号,进而得出,进一步可求出a=1,时,取到最小值,即求出了此时的b的值.【解答】解:∵a>0,b>0;∴,当a=4b时取“=”;∴(a+4b)2≥16ab;∴=8,当,即,a=1时取“=”;此时,b=.故答案为:.【点评】考查基本不等式,注意基本不等式等号成立的条件,不等式的性质.12.设函数f a(x)=|x|+|x﹣a|,当a在实数范围内变化时,在圆盘x2+y2≤1内,且不在任一f a(x)的图象上的点的全体组成的图形的面积为.【考点】7F:基本不等式.【分析】根据题意,分析可得函数f a(x)=|x|+|x﹣a|(当a在实数范围内变化)的图象,进而可得在圆盘x2+y2≤1内,且不在任一f a(x)的图象上的点单位圆的,由圆的面积公式计算可得答案.【解答】解:根据题意,对于函数f a(x)=|x|+|x﹣a|,当a变化时,其图象为在圆盘x2+y2≤1内,且不在任一f a(x)的图象上的点单位圆的,则其面积S=×π=;故答案为:.【点评】本题考查函数的图象,关键是分析函数f a(x)=|x|+|x﹣a|(当a在实数范围内变化)的图象.二、选择题13.设z∈C且z≠0,“z是纯虚数"是“z2∈R”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】z∈C且z≠0,“z是纯虚数”⇒“z2∈R",反之不成立,例如取z=2.即可判断出结论.【解答】解:∵z∈C且z≠0,“z是纯虚数”⇒“z2∈R”,反之不成立,例如取z=2.∴“z是纯虚数”是“z2∈R”的充分不必要条件.故选:A.【点评】本题考查了纯虚数的定义、复数的运算法则、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.14.设等差数列{a n}的公差为d,d≠0,若{a n}的前10项之和大于其前21项之和,则()A.d<0 B.d>0 C.a16<0 D.a16>0【考点】85:等差数列的前n项和.【分析】由{a n}的前10项之和大于其前21项之和,得到a1<﹣15d,由此得到a16=a1+15d<0.【解答】解:等差数列{a n}的公差为d,d≠0,∵{a n}的前10项之和大于其前21项之和,∴10a1+>21a1+d,∴11a1<﹣165d,即a1<﹣15d,∴a16=a1+15d<0.故选:C.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.15.如图,N、S是球O直径的两个端点,圆C1是经过N和S点的大圆,圆C2和圆C3分别是所在平面与NS垂直的大圆和小圆,圆C1和C2交于点A、B,圆C1和C3交于点C、D,设a、b、c分别表示圆C1上劣弧CND的弧长、圆C2上半圆弧AB的弧长、圆C3上半圆弧CD的弧长,则a、b、c的大小关系为()A.b>a=c B.b=c>a C.b>a>c D.b>c>a【考点】L*:球面距离及相关计算.【分析】分别计算a,b,c,即可得出结论.【解答】解:设球的半径为R,球心角∠COD=2α,则b=πR,a=2αR,∵CD<AB,∴c<b,∵CD=2Rsinα,∴c=2πRsinα,∵0<α<,∴=>1,∴c>a,∴b>c>a,故选D.【点评】本题考查球中弧长的计算,考查学生的计算能力,正确计算是关键.16.对于定义在R上的函数f(x),若存在正常数a、b,使得f(x+a)≤f(x)+b对一切x∈R均成立,则称f(x)是“控制增长函数",在以下四个函数中:①f(x)=x2+x+1;②f(x)=;③f(x)=sin(x2);④f(x)=x•sinx.是“控制增长函数"的有()A.②③B.③④C.②③④D.①②④【考点】3T:函数的值.【分析】假设各函数为“控制增长函数",根据定义推倒f(x+a)≤f(x)+b恒成立的条件,判断a,b的存在性即可得出答案.【解答】解:对于①,f(x+a)≤f(x)+b可化为:(x+a)2+(x+a)+1≤x2+x+1+b,即2ax≤﹣a2﹣a+b,即x≤对一切x∈R均成立,由函数的定义域为R,故不存在满足条件的正常数a、b,故f(x)=x2+x+1不是“控制增长函数";对于②,若f(x)=是“控制增长函数”,则f(x+a)≤f(x)+b可化为:≤+b,∴|x+a|≤|x|+b2+2b恒成立,又|x+a|≤|x|+a,∴|x|+a≤|x|+b2+2b,∴≥,显然当a<b2时式子恒成立,∴f(x)=是“控制增长函数”;对于③,∵﹣1≤f(x)=sin(x2)≤1,∴f(x+a)﹣f(x)≤2,∴当b≥2时,a为任意正数,使f(x+a)≤f(x)+b恒成立,故f(x)=sin(x2)是“控制增长函数”;对于④,若f(x)=xsinx是“控制增长函数”,则(x+a)sin(x+a)≤xsinx+b恒成立,∵(x+a)sin(x+a)≤x+a,∴x+a≤xsinx+b≤x+b,即a≤b,∴f(x)=xsinx是“控制增长函数".故选C.【点评】本题考查了新定义的理解,函数存在性与恒成立问题研究,属于中档题.三、解答题17.(14分)(2017•杨浦区二模)如图,正方体ABCD﹣A1B1C1D1中,AB=4,P、Q 分别是棱BC与B1C1的中点.(1)求异面直线D1P和A1Q所成角的大小;(2)求以A1、D1、P、Q四点为四个顶点的四面体的体积.【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【分析】(1)以D为原点,DA,DC,DD1为x,y,z轴,建立空间直角坐标系,利用向量法能求出异面直线D1P和A1Q所成角.(2)以A1、D1、P、Q四点为四个顶点的四面体的体积V=.【解答】解:(1)以D为原点,DA,DC,DD1为x,y,z轴,建立空间直角坐标系,则D1(0,0,4),P(2,4,0),A1(4,0,4),Q(2,4,4),=(2,4,﹣4),=(﹣2,4,0),设异面直线D1P和A1Q所成角为θ,则cosθ===,∴θ=arccoa.∴异面直线D1P和A1Q所成角为arccos.(2)∵==8,PQ⊥平面A1D1Q,且PQ=4,∴以A1、D1、P、Q四点为四个顶点的四面体的体积:V===.【点评】本题考查异面直线所成角的求法,考查四面体的体积的求法,是中档题,考查推理论证能力、运算求解能力,考查转化化归思想、数形结合思想.18.(14分)(2017•杨浦区二模)已知函数f(x)=.(1)判断函数f(x)的奇偶性,并证明;(2)若不等式f(x)>log9(2c﹣1)有解,求c的取值范围.【考点】3K:函数奇偶性的判断.【分析】(1)利用奇函数的定义,即可得出结论;(2)f(x)===﹣+∈(﹣,),不等式f(x)>log9(2c﹣1)有解,可得>log9(2c﹣1),即可求c的取值范围.【解答】解:(1)函数的定义域为R,f(x)==,f(﹣x)==﹣f(x),∴函数f(x)是奇函数;(2)f(x)===﹣+∈(﹣,)∵不等式f(x)>log9(2c﹣1)有解,∴>log9(2c﹣1),∴0<2c﹣1<3,∴.【点评】本题考查奇函数的定义,考查函数的值域,考查学生分析解决问题的能力,属于中档题.19.(14分)(2017•杨浦区二模)如图,扇形ABC是一块半径为2千米,圆心角为60°的风景区,P点在弧BC上,现欲在风景区中规划三条商业街道,要求街道PQ与AB垂直,街道PR与AC垂直,线段RQ表示第三条街道.(1)如果P位于弧BC的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ、PR、RQ每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)【考点】HU:解三角形的实际应用;HS:余弦定理的应用.【分析】(1)由P为于∠BAC的角平分线上,利用几何关系,分别表示丨PQ 丨,丨PR丨,丨RQ丨,即可求得三条街道的总长度;(2)设∠PAB=θ,0<θ<60°,根据三角函数关系及余弦定理,即可求得丨PQ丨,丨PR丨,丨RQ丨,则总效益W=丨PQ丨×300+丨PR丨×200+丨RQ丨×400,利用辅助角公式及正弦函数的性质,即可求得答案.【解答】解:(1)由P位于弧BC的中点,在P位于∠BAC的角平分线上,则丨PQ丨=丨PR丨=丨PA丨sin∠PAB=2×sin30°=2×=1,丨AQ丨=丨PA丨cos∠PAB=2×=,由∠BAC=60°,且丨AQ丨=丨AR丨,∴△QAB为等边三角形,则丨RQ丨=丨AQ丨=,三条街道的总长度l=丨PQ丨+丨PR丨+丨RQ丨=1+1+=2+;(2)设∠PAB=θ,0<θ<60°,则丨PQ丨=丨AP丨sinθ=2sinθ,丨PR丨=丨AP丨sin(60°﹣θ)=2sin(60°﹣θ)=cosθ﹣sinθ,丨AQ丨=丨AP丨cosθ=2cosθ,丨AR丨=丨AP丨cos(60°﹣θ)=2cos(60°﹣θ)=cosθ+sinθ由余弦定理可知:丨RQ丨2=丨AQ丨2+丨AR丨2﹣2丨AQ丨丨AR丨cos60°, =(2cosθ)2+(cosθ+sinθ)2﹣2×2cosθ(cosθ+sinθ)cos60°,=3,则丨RQ丨=,三条街道每年能产生的经济总效益W,W=丨PQ丨×300+丨PR丨×200+丨RQ 丨×400=300×2sinθ+(cosθ﹣sinθ)×200+400=400sinθ+200cosθ+400,=200(2sinθ+cosθ)+400,=200sin(θ+φ)+400,tanφ=,当sin(θ+φ)=1时,W取最大值,最大值为200+400≈1222,三条街道每年能产生的经济总效益最高约为1222万元.【点评】本题考查三角函数的综合应用,考查余弦定理,正弦函数图象及性质,辅助角公式,考查计算能力,属于中档题.20.(16分)(2017•杨浦区二模)设数列{a n}满足a n=A•4n+B•n,其中A、B是两个确定的实数,B≠0.(1)若A=B=1,求{a n}的前n项之和;(2)证明:{a n}不是等比数列;(3)若a1=a2,数列{a n}中除去开始的两项之外,是否还有相等的两项?证明你的结论.【考点】8E:数列的求和;8H:数列递推式.【分析】(1)运用数列的求和方法:分组求和,结合等比数列和等差数列的求和公式,计算即可得到所求和;(2)运用反证法,假设{a n}是等比数列,由定义,设公比为q,化简整理推出B=0与题意矛盾,即可得证;(3)数列{a n}中除去开始的两项之外,假设还有相等的两项,由题意可得B=﹣12A,构造函数f(x)=4x﹣12x,x>0,求出导数和单调性,即可得到结论.【解答】解:(1)由a n=4n+n,可得{a n}的前n项之和为(4+42+…+4n)+(1+2+…+n)=+n(n+1)=(4n﹣1)+(n2+n);(2)证明:假设{a n}是等比数列,即有=q(q为公比),即为Aq•4n+Bq•n=A•4n+1+B•(n+1),即Aq=4A,Bq=B,B=0,解得q=4,B=0,这与B≠0矛盾,则{a n}不是等比数列;(3)若a1=a2,数列{a n}中除去开始的两项之外,假设还有相等的两项,设为a k=a m,(k,m不相等),由a1=a2,可得4A+B=16A+2B,即B=﹣12A.则a n=A•4n+B•n=A(4n﹣12•n),即有A(4k﹣12•k)=A(4m﹣12•m),即为4k﹣12•k=4m﹣12•m,构造函数f(x)=4x﹣12x,x>0,f′(x)=4x ln4﹣12,由f′(x)=0可得x0=log4∈(1,2),当x>x0时,f′(x)>0,f(x)递增,故数列{a n}中除去开始的两项之外,再没有相等的两项.【点评】本题考查数列的求和方法:分组求和,考查等比数列和等差数列的求和公式,同时考查反证法的运用,以及构造函数法,考查化简整理的运算能力,属于中档题.21.(18分)(2017•杨浦区二模)设双曲线Γ的方程为x2﹣=1,过其右焦点F且斜率不为零的直线l1与双曲线交于A、B两点,直线l2的方程为x=t,A、B 在直线l2上的射影分别为C、D.(1)当l1垂直于x轴,t=﹣2时,求四边形ABDC的面积;(2)当t=0,l1的斜率为正实数,A在第一象限,B在第四象限时,试比较和1的大小,并说明理由;(3)是否存在实数t∈(﹣1,1),使得对满足题意的任意直线l1,直线AD和直线BC的交点总在x轴上,若存在,求出所有的t的值和此时直线AD与BC交点的位置;若不存在,说明理由.【考点】KC:双曲线的简单性质.(1)由双曲线Γ的方程为x2﹣=1,可得c==2,可得右焦点F(2,0).当【分析】l1垂直于x轴,t=﹣2时,由双曲线的对称性可得:四边形ABDC为矩形.即可得出面积.(2)作出右准线MN:x=.e==2.分别作AC⊥MN,垂足为M;BD⊥MN,垂足为N.利用双曲线的第二定义可得:=,==.(3)存在实数t∈(﹣1,1),t=时,定点.下面给出证明分析:设直线AB的方程为:y=k(x﹣2),A(x1,k(x1﹣2)),B(x2,k(x2﹣2)).则C(t,k(x1﹣2)),D(t,k(x2﹣2)).直线方程与双曲线方程联立化为:(3﹣k2)x2+4k2x ﹣4k2﹣3=0,分别得出:直线AD与BC的方程,进而得出.【解答】解:(1)由双曲线Γ的方程为x2﹣=1,可得c==2,可得右焦点F(2,0).当l1垂直于x轴,t=﹣2时,由双曲线的对称性可得:四边形ABDC为矩形.代入双曲线可得:22﹣=1,焦点y=±3.∴四边形ABDC的面积S=4×6=24.(2)作出右准线MN:x=.e==2.分别作AC⊥MN,垂足为M;BD⊥MN,垂足为N.则==+.===.∵|AF|>|FB|,∴<.∴<1.(3)存在实数t∈(﹣1,1),t=时,定点.下面给出证明:设直线AB的方程为:y=k(x﹣2),A(x1,k(x1﹣2)),B(x2,k(x2﹣2)).则C(t,k(x1﹣2)),D(t,k(x2﹣2)).联立,化为:(3﹣k2)x2+4k2x﹣4k2﹣3=0,可得x1+x2=,x1•x2=.直线AD的方程为:y﹣k(x1﹣2)=(x﹣x1),令y=0,解得x=.直线BC的方程为:y﹣k(x2﹣2)=(x﹣x2),令y=0,解得x=.由=,可得:(2+t)(x1+x2)﹣2x1•x2﹣4t=0.∴(2+t)•﹣2•﹣4t=0.化为:t=,不妨取k=1,则2x2+4x﹣7=0,解得x=.不妨取x1=,x2=.定点的横坐标x===.∴定点坐标.【点评】本题考查了双曲线的第二定义、直线与双曲线相交问题、一元二次方程的根与系数的关系、直线过定点问题,考查了推理能力与计算能力,属于难题.。
2017年上海市黄浦区高考数学二模试卷(解析版)

2017年上海市黄浦区高考数学二模试卷一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[1.(4分)函数y=的定义域是.2.(4分)若关于x,y的方程组有无数多组解,则实数a=.3.(4分)若“x2﹣2x﹣3>0”是“x<a”的必要不充分条件,则a的最大值为.4.(4分)已知复数z 1=3+4i,z2=t+i(其中i为虚数单位),且是实数,则实数t 等于.5.(4分)若函数(a>0,且a≠1)是R上的减函数,则a的取值范围是.6.(4分)设变量x,y满足约束条件则目标函数z=﹣2x+y的最小值为.7.(5分)已知圆C:(x﹣4)2+(y﹣3)2=4和两点A(﹣m,0),B(m,0)(m>0),若圆C上至少存在一点P,使得∠APB=90°,则m的取值范围是.8.(5分)已知向量,,如果∥,那么的值为.9.(5分)若从正八边形的8个顶点中随机选取3个顶点,则以它们作为顶点的三角形是直角三角形的概率是.10.(5分)若将函数f(x)=的图象向左平移个单位后,所得图象对应的函数为偶函数,则ω的最小值是.11.(5分)三棱锥P﹣ABC满足:AB⊥AC,AB⊥AP,AB=2,AP+AC=4,则该三棱锥的体积V的取值范围是12.(5分)对于数列{a n},若存在正整数T,对于任意正整数n都有a n+T=a n成立,则称数列{a n}是以T为周期的周期数列.设b1=m(0<m<1),对任意正整数n都有若数列{b n}是以5为周期的周期数列,则m的值可以是.(只要求填写满足条件的一个m值即可)二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)下列函数中,周期为π,且在上为减函数的是()A.B.C.D.14.(5分)如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9πB.10πC.11πD.12π15.(5分)已知双曲线=1(a>0,b>0)的右焦点到左顶点的距离等于它到渐近线距离的2倍倍,则其渐近线方程为()A.2x±y=0B.x±2y=0C.4x±3y=0D.3x±4y=0 16.(5分)如图所示,∠BAC=,圆M与AB,AC分别相切于点D,E,AD=1,点P 是圆M及其内部任意一点,且(x,y∈R),则x+y的取值范围是()A.B.C.D.三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)如图,在直棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,AB⊥AC,D,E,F分别是A1B1,CC1,BC的中点.(1)求证:AE⊥DF;(2)求AE与平面DEF所成角的大小及点A到平面DEF的距离.18.(14分)在△ABC中,角A,B,C的对边分别为a,b,c,且b cos C,a cos A,c cos B成等差数列.(1)求角A的大小;(2)若,b+c=6,求的值.19.(14分)如果一条信息有n(n>1,n∈N)种可能的情形(各种情形之间互不相容),且这些情形发生的概率分别为p1,p2,…,p n,则称H=f(p1)+f(p2)+…f(p n)(其中f (x)=﹣x log a x,x∈(0,1))为该条信息的信息熵.已知.(1)若某班共有32名学生,通过随机抽签的方式选一名学生参加某项活动,试求“谁被选中”的信息熵的大小;(2)某次比赛共有n位选手(分别记为A1,A2,…,A n)参加,若当k=1,2,…,n﹣1时,选手A k获得冠军的概率为2﹣k,求“谁获得冠军”的信息熵H关于n的表达式.20.(16分)设椭圆M:的左顶点为A、中心为O,若椭圆M过点,且AP⊥PO.(1)求椭圆M的方程;(2)若△APQ的顶点Q也在椭圆M上,试求△APQ面积的最大值;(3)过点A作两条斜率分别为k1,k2的直线交椭圆M于D,E两点,且k1k2=1,求证:直线DE恒过一个定点.21.(18分)若函数f(x)满足:对于任意正数s,t,都有f(s)>0,f(t)>0,且f(s)+f(t)<f(s+t),则称函数f(x)为“L函数”.(1)试判断函数与是否是“L函数”;(2)若函数g(x)=3x﹣1+a(3﹣x﹣1)为“L函数”,求实数a的取值范围;(3)若函数f(x)为“L函数”,且f(1)=1,求证:对任意x∈(2k﹣1,2k)(k∈N*),都有.2017年上海市黄浦区高考数学二模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分.其中第1~6题每题满分54分,第7~12题每题满分54分)考生应在答题纸相应编号的空格内直接填写结果.[1.(4分)函数y=的定义域是[0,2].【解答】解:要使函数有意义需2x﹣x2≥0解得0≤x≤2故答案为:[0,2]2.(4分)若关于x,y的方程组有无数多组解,则实数a=2.【解答】解:根据题意,若关于x,y的方程组有无数多组解,则直线ax+y﹣1=0与直线4x+ay﹣2=0重合,则有==,解可得a=2,故答案为:2.3.(4分)若“x2﹣2x﹣3>0”是“x<a”的必要不充分条件,则a的最大值为﹣1.【解答】解:因x2﹣2x﹣3>0得x<﹣1或x>3,又“x2﹣2x﹣3>0”是“x<a”的必要不充分条件,知“x<a”可以推出“x2﹣2x﹣3>0”,反之不成立.则a的最大值为﹣1.故答案为:﹣1.4.(4分)已知复数z 1=3+4i,z2=t+i(其中i为虚数单位),且是实数,则实数t等于.【解答】解:∵z1=3+4i,z2=t+i,∴=(3+4i)(t﹣i)=3t+4+(4t﹣3)i,∵是实数,∴4t﹣3=0,得t=.故答案为:.5.(4分)若函数(a>0,且a≠1)是R上的减函数,则a的取值范围是.【解答】解:∵函数f(x)(a>0且a≠1)是R上的减函数,∴0<a<1,且3a﹣0≥a0+1=2,∴≤a<1.故答案为:.6.(4分)设变量x,y满足约束条件则目标函数z=﹣2x+y的最小值为﹣4.【解答】解:由约束条件作出可行域如图所示,,联立方程组,解得B(3,2),化目标函数z=﹣2x+y为y=2x+z,由图可知,当直线y=﹣2x+z过B时,直线在y轴上的截距最小,z有最小值为z=﹣2×3+2=﹣4.故答案为:﹣4.7.(5分)已知圆C:(x﹣4)2+(y﹣3)2=4和两点A(﹣m,0),B(m,0)(m>0),若圆C上至少存在一点P,使得∠APB=90°,则m的取值范围是[3,7].【解答】解:∵圆C:(x﹣4)2+(y﹣3)2=4,∴圆心C(4,3),半径r=2;设点P(a,b)在圆C上,则=(a+m,b),=(a﹣m,b);∵∠APB=90°,∴(a+m)(a﹣m)+b2=0;即m2=a2+b2;∴|OP|=,∴|OP|的最大值是|OC|+r=5+2=7,最小值是|OC|﹣r=5﹣2=3;∴m的取值范围是[3,7].故答案为[3,7].8.(5分)已知向量,,如果∥,那么的值为.【解答】解:∵向量,,∥,∴cos(+α)•4﹣1•1=0,求得cos(+α)=,即sin(﹣﹣α)=,即sin(﹣α)=,∴=1﹣2=1﹣2•=,故答案为:.9.(5分)若从正八边形的8个顶点中随机选取3个顶点,则以它们作为顶点的三角形是直角三角形的概率是.【解答】解:∵任何三点不共线,∴共有=56个三角形.8个等分点可得4条直径,可构成直角三角形有4×6=24个,所以构成直角三角形的概率为=,故答案为.10.(5分)若将函数f(x)=的图象向左平移个单位后,所得图象对应的函数为偶函数,则ω的最小值是.【解答】解:∵将函数f(x)=的图象向左平移个单位后,所得图象对应的函数解析式为:f(x)=|sin[ω(x+)﹣]|=|sin[ωx+(﹣)]|,∵当﹣=时,即ω=6k+时,f(x)=|sin(ωx+)|=|﹣cos(ωx)|=|cos(ωx)|,f(x)为偶函数.∵ω>0,∴当k=0时,ω有最小值.故答案为:.11.(5分)三棱锥P﹣ABC满足:AB⊥AC,AB⊥AP,AB=2,AP+AC=4,则该三棱锥的体积V的取值范围是(0,]【解答】解:∵AP+AC=4,∴AP•AC≤()2=4,设∠P AC=θ,则0<θ<π,∴S△P AC=AP•AC•sinθ≤2sinθ≤2,∴0<S△P AC≤2.∵AB⊥AC,AB⊥AP,∴AB⊥平面P AC,∴V=S△P AC•AB=S△P AC,∴0<V≤.故答案为:.12.(5分)对于数列{a n},若存在正整数T,对于任意正整数n都有a n+T=a n成立,则称数列{a n}是以T为周期的周期数列.设b1=m(0<m<1),对任意正整数n都有若数列{b n}是以5为周期的周期数列,则m的值可以是﹣1.(只要求填写满足条件的一个m值即可)【解答】解:取m=﹣1=b1,则b2==,b3=,b4=+1,b5=,b6=﹣1,满足b n+5=b n.故答案为:﹣1.二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)下列函数中,周期为π,且在上为减函数的是()A.B.C.D.【解答】解:C、D中函数周期为2π,所以错误当时,,函数为减函数而函数为增函数,故选:A.14.(5分)如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9πB.10πC.11πD.12π【解答】解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,其表面为S=4π×12+π×12×2+2π×1×3=12π故选:D.15.(5分)已知双曲线=1(a>0,b>0)的右焦点到左顶点的距离等于它到渐近线距离的2倍倍,则其渐近线方程为()A.2x±y=0B.x±2y=0C.4x±3y=0D.3x±4y=0【解答】解:双曲线的右焦点到左顶点的距离为a+c,右焦点到渐近线距离为b,所以有:a+c=2b,由4x±3y=0得,取a=3,b=4,则c=5,满足a+c=2b.故选:C.16.(5分)如图所示,∠BAC=,圆M与AB,AC分别相切于点D,E,AD=1,点P 是圆M及其内部任意一点,且(x,y∈R),则x+y的取值范围是()A.B.C.D.【解答】解:连接MA,MD,则∠MAD=,MD⊥AD,∵AD=1,∴MD=,MA=2,∵点P是圆M及其内部任意一点,∴2﹣≤AP≤2+,且当A,P,M三点共线时,x+y取得最值,当AP取得最大值时,以AP为对角线,以AB,AC为邻边方向作平行四边形AA1PB1,则△APB1和△AP A1是等边三角形,∴AB1=AA1=AP=2+,∴x=y=2+,∴x+y的最大值为4+2,同理可求出x+y的最小值为4﹣2.故选:B.三、解答题(本大题共有5题,满分76分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)如图,在直棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,AB⊥AC,D,E,F分别是A1B1,CC1,BC的中点.(1)求证:AE⊥DF;(2)求AE与平面DEF所成角的大小及点A到平面DEF的距离.【解答】解:(1)以A为坐标原点、AB为x轴、AC为y轴、AA1为z轴建立如图的空间直角坐标系.由题意可知A(0,0,0),D(0,1,2),E(﹣2,0,1),F(﹣1,1,0),故,…(4分)由,可知,即AE⊥DF.…(6分)(2)设是平面DEF的一个法向量,又,故由解得故.…(9分)设AE与平面DEF所成角为θ,则,…(12分)所以AE与平面DEF所成角为,点A到平面DEF的距离为.…(14分)18.(14分)在△ABC中,角A,B,C的对边分别为a,b,c,且b cos C,a cos A,c cos B成等差数列.(1)求角A的大小;(2)若,b+c=6,求的值.【解答】(本题满分为14分)解:(1)由b cos C,a cos A,c cos B成等差数列,可得b cos C+c cos B=2a cos A,…(2分)故sin B cos C+sin C cos B=2sin A cos A,所以sin(B+C)=2sin A cos A,…(4分)又A+B+C=π,所以sin(B+C)=sin A,故sin A=2sin A cos A,又由A∈(0,π),可知sin A≠0,故,所以.…(6分)(另法:利用b cos C+c cos B=a求解)(2)在△ABC中,由余弦定理得,…(8分)即b2+c2﹣bc=18,故(b+c)2﹣3bc=18,又b+c=6,故bc=6,…(10分)所以=…(12分)=c2+b2+bc=(b+c)2﹣bc=30,故.…(14分)19.(14分)如果一条信息有n(n>1,n∈N)种可能的情形(各种情形之间互不相容),且这些情形发生的概率分别为p1,p2,…,p n,则称H=f(p1)+f(p2)+…f(p n)(其中f (x)=﹣x log a x,x∈(0,1))为该条信息的信息熵.已知.(1)若某班共有32名学生,通过随机抽签的方式选一名学生参加某项活动,试求“谁被选中”的信息熵的大小;(2)某次比赛共有n位选手(分别记为A1,A2,…,A n)参加,若当k=1,2,…,n﹣1时,选手A k获得冠军的概率为2﹣k,求“谁获得冠军”的信息熵H关于n的表达式.【解答】解:(1)由,可得,解之得a=2.…(2分)由32种情形等可能,故,…(4分)所以,答:“谁被选中”的信息熵为5.…(6分)(2)A n获得冠军的概率为,…(8分)当k=1,2,…,n﹣1时,,又,故,…(11分),以上两式相减,可得,故,答:“谁获得冠军”的信息熵为.…(14分)20.(16分)设椭圆M:的左顶点为A、中心为O,若椭圆M过点,且AP⊥PO.(1)求椭圆M的方程;(2)若△APQ的顶点Q也在椭圆M上,试求△APQ面积的最大值;(3)过点A作两条斜率分别为k1,k2的直线交椭圆M于D,E两点,且k1k2=1,求证:直线DE恒过一个定点.【解答】解:(1)由AP⊥OP,可知k AP•k OP=﹣1,又A点坐标为(﹣a,0),故,可得a=1,…(2分)因为椭圆M过P点,故,可得,所以椭圆M的方程为.…(4分)(2)AP的方程为,即x﹣y+1=0,由于Q是椭圆M上的点,故可设,…(6分)所以…(8分)=当,即时,S△APQ取最大值.故S△APQ的最大值为.…(10分)(3)直线AD方程为y=k1(x+1),代入x2+3y2=1,可得,,又x A=﹣1,故,,…(12分)同理可得,,又k1k2=1且k1≠k2,可得且k1≠±1,所以,,,直线DE的方程为,…(14分)令y=0,可得.故直线DE过定点(﹣2,0).…(16分)(法二)若DE垂直于y轴,则x E=﹣x D,y E=y D,此时与题设矛盾.若DE不垂直于y轴,可设DE的方程为x=ty+s,将其代入x2+3y2=1,可得(t2+3)y2+2tsy+s2﹣1=0,可得,…(12分)又,可得,…(14分)故,可得s=﹣2或﹣1,又DE不过A点,即s≠﹣1,故s=﹣2.所以DE的方程为x=ty﹣2,故直线DE过定点(﹣2,0).…(16分)21.(18分)若函数f(x)满足:对于任意正数s,t,都有f(s)>0,f(t)>0,且f(s)+f(t)<f(s+t),则称函数f(x)为“L函数”.(1)试判断函数与是否是“L函数”;(2)若函数g(x)=3x﹣1+a(3﹣x﹣1)为“L函数”,求实数a的取值范围;(3)若函数f(x)为“L函数”,且f(1)=1,求证:对任意x∈(2k﹣1,2k)(k∈N*),都有.【解答】解:(1)对于函数,当t>0,s>0时,,又,所以f1(s)+f1(t)<f1(s+t),故是“L函数”.…(2分)对于函数,当t=s=1时,,故不是“L函数”.…(4分)(2)当t>0,s>0时,由g(x)=3x﹣1+a(3﹣x﹣1)是“L函数”,可知g(t)=3t﹣1+a(3﹣t﹣1)>0,即(3t﹣1)(3t﹣a)>0对一切正数t恒成立,又3t﹣1>0,可得a<3t对一切正数t恒成立,所以a≤1.…(6分)由g(t)+g(s)<g(t+s),可得3s+t﹣3s﹣3t+1+a(3﹣s﹣t﹣3﹣s﹣3﹣t+1)>0,即3t(3s﹣1)﹣(3s﹣1)+a(3﹣s﹣1)(3﹣t﹣1)=(3s﹣1)(3t﹣1)+a(3﹣s﹣1)(3﹣t﹣1)=(3s﹣1)(3t﹣1)+a•3﹣s﹣t(3s﹣1)(3t﹣1)>0,故(3s﹣1)(3t﹣1)(3s+t+a)>0,又(3t﹣1)(3s﹣1)>0,故3s+t+a>0,由3s+t+a>0对一切正数s,t恒成立,可得a+1≥0,即a≥﹣1.…(9分)综上可知,a的取值范围是[﹣1,1].…(10分)(3)由函数f(x)为“L函数”,可知对于任意正数s,t,都有f(s)>0,f(t)>0,且f(s)+f(t)<f(s+t),令s=t,可知f(2s)>2f(s),即,…(12分)故对于正整数k与正数s,都有,…(14分)对任意x∈(2k﹣1,2k)(k∈N*),可得,又f(1)=1,所以,…(16分)同理,故.…(18分)。
2017年-上海各区-数学高三二模试卷和答案

宝山2017二模一、填空题(本大题共有12题,满分54分,第16题每题4分,第712题每题5分)考生应在答题纸的相应位置直接填写结果.1.若集合{}|0A x x =>,{}|1B x x =<,则A B ⋂=____________2.已知复数z1z i ⋅=+(i 为虚数单位),则z =____________ 3.函数()sin cos cos sin x x f x x x=的最小正周期是____________4.已知双曲线()2221081x y a a -=>的一条渐近线方程3y x =,则a =____________ 5.若圆柱的侧面展开图是边长为4的正方形,则圆柱的体积为____________6.已知,x y 满足0220x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值是____________7.直线12x t y t =-⎧⎨=-⎩(t 为参数)与曲线3cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的交点个数是____________8.已知函数()()()220log 01xx f x x x ⎧≤⎪=⎨<≤⎪⎩的反函数是()1f x -,则12f -1⎛⎫= ⎪⎝⎭____________9.设多项式()()()()23*11110,nx x x x x n N ++++++++≠∈的展开式中x 项的系数为n T ,则2limnn T n →∞=____________10.生产零件需要经过两道工序,在第一、第二道工序中产生的概率分别为0.01和p ,每道工序产生废品相互独立,若经过两道工序得到的零件不是废品的概率是0.9603,则p =____________11.设向量()(),,,m x y n x y ==-,P 为曲线()10m n x ⋅=>上的一个动点,若点P 到直线10x y -+=的距离大于λ恒成立,则实数λ的最大值为____________12.设1210,,,x x x 为1,2,,10的一个排列,则满足对任意正整数,m n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为____________二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设,a b R ∈,则“4a b +>”是“1a >且3b >”的( ) A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分又不必要条件14.如图,P 为正方体1111ABCD A B C D -中1AC 与1BD 的交点,则PAC 在该正方体各个面上的射影可能是( )A. ①②③④B.①③C. ①④D.②④15.如图,在同一平面内,点P 位于两平行直线12,l l 同侧,且P 到12,l l 的距离分别为1,3.点,M N 分别在12,l l 上,8PM PN +=,则PM PN ⋅的最大值为( )A. 15B. 12C. 10D. 916.若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”,设()()20x f x x xλ+=>,若对于任意()2,6t ∈,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ的取值范围是( )A. (]0,2B. (]1,2C. []1,2D. []1,4三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分8分,第2小题满分6分)如图,在正方体1111ABCD A B C D -中,E 、F 分别是线段BC 、1CD 的中点. (1)求异面直线EF 与1AA 所成角的大小; (2)求直线EF 与平面11AA B B 所成角的大小.18.(本题满分14分,第1小题6分,第2小题8分)已知抛物线()220y px p =>,其准线方程为10x +=,直线l 过点()(),00T t t >且与抛物线交于A 、B 两点,O 为坐标原点.(1)求抛物线方程,并证明:OA OB ⋅的值与直线l 倾斜角的大小无关; (2)若P 为抛物线上的动点,记PT 的最小值为函数()d t ,求()d t 的解析式.19.(本题满分14分,第1小题6分,第2小题8分)对于定义域为D 的函数()y f x =,如果存在区间[](),m n D m n ⊆<,同时满足:①()f x 在[],m n 内是单调函数;②当定义域是[],m n 时,()f x 的值域也是[],m n 则称函数()f x 是区间[],m n 上的“保值函数”.(1)求证:函数()22g x x x =-不是定义域[]0,1上的“保值函数”;(2)已知()()2112,0f x a R a a a x=+-∈≠是区间[],m n 上的“保值函数”,求a 的取值范围.20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)数列{}n a 中,已知()12121,,n n n a a a a k a a ++===+对任意*n N ∈都成立,数列{}n a 的前n 项和为n S .(这里,a k 均为实数) (1)若{}n a 是等差数列,求k ; (2)若11,2a k ==-,求n S ; (3)是否存在实数k ,使数列{}n a 是公比不为1的等比数列,且任意相邻三项12,,m m m a a a ++按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)设T,R 若存在常数0M >,使得对任意t T ∈,均有t M ≤,则称T 为有界集合,同时称M 为集合T 的上界.(1)设121|,21x xA y y x R ⎧⎫-==∈⎨⎬+⎩⎭、21|sin 2A x x ⎧⎫=>⎨⎬⎩⎭,试判断1A 、2A 是否为有界集合,并说明理由;(2)已知()2f x x u =+,记()()()()()()11,2,3,n n f x f x f x f f x n -===.若m R ∈,1,4u ⎡⎫∈+∞⎪⎢⎣⎭,且(){}*|n B f m n N =∈为有界集合,求u 的值及m 的取值范围;(3)设a 、b 、c 均为正数,将()2a b -、()2b c -、()2c a -中的最小数记为d ,是否存在正数()0,1λ∈,使得λ为有界集合222{|,dC y y a b c ==++a 、b 、c 均为正数}的上界,若存在,试求λ的最小值;若不存在,请说明理由.宝山区答案1.(0,1)2.13. π4.35. 5.16. 37. 28. 19.1210. 0.03 11.212.512 13. B14. C15.A16.A17. (1) (2)arctan 218.(1)24y x =,证明略(2)2)(t),(0t 2)d t ⎧≥⎪=⎨<<⎪⎩19. (1)证明略(2)12a或32a 20. (1)12k =(2)2(21,),(2,)n n n k k N S n n k k N **⎧-=-∈=⎨=∈⎩ (3)25k =-21.(1)1A 为有界集合,上界为1;2A 不是有界集合 (2)14u =,11,22m ⎡⎤∈-⎢⎥⎣⎦ (3)15λ=解析:(2)设()()011,,,1,2,3,...n n a m a f m a f a n -====,则()n n a f m =∵()2114a f m m u ==+≥,则222111111024a a a a u a u ⎛⎫-=-+=-+-≥ ⎪⎝⎭且211111024n n n n n a a a u a a ---⎛⎫-=-+-≥⇒≥ ⎪⎝⎭若(){}*|N n B f m n =∈为有界集合,则设其上界为0M ,既有*0,N n a M n ≤∈∴()()()112211112211......n n n n n n n n n a a a a a a a a a a a a a a a ------=-+-++-+=-+-++-+2222121111111...242424n n a u a u a u m u --⎛⎫⎛⎫⎛⎫=-+-+-+-++-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭222212111111...22244n n a a a m n u u n u u --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-++-+≥-+⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦若0n a M ≤恒成立,则014n u u M ⎛⎫-+≤ ⎪⎝⎭恒成立,又11044u u ≥⇒-≥ ∴14u =,∴()214f x x =+ 设12m λ=+(i )0λ>,则()22101011112422a a f m m a a λλλ⎛⎫⎛⎫-=-=++-+=⇒>> ⎪ ⎪⎝⎭⎝⎭∴111...2n n a a a m ->>>>>记()()212g x f x x x ⎛⎫=-=- ⎪⎝⎭,则当1212x x >>时,()()12g x g x >∴()()()2111110n n n n n g a f a a a a g m a a λ----=-=->=-=∴()211n a a n λ>+-,若0na M ≤恒成立,则0λ=,矛盾。
2017年上海市普陀区高考数学二模试卷含详解

2017年上海市普陀区高考数学二模试卷一、填空题(共12小题,每小题4分,满分54分)1.(4分)计算:(1+)3=.2.(4分)函数f(x)=log2(1﹣)的定义域为.3.(4分)若<α<π,sinα=,则tan=.4.(4分)若复数z=(1+i)•i2(i表示虚数单位),则=.5.(4分)曲线C:(θ为参数)的两个顶点之间的距离为.6.(4分)若从一副52张的扑克牌中随机抽取2张,则在放回抽取的情形下,两张牌都是K的概率为(结果用最简分数表示).7.(5分)若关于x 的方程sinx+cosx﹣m=0在区间[0,]上有解,则实数m 的取值范围是.8.(5分)若一个圆锥的母线与底面所成的角为,体积为125π,则此圆锥的高为.9.(5分)若函数f(x)=log22x﹣log2x+1(x≥2)的反函数为f﹣1(x).则f﹣1(3)=.10.(5分)若三棱锥S﹣ABC的所有的顶点都在球O的球面上.SA⊥平面ABC.SA=AB=2,AC=4,∠BAC=,则球O的表面积为.11.(5分)设a<0,若不等式sin2x+(a﹣1)cosx+a2﹣1≥0对于任意的x∈R恒成立,则a的取值范围是.12.(5分)在△ABC中,D、E分别是AB,AC的中点,M是直线DE上的动点,若△ABC的面积为1,则•+2的最小值为.二、选择题(共4小题,每小题5分,满分20分)13.(5分)动点P在抛物线y=2x2+1上移动,若P与点Q(0,﹣1)连线的中点为M,则动点M的轨迹方程为()A.y=2x2B.y=4x2C.y=6x2D.y=8x2 14.(5分)若α、β∈R,则“α≠β”是“tanα≠tanβ”成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件15.(5分)设l、m是不同的直线,α、β是不同的平面,下列命题中的真命题为()A.若l∥α,m⊥β,l⊥m,则α⊥βB.若l∥α,m⊥β,l⊥m,则α∥βC.若l∥α,m⊥β,l∥m,则α⊥βD.若l∥α,m⊥β,l∥m,则α∥β16.(5分)关于函数y=sin2x的判断,正确的是()A.最小正周期为2π,值域为[﹣1,1],在区间[﹣,]上是单调减函数B.最小正周期为π,值域为[﹣1,1],在区间[0,]上是单调减函数C.最小正周期为π,值域为[0,1],在区间[0,]上是单调增函数D.最小正周期为2π,值域为[0,1],在区间[﹣,]上是单调增函数三、解答题(共5小题,满分76分)17.(14分)在正方体ABCD﹣A1B1C1D1中,E、F分别是BC、A1D1的中点.(1)求证:四边形B1EDF是菱形;(2)求异面直线A1C与DE所成的角(结果用反三角函数表示).18.(14分)已知函数f(x)=asinx+bcosx(a,b为常数且a≠0,x∈R).当x=时,f(x)取得最大值.(1)计算f()的值;(2)设g(x)=f(﹣x),判断函数g(x)的奇偶性,并说明理由.19.(14分)某人上午7时乘船出发,以匀速v海里/小时(4≤v≤20)从A港前往相距50海里的B地,然后乘汽车以匀速ω千米/小时(30≤ω≤100)自B港前往相距300千米的C市,计划当天下午4到9时到达C市.设乘船和汽车的所要的时间分别为x、y小时,如果所需要的经费P=100+3(5﹣x)+(8﹣y)(单位:元)(1)试用含有v、ω的代数式表示P;(2)要使得所需经费P最少,求x和y的值,并求出此时的费用.20.(16分)已知椭圆T:+=1,直线l经过点P(m,0)与T相交于A、B 两点.(1)若C(0,﹣)且|PC|=2,求证:P必为Γ的焦点;(2)设m>0,若点D在Γ上,且|PD|的最大值为3,求m的值;(3)设O为坐标原点,若m=,直线l的一个法向量为=(1,k),求△AOB 面积的最大值.21.(18分)已知数列{a n}(n∈N*),若{a n+a n+1}为等比数列,则称{a n}具有性质P.(1)若数列{a n}具有性质P,且a1=a2=1,a3=3,求a4、a5的值;(2)若b n=2n+(﹣1)n,求证:数列{b n}具有性质P;(3)设c1+c2+…+c n=n2+n,数列{d n}具有性质P,其中d1=1,d3﹣d2=c1,d2+d3=c2,若d n>102,求正整数n的取值范围.2017年上海市普陀区高考数学二模试卷参考答案与试题解析一、填空题(共12小题,每小题4分,满分54分)1.(4分)计算:(1+)3=1.【考点】6F:极限及其运算.【专题】11:计算题;52:导数的概念及应用.【分析】根据题意,对(1+)3变形可得(1+)3=(+++1),由极限的意义计算可得答案.【解答】解:根据题意,(1+)3==(+++1)=1,即(1+)3=1;故答案为:1.【点评】本题考查极限的计算,需要牢记常见的极限的化简方法.2.(4分)函数f(x)=log2(1﹣)的定义域为(﹣∞,0)∪(1,+∞).【考点】33:函数的定义域及其求法.【专题】51:函数的性质及应用.【分析】根据对数函数的性质得到关于x的不等式,解出即可.【解答】解:由题意得:1﹣>0,解得:x>1或x<0,故答案为:(﹣∞,0)∪(1,+∞).【点评】本题考查了函数的定义域问题,考查对数函数的性质,是一道基础题.3.(4分)若<α<π,sinα=,则tan=3.【考点】GW:半角的三角函数.【专题】35:转化思想;49:综合法;56:三角函数的求值.【分析】利用同角三角函数的基本关系求得cosx的值,再利用半角公式求得tan的值.【解答】解:若<α<π,sinα=,则cosα=﹣=﹣,∴tan==3,故答案为:3.【点评】本题主要考查同角三角函数的基本关系,半角公式的应用,属于基础题.4.(4分)若复数z=(1+i)•i2(i表示虚数单位),则=﹣1+i.【考点】A5:复数的运算.【专题】11:计算题;35:转化思想;4O:定义法;5N:数系的扩充和复数.【分析】先化简,再根据共轭复数的定义即可求出【解答】解:z=(1+i)•i2=﹣1﹣i,∴=﹣1+i,故答案为:﹣1+i.【点评】本题考查复数代数形式的乘除运算以及共轭复数,是基础的计算题.5.(4分)曲线C:(θ为参数)的两个顶点之间的距离为2.【考点】QH:参数方程化成普通方程.【专题】11:计算题;34:方程思想;5S:坐标系和参数方程.【分析】根据题意,将曲线的参数方程变形为普通方程,分析可得曲线C为双曲线,且两个顶点的坐标为(±1,0),由两点间距离公式计算可得答案.【解答】解:曲线C:,其普通方程为x2﹣y2=1,则曲线C为双曲线,且两个顶点的坐标为(±1,0),则则两个顶点之间的距离为2;故答案为:2.【点评】本题考查参数方程与普通方程的互化,涉及双曲线的几何性质,关键是将曲线的参数方程化为普通方程.6.(4分)若从一副52张的扑克牌中随机抽取2张,则在放回抽取的情形下,两张牌都是K的概率为(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11:计算题;34:方程思想;4O:定义法;5I:概率与统计.【分析】先求出基本事件总数n=52×52,再求出两张牌都是K包含的基本事件个数m=4×4,由此能求出两张牌都是K的概率.【解答】解:从一副52张的扑克牌中随机抽取2张,在放回抽取的情形下,基本事件总数n=52×52,两张牌都是K包含的基本事件个数m=4×4,∴两张牌都是K的概率为p===.故答案为:.【点评】本题考查概率的求法,考查古典概型及应用,考查推理论证能力、运算求解能力,考查函数与方程思想、化归转化思想,是基础题.7.(5分)若关于x 的方程sinx+cosx﹣m=0在区间[0,]上有解,则实数m 的取值范围是[1,] .【考点】GF:三角函数的恒等变换及化简求值.【专题】33:函数思想;4R:转化法.【分析】由题意,关于x 的方程sinx+cosx﹣m=0在区间[0,]上有解,转化为函数y=sin(x+)与函数y=m的图象有交点问题.【解答】解:由题意,sinx+cosx﹣m=0,转化为:sinx+cosx=m,设函数y=sin (x+)x∈[0,]上,则x+∈[,]∴sin(x+)∈[]∴函数y=sin(x+)的值域为[1,]关于x 的方程sinx+cosx﹣m=0在区间[0,]上有解,则函数y=m的值域为[1,],即m∈[1,]故答案为:[1,].【点评】本题考查了方程有解问题转化为两个函数的交点的问题.属于基础题.8.(5分)若一个圆锥的母线与底面所成的角为,体积为125π,则此圆锥的高为5.【考点】L5:旋转体(圆柱、圆锥、圆台).【专题】15:综合题;34:方程思想;4G:演绎法;5F:空间位置关系与距离.【分析】设圆锥的高为h,则底面圆的半径为h,利用体积为125π,建立方程,即可求出此圆锥的高.【解答】解:设圆锥的高为h,则底面圆的半径为h,∵体积为125π,∴=125π,∴h=5.故答案为:5.【点评】本题考查圆锥体积的计算,考查方程思想,比较基础.9.(5分)若函数f(x)=log22x﹣log2x+1(x≥2)的反函数为f﹣1(x).则f﹣1(3)=4.【考点】4R:反函数.【专题】15:综合题;35:转化思想;4G:演绎法;51:函数的性质及应用.【分析】由题意,log22x﹣log2x+1=3,根据x≥2,即可得出结论.【解答】解:由题意,log22x﹣log2x+1=3,∵x≥2,∴x=4,故答案为4.【点评】本题考查对数方程,考查反函数的概念,正确转化是关键.10.(5分)若三棱锥S﹣ABC的所有的顶点都在球O的球面上.SA⊥平面ABC.SA=AB=2,AC=4,∠BAC=,则球O的表面积为20π.【考点】LG:球的体积和表面积.【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.【分析】由余弦定理求出BC=2,利用正弦定理得∠ABC=90°.从而△ABC截球O所得的圆O′的半径r=AC=2,进而能求出球O的半径R,由此能求出球O 的表面积.【解答】解:如图,三棱锥S﹣ABC的所有顶点都在球O的球面上,∵SA⊥平面ABC.SA=AB=2,AC=4,∠BAC=,∴BC==2,∴AC2=BC2+AB2,∴∠ABC=90°.∴△ABC截球O所得的圆O′的半径r=AC=2,∴球O的半径R==,∴球O的表面积S=4πR2=20π.故答案为:20π.【点评】本题考查三棱锥、球、勾股定理等基础知识,考查抽象概括能力、数据处理能力、运算求解能力,考查应用意识、创新意识,考查化归与转化思想、分类与整合思想、数形结合思想,是中档题.11.(5分)设a<0,若不等式sin2x+(a﹣1)cosx+a2﹣1≥0对于任意的x∈R恒成立,则a的取值范围是a≤﹣2.【考点】3R:函数恒成立问题.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】不等式进行等价转化为关于cosx的一元二次不等式,利用二次函数的性质和图象列不等式组求得答案.【解答】解;不等式等价于1﹣cos2x+acosx+a2﹣1﹣cosx≥0,恒成立,整理得﹣cos2x+(a﹣1)cosx+a2≥0,设cosx=t,则﹣1≤t≤1,g(t)=﹣t2+(a﹣1)t+a2,要使不等式恒成立需:求得a≥1或a≤﹣2,而a<0故答案为:a ≤﹣2.【点评】本题主要考查了一元二次不等式的解法,二次函数的性质.注重了对数形结合思想的运用和问题的分析.12.(5分)在△ABC 中,D 、E 分别是AB ,AC 的中点,M 是直线DE 上的动点,若△ABC 的面积为1,则•+2的最小值为 .【考点】9O :平面向量数量积的性质及其运算.【专题】35:转化思想;41:向量法;5A :平面向量及应用.【分析】由三角形的面积公式,S △ABC =2S △MBC ,则S △MBC =,根据三角形的面积公式及向量的数量积,利用余弦定理,即可求得则•+2,利用导数求得函数的单调性,即可求得则•+2的最小值; 方法二:利用辅助角公式及正弦函数的性质,即可求得•+2的最小值.【解答】解:∵D 、E 是AB 、AC 的中点,∴A 到BC 的距离=点A 到BC 的距离的一半, ∴S △ABC =2S △MBC ,而△ABC 的面积1,则△MBC 的面积S △MBC =,S △MBC =丨MB 丨×丨MC 丨sin ∠BMC=,∴丨MB 丨×丨MC 丨=. ∴•=丨MB 丨×丨MC 丨cos ∠BMC=. 由余弦定理,丨BC 丨2=丨BM 丨2+丨CM 丨2﹣2丨BM 丨×丨CM 丨cos ∠BMC , 显然,BM 、CM 都是正数,∴丨BM 丨2+丨CM 丨2≥2丨BM 丨×丨CM 丨,∴丨BC 丨2=丨BM 丨2+丨CM 丨2﹣2丨BM 丨×丨CM 丨cos ∠BMC=2×﹣2×..∴•+2≥+2×﹣2×=,方法一:令y=,则y′=,令y′=0,则cos∠BMC=,此时函数在(0,)上单调减,在(,1)上单调增,∴cos∠BMC=时,取得最小值为,•+2的最小值是,方法二:令y=,则ysin∠BMC+cos∠BMC=2,则sin(∠BMC+α)=2,tanα=,则sin(∠BMC+α)=≤1,解得:y≥,•+2的最小值是,故答案为:.【点评】本题考查了向量的线性运算、数量积运算、辅助角公式,余弦定理,考查了推理能力与计算能力,属于中档题.二、选择题(共4小题,每小题5分,满分20分)13.(5分)动点P在抛物线y=2x2+1上移动,若P与点Q(0,﹣1)连线的中点为M,则动点M的轨迹方程为()A.y=2x2B.y=4x2C.y=6x2D.y=8x2【考点】J3:轨迹方程.【专题】15:综合题;35:转化思想;4G:演绎法;5D:圆锥曲线的定义、性质与方程.【分析】先设PQ中点为(x,y),进而根据中点的定义可求出M点的坐标,然后代入到曲线方程中得到轨迹方程.【解答】解:设PQ中点为M(x,y),则P(2x,2y+1)在抛物线y=2x2+1上,即2(2x)2=(2y+1)﹣1,∴y=4x2.故选:B.【点评】本题主要考查轨迹方程的求法,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.14.(5分)若α、β∈R,则“α≠β”是“tanα≠tanβ”成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】38:对应思想;4R:转化法;5L:简易逻辑.【分析】根据正切函数的性质以及充分必要条件的定义判断即可.【解答】解:若“α≠β”,则“tanα≠tanβ”不成立,不是充分条件,反之也不成立,比如α=,β=,故选:D.【点评】本题考查了充分必要条件,考查正切函数的性质,是一道基础题.15.(5分)设l、m是不同的直线,α、β是不同的平面,下列命题中的真命题为()A.若l∥α,m⊥β,l⊥m,则α⊥βB.若l∥α,m⊥β,l⊥m,则α∥βC.若l∥α,m⊥β,l∥m,则α⊥βD.若l∥α,m⊥β,l∥m,则α∥β【考点】LP:空间中直线与平面之间的位置关系.【专题】11:计算题;35:转化思想;4R:转化法;5F:空间位置关系与距离.【分析】在A中,α与β相交或平行;在B中,α与β相交或平行;在C中,由面面垂直的判定定理得α⊥β;在D中,由面面垂直的判定定理得α⊥β.【解答】解:由l、m是不同的直线,α、β是不同的平面,知:在A中,若l∥α,m⊥β,l⊥m,则α与β相交或平行,故A错误;在B中,若l∥α,m⊥β,l⊥m,则α与β相交或平行,故B错误;在C中,若l∥α,m⊥β,l∥m,则由面面垂直的判定定理得α⊥β,故C正确;在D中,若l∥α,m⊥β,l∥m,则由面面垂直的判定定理得α⊥β,故D错误.故选:C.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系的应用,考查推理论证能力、运算求解能力、空间思维能力,考查化归转化思想、数形结合思想,是中档题.16.(5分)关于函数y=sin2x的判断,正确的是()A.最小正周期为2π,值域为[﹣1,1],在区间[﹣,]上是单调减函数B.最小正周期为π,值域为[﹣1,1],在区间[0,]上是单调减函数C.最小正周期为π,值域为[0,1],在区间[0,]上是单调增函数D.最小正周期为2π,值域为[0,1],在区间[﹣,]上是单调增函数【考点】GS:二倍角的三角函数;H7:余弦函数的图象.【专题】15:综合题;35:转化思想;4O:定义法;57:三角函数的图像与性质.【分析】先化简函数,再利用余弦函数的图象与性质,即可得出结论.【解答】解:y=sin2x=(1﹣os2x)=﹣cos2x+∴函数的最小正周期为π,值域为[0,1],在区间[0,]上是单调增函数,故选:C.【点评】本题考查三角函数的化简,考查余弦函数的图象与性质,属于中档题.三、解答题(共5小题,满分76分)17.(14分)在正方体ABCD﹣A1B1C1D1中,E、F分别是BC、A1D1的中点.(1)求证:四边形B1EDF是菱形;(2)求异面直线A1C与DE所成的角(结果用反三角函数表示).【考点】LM:异面直线及其所成的角.【专题】15:综合题;35:转化思想;44:数形结合法;5G:空间角.【分析】(1)由题意画出图形,取AD中点G,连接FG,BG,可证四边形B1BGF 为平行四边形,得BG∥B1F,再由ABCD﹣A1B1C1D1为正方体,且E,G分别为BC,AD的中点,可得BEDG为平行四边形,得BG∥DE,BG=DE,从而得到B1F∥DE,且B1F=DE,进一步得到四边形B1EDF为平行四边形,再由△B1BE≌△B1A1F,可得B1E=B1F,得到四边形B1EDF是菱形;(2)以A为原点建立如图所示空间直角坐标系,然后利用空间向量求异面直线A1C与DE所成的角.【解答】(1)证明:取AD中点G,连接FG,BG,可得B1B∥FG,B1B=FG,∴四边形B1BGF为平行四边形,则BG∥B1F,由ABCD﹣A1B1C1D1为正方体,且E,G分别为BC,AD的中点,可得BEDG为平行四边形,∴BG∥DE,BG=DE,则B1F∥DE,且B1F=DE,∴四边形B1EDF为平行四边形,由△B1BE≌△B1A1F,可得B1E=B1F,∴四边形B1EDF是菱形;(2)解:以A为原点建立如图所示空间直角坐标系,设正方体的棱长为1,则A1(0,0,1),C(1,1,0),D(0,1,0),E(1,,0),∴,,∴cos<>==.∴异面直线A1C与DE所成的角为arccos.【点评】本题考查空间中直线与直线的位置关系,考查空间想象能力和思维能力,训练了利用空间向量求异面直线所成角,是中档题.18.(14分)已知函数f(x)=asinx+bcosx(a,b为常数且a≠0,x∈R).当x=时,f(x)取得最大值.(1)计算f()的值;(2)设g(x)=f(﹣x),判断函数g(x)的奇偶性,并说明理由.【考点】3K:函数奇偶性的性质与判断;GF:三角函数的恒等变换及化简求值.【专题】11:计算题;35:转化思想;49:综合法;56:三角函数的求值.【分析】首先,根据已知得到f(x)=sin(x+θ),然后根据最值建立等式,得到a=b,再化简函数f(x)=asin(x+),(1)将代入解析式求值;(2)求出g(x)解析式,利用奇偶函数定义判断奇偶性.【解答】解:由已知得到f(x)=sin(x+θ),又x=时,f(x)取得最大值.所以a=b,f(x)=asin(x+),所以(1)f()=asin(3π)=0;(2)g(x)为偶函数.理由:设g(x)=f(﹣x)=asin(﹣x)=acosx,所以函数g(﹣x)=g(x),为偶函数.【点评】本题考查了三角函数的性质以及奇偶性的判定;属于基础题.19.(14分)某人上午7时乘船出发,以匀速v海里/小时(4≤v≤20)从A港前往相距50海里的B地,然后乘汽车以匀速ω千米/小时(30≤ω≤100)自B港前往相距300千米的C市,计划当天下午4到9时到达C市.设乘船和汽车的所要的时间分别为x、y小时,如果所需要的经费P=100+3(5﹣x)+(8﹣y)(单位:元)(1)试用含有v、ω的代数式表示P;(2)要使得所需经费P最少,求x和y的值,并求出此时的费用.【考点】36:函数解析式的求解及常用方法;5C:根据实际问题选择函数类型.【专题】11:计算题;35:转化思想;44:数形结合法;59:不等式的解法及应用.【分析】(1)分析题意,找出相关量之间的不等关系,(2)求出x,y满足的约束条件,由约束条件画出可行域,要求走得最经济,即求可行域中的最优解,将目标函数看成是一条直线,分析目标函数p与直线截距的关系,进而求出最优.【解答】解:(1)由题意得:x=,4≤v≤20,y=,30≤ω≤100,∴P=100+3(5﹣)+(8﹣)=123﹣﹣,其中,4≤v≤20,30≤ω≤100,(2)由(1)可得2.5≤x≤12.5,3≤y≤10,①由于汽车、乘船所需的时间和应在9至14小时之间,∴9≤x+y≤14 ②因此满足①②的点(x,y)的存在范围是图中阴影部分目标函数p=100+3(5﹣x)+(8﹣y)=123﹣3x﹣y,当x=11,y=3时,p 最小,此时,p=123﹣33﹣3=87【点评】本题考查不等式关系的建立,考查线性规划知识,考查学生分析解决问题的能力,属于中档题.20.(16分)已知椭圆T:+=1,直线l经过点P(m,0)与T相交于A、B两点.(1)若C(0,﹣)且|PC|=2,求证:P必为Γ的焦点;(2)设m>0,若点D在Γ上,且|PD|的最大值为3,求m的值;(3)设O为坐标原点,若m=,直线l的一个法向量为=(1,k),求△AOB 面积的最大值.【考点】K4:椭圆的性质.【专题】35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】(1)利用两点之间距离公式,即可求得m的值,由椭圆的方程,即可求得焦点坐标,即可求证P必为Γ的焦点;(2)利用两点之间的距离公式,根据二次函数的单调性,当x0=﹣2时,取最大值,代入即可求得m的值;(3)求得直线AB的方程,代入方程,由韦达定理,弦长公式及点到直线的距离公式,利用基本不等式的性质,即可求得△AOB面积的最大值.【解答】解:(1)证明:由椭圆焦点F(±1,0),由|PC|==2,解得:m=±1,∴P点坐标为(±1,0),∴P必为Γ的焦点;(2)设D(x0,y0),y02=3(1﹣),|PD|2=(x0﹣m)2+y02=﹣2mx0+m2+3,﹣2≤x0≤2,有函数的对称轴x0=4m>0,则当x0=﹣2时,取最大值,则|PD|2=1+4m+m2+3=9,m2+4m﹣5=0,解得:m=1或m=﹣5(舍去),∴m的值1;(3)直线l的一个法向量为=(1,k),则直线l的斜率﹣,则直线l方程:y﹣0=﹣(x﹣),整理得:ky+x﹣=0,设A(x1,y1),B(x2,y2),,整理得:(3k2+4)y2﹣6ky﹣3=0,则y1+y2=,y1y2=﹣,丨AB丨=•=,则O到直线AB的距离d=,则△AOB面积S=×丨AB丨×d=××==≤=,当且仅当=,即k2=,取等号,∴△AOB面积的最大值.【点评】本题考查椭圆的简单几何性质,直线与椭圆的位置关系,考查韦达定理,弦长公式,基本不等式的性质,考查计算能力,属于中档题.21.(18分)已知数列{a n}(n∈N*),若{a n+a n+1}为等比数列,则称{a n}具有性质P.(1)若数列{a n}具有性质P,且a1=a2=1,a3=3,求a4、a5的值;(2)若b n=2n+(﹣1)n,求证:数列{b n}具有性质P;(3)设c1+c2+…+c n=n2+n,数列{d n}具有性质P,其中d1=1,d3﹣d2=c1,d2+d3=c2,若d n>102,求正整数n的取值范围.【考点】8B:数列的应用.【专题】15:综合题;35:转化思想;4G:演绎法;54:等差数列与等比数列.【分析】(1){a n+a n+1}为等比数列,由a1=a2=1,a3=3,可得{a n+a n+1}的公比为2,可得a n+a n+1=2n,进而得出a4、a5的值;(2)证明{b n+b n+1}是以公比为2的等比数列,即可得出结论;(3)求出d n+d n+1=2n,利用d n>102,求正整数n的取值范围.【解答】解:(1){a n+a n+1}为等比数列,∵a1=a2=1,a3=3,∴a1+a2=1+1=2,a2+a3=1+3=4,∴{a n+a n+1}的公比为2,∴a n+a n+1=2n,∴a3+a4=23=8,即a4=5,∴a4+a5=24=16,即a5=11;(2)∵b n=2n+(﹣1)n,∴b n+b n+1=2n+(﹣1)n+2n+1+(﹣1)n+1=3•2n,∴{b n+b n+1}是以公比为2的等比数列,∴数列{b n}具有性质P.(3)∵c1+c2+…+c n=n2+n,∴c1+c2+…+c n﹣1=(n﹣1)2+n﹣1,∴c n=2n,∵d1=1,d3﹣d2=c1=2,d2+d3=c2=4,∴d2=1,d3=3,∵数列{d n}具有性质P,由(1)可得,d n+d n+1=2n,∴d4=5,d5=11,d6=21,d7=43,d8=85,d9=171,∵d n>102,∴正整数n的取值范围是[9,+∞).【点评】本题考查新定义,考查等比数列的运用,考查学生分析解决问题的能力,属于中档题.。
2017届上海市浦东新区高考数学二模试卷(解析版)

2017年上海市浦东新区高考数学二模试卷一、填空题(本大题共有12小题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分.1.已知集合,集合B={y|0≤y<4},则A∩B=.2.若直线l的参数方程为,t∈R,则直线l在y轴上的截距是.3.已知圆锥的母线长为4,母线与旋转轴的夹角为30°,则该圆锥的侧面积为.4.抛物线的焦点和准线的距离是.5.已知关于x,y的二元一次方程组的增广矩阵为,则3x﹣y=.6.若三个数a1,a2,a3的方差为1,则3a1+2,3a2+2,3a3+2的方差为.7.已知射手甲击中A目标的概率为0.9,射手乙击中A目标的概率为0.8,若甲、乙两人各向A目标射击一次,则射手甲或射手乙击中A目标的概率是.8.函数,的单调递减区间是.9.已知等差数列{a n}的公差为2,前n项和为S n,则=.10.已知定义在R上的函数f(x)满足:①f(x)+f(2﹣x)=0;②f(x)﹣f(2﹣x)=0;③在[﹣1,1]上的表达式为,则函数f(x)与的图象在区间[﹣3,3]上的交点的个数为.11.已知各项均为正数的数列{a n}满足(2a n+1﹣a n)(a n+1a n﹣1)=0(n∈N*),且a1=a10,则首项a1所有可能取值中最大值为.12.已知平面上三个不同的单位向量,,满足•==,若为平面内的任意单位向量,则||+|2|+3||的最大值为.二、选择题(本大题共有4小题,满分16分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得5分,否则一律得零分.13.若复数满足|z+i|+|z﹣i|=2,则复数在平面上对应的图形是()A.椭圆B.双曲线C.直线D.线段14.已知长方体切去一个角的几何体直观图如图1所示给出下列4个平面图如图2:则该几何体的主视图、俯视图、左视图的序号依次是()A.(1)(3)(4)B.(2)(4)(3)C.(1)(3)(2)D.(2)(4)(1)15.已知2sinx=1+cosx,则=()A.2 B.2或C.2或0 D.或016.已知等比数列a1,a2,a3,a4满足a1∈(0,1),a2∈(1,2),a3∈(2,4),则a4的取值范围是()A.(3,8)B.(2,16)C.(4,8)D.三、解答题(共5小题,满分80分)17.(14分)如图所示,球O的球心O在空间直角坐标系O﹣xyz的原点,半径为1,且球O分别与x,y,z轴的正半轴交于A,B,C三点.已知球面上一点.(1)求D,C两点在球O上的球面距离;(2)求直线CD与平面ABC所成角的大小.18.(14分)某地计划在一处海滩建造一个养殖场.(1)如图1,射线OA,OB为海岸线,,现用长度为1千米的围网PQ依托海岸线围成一个△POQ的养殖场,问如何选取点P,Q,才能使养殖场△POQ的面积最大,并求其最大面积.(2)如图2,直线l为海岸线,现用长度为1千米的围网依托海岸线围成一个养殖场.方案一:围成三角形OAB(点A,B在直线l上),使三角形OAB面积最大,设其为S1;方案二:围成弓形CDE(点D,E在直线l上,C是优弧所在圆的圆心且),其面积为S2;试求出S1的最大值和S2(均精确到0.01平方千米),并指出哪一种设计方案更好.19.(18分)已知双曲线,其右顶点为P.(1)求以P为圆心,且与双曲线C的两条渐近线都相切的圆的标准方程;(2)设直线l过点P,其法向量为=(1,﹣1),若在双曲线C上恰有三个点P1,P2,P3到直线l的距离均为d,求d的值.20.(16分)若数列{A n}对任意的n∈N*,都有(k≠0),且A n≠0,则称数列{A n}为“k级创新数列”.(1)已知数列{a n}满足且,试判断数列{2a n+1}是否为“2级创新数列”,并说明理由;(2)已知正数数列{b n}为“k级创新数列”且k≠1,若b1=10,求数列{b n}的前n项积T n;(3)设α,β是方程x2﹣x﹣1=0的两个实根(α>β),令,在(2)的条件下,记数列{c n}的通项,求证:c n+2=c n+1+c n,n∈N*.21.(18分)对于定义域为R的函数g(x),若函数sin[g(x)]是奇函数,则称g(x)为正弦奇函数.已知f(x)是单调递增的正弦奇函数,其值域为R,f(0)=0.(1)已知g(x)是正弦奇函数,证明:“u0为方程sin[g(x)]=1的解”的充要条件是“﹣u0为方程sin[g(x)]=﹣1的解”;(2)若f(a)=,f(b)=﹣,求a+b的值;(3)证明:f(x)是奇函数.2017年上海市浦东新区高考数学二模试卷参考答案与试题解析一、填空题(本大题共有12小题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分.1.已知集合,集合B={y|0≤y<4},则A∩B=[2,4).【考点】1E:交集及其运算.【分析】先求出集合A,由此利用交集的定义能求出A∩B.【解答】解:由≥0,解得x≥2或x<﹣1,即A=(﹣∞,﹣1)∪[2,+∞),集合B={y|0≤y<4}=[0,4),则A∩B=[2,4),故答案为:[2,4),【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.2.若直线l的参数方程为,t∈R,则直线l在y轴上的截距是1.【考点】QH:参数方程化成普通方程.【分析】令x=0,可得t=1,y=1,即可得出结论.【解答】解:令x=0,可得t=1,y=1,∴直线l在y轴上的截距是1.故答案为1.【点评】本题考查参数方程的运用,考查学生的计算能力,比较基础.3.已知圆锥的母线长为4,母线与旋转轴的夹角为30°,则该圆锥的侧面积为8π.【考点】L5:旋转体(圆柱、圆锥、圆台);LE:棱柱、棱锥、棱台的侧面积和表面积.【分析】先利用圆锥的轴截面的性质求出底面的半径r,进而利用侧面积的计算公式计算即可.【解答】解:由题意,底面的半径r=2,∴该圆椎的侧面积S=π×2×4=8π,故答案为:8π.【点评】熟练掌握圆锥的轴截面的性质和侧面积的计算公式是解题的关键.4.抛物线的焦点和准线的距离是2.【考点】K8:抛物线的简单性质.【分析】首先将化成开口向上的抛物线方程的标准方程,得到系数2p=4,然后根据公式得到焦点坐标为(0,1),准线方程为y=﹣1,最后可得该抛物线焦点到准线的距离.【解答】解:化抛物线为标准方程形式:x2=4y∴抛物线开口向上,满足2p=4∵=1,焦点为(0,)∴抛物线的焦点坐标为(0,1)又∵抛物线准线方程为y=﹣,即y=﹣1∴抛物线的焦点和准线的距离为d=1﹣(﹣1)=2故答案为:2【点评】本题以一个二次函数图象的抛物线为例,着重考查了抛物线的焦点和准线等基本概念,属于基础题.5.已知关于x,y的二元一次方程组的增广矩阵为,则3x﹣y=5.【考点】OC:几种特殊的矩阵变换.【分析】根据增广矩阵求得二元一次方程组,两式相加即可求得3x﹣y=5.【解答】解:由二元一次方程组的增广矩阵为,则二元一次方程组为:,两式相加得:3x﹣y=5,∴3x﹣y=5,故答案为:5.【点评】本题考查增广矩阵的性质,考查增广矩阵与二元一次方程组转化,考查转化思想,属于基础题.6.若三个数a1,a2,a3的方差为1,则3a1+2,3a2+2,3a3+2的方差为9.【考点】BC:极差、方差与标准差.【分析】根据所给的三个数字的方差的值,列出方差的表示式要求3a1+2,3a2+2,3a3+2的方差值,只要根据原来方差的表示式变化出来即可.【解答】解:∵三个数a1,a2,a3的方差为1,设三个数的平均数是,则3a1+2,3a2+2,3a3+2的平均数是3+2有1=∴3a1+2,3a2+2,3a3+2的方差是+]==9故答案为:9.【点评】本题考查方差的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.7.已知射手甲击中A目标的概率为0.9,射手乙击中A目标的概率为0.8,若甲、乙两人各向A目标射击一次,则射手甲或射手乙击中A目标的概率是0.98.【考点】C9:相互独立事件的概率乘法公式.【分析】利用对立事件概率计算公式能求出甲、乙两人各向A目标射击一次,射手甲或射手乙击中A目标的概率.【解答】解:射手甲击中A目标的概率为0.9,射手乙击中A目标的概率为0.8,甲、乙两人各向A目标射击一次,射手甲或射手乙击中A目标的概率:p=1﹣(1﹣0.9)(1﹣0.8)=0.98.故答案为:0.98.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率计算公式、对立事件概率计算公式的合理运用.8.函数,的单调递减区间是.【考点】H5:正弦函数的单调性.【分析】函数=﹣sin(x﹣),将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递减区间;即可求的单调递减区间.【解答】解:由函数=﹣sin(x﹣),令x﹣,k∈Z得: +2kπ≤x≤,∵,当k=0时,可得单调递减区间为.故答案为:.【点评】本题主要考查三角函数的图象和性质的运用,属于基础题.9.已知等差数列{a n}的公差为2,前n项和为S n,则=.【考点】8J:数列的极限.【分析】先表示出S n,a n,即可求出极限的值.【解答】解:由于数列{a n}是公差为2的等差数列,S n是{a n}的前n项和,则S n=na1+n(n﹣1)•2=n(n+a1﹣1),a n=a1+(n﹣1)•2=2n+a1﹣2,则==.故答案为:.【点评】本题主要考察极限及其运算.解题的关键是要掌握极限的实则运算法则和常用求极限的技巧!10.已知定义在R上的函数f(x)满足:①f(x)+f(2﹣x)=0;②f(x)﹣f(2﹣x)=0;③在[﹣1,1]上的表达式为,则函数f(x)与的图象在区间[﹣3,3]上的交点的个数为6.【考点】54:根的存在性及根的个数判断.【分析】先根据①②知函数的对称中心和对称轴,再分别画出f(x)和g(x)的部分图象,由图象观察交点的个数.【解答】解:∵①f (x )+f (2﹣x )=0,②f (x )﹣f (﹣2﹣x )=0, ∴f (x )图象的对称中心为(1,0),f (x )图象的对称轴为x=﹣1,结合③画出f (x )和g (x )的部分图象,如图所示,据此可知f (x )与g (x )的图象在[﹣3,3]上有6个交点. 故答案为:6.【点评】本题借助分段函数考查函数的周期性、对称性以及函数图象交点个数等问题,属于中档题.11.已知各项均为正数的数列{a n }满足(2a n +1﹣a n )(a n +1a n ﹣1)=0(n ∈N *),且a 1=a 10,则首项a 1所有可能取值中最大值为 16 . 【考点】8H :数列递推式.【分析】各项均为正数的数列{a n }满足(2a n +1﹣a n )(a n +1a n ﹣1)=0(n ∈N *),可得a n +1=a n ,或a n +1a n =1.又a 1=a 10,a 9a 10=1,应该使得a 9取得最小值.再利用等比数列的通项公式即可得出.【解答】解:∵各项均为正数的数列{a n }满足(2a n +1﹣a n )(a n +1a n ﹣1)=0(n ∈N *),∴a n +1=a n ,或a n +1a n =1.又a 1=a 10,a 9a 10=1,应该使得a 9取得最小值.根据a n +1=a n ,可得数列{a n }为等比数列,公比为.取a 9=a 1×,a 1>0.又a 9=,∴=28,解得a 1=24=16. ∴a 1的最大值是16. 故答案为:16.【点评】本题考查了数列递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.12.已知平面上三个不同的单位向量,,满足•==,若为平面内的任意单位向量,则||+|2|+3||的最大值为5.【考点】9R:平面向量数量积的运算.【分析】由向量投影的定义可得当++与共线时,取得最大值,再根据向量的数量积公式计算即可.【解答】解:||+|2|+3||=||+2||+3||,其几何意义为在的投影的绝对值与在上投影的绝对值的2倍与在上投影的绝对值的倍的3和,当++与共线时,取得最大值.∵•==,∴=﹣∴(||+|2|+3||)2=||2+4||2+9||2+4||+6||+12||=1+4+9+2+3+6=25,max故||+|2|+3||的最大值为5,故答案为:5.【点评】本题考查平面向量的数量积运算,考查向量在向量方向上的投影的概念,考查学生正确理解问题的能力,是中档题.二、选择题(本大题共有4小题,满分16分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得5分,否则一律得零分.13.若复数满足|z+i|+|z﹣i|=2,则复数在平面上对应的图形是()A.椭圆B.双曲线C.直线D.线段【考点】A4:复数的代数表示法及其几何意义.【分析】|z+i|+|z﹣i|=2,在复平面上,复数z对应的点Z的集合表示的是:到两个定点E(0,﹣1),F(0,1)的距离之和为定值2的点的集合,而|EF|=2,即可得出结论.【解答】解:|z+i|+|z﹣i|=2,在复平面上,复数z对应的点Z的集合表示的是:到两个定点E(0,﹣1),F(0,1)的距离之和为定值2的点的集合,而|EF|=2,因此在复平面上,满足|z+i|+|z﹣i|=2的复数z对应的点Z的集合表示的是:线段,∴复数在平面上对应的图形是线段.故选:D.【点评】本题考查了复平面上的两点间的距离公式及其复数的几何意义、点的集合,属于基础题.14.已知长方体切去一个角的几何体直观图如图1所示给出下列4个平面图如图2:则该几何体的主视图、俯视图、左视图的序号依次是()A.(1)(3)(4)B.(2)(4)(3)C.(1)(3)(2)D.(2)(4)(1)【考点】L7:简单空间图形的三视图.【分析】根据几何体的直观图得到三视图.【解答】解:由于几何体被切去一个角,所以正视图、俯视图以及侧视图的矩形都有对角线;关键放置的位置得到C;故选C.【点评】本题考查了几何体的三视图;属于基础题.15.已知2sinx=1+cosx,则=()A.2 B.2或C.2或0 D.或0【考点】GI:三角函数的化简求值.【分析】推导出cot==,由此能求出结果.【解答】解:∵cot===,2sinx=1+cosx,∴当cosx=﹣1时,sinx=0,无解;当cosx≠﹣1时,cot==2.故选:A.【点评】本题考查三角函数的化简求值,考查同角三角函数关系式、二倍角公式、降幂公式,考查推理论证能力、运算求解能力,考查转化化归思想,是中档题.16.已知等比数列a1,a2,a3,a4满足a1∈(0,1),a2∈(1,2),a3∈(2,4),则a4的取值范围是()A.(3,8)B.(2,16)C.(4,8)D.【考点】88:等比数列的通项公式.【分析】设公比为q,根据a1∈(0,1),a2∈(1,2),a3∈(2,4),可得可得q的取值范围,再利用a4=a3q,即可得出.【解答】解:设公比为q,则∵a1∈(0,1),a2∈(1,2),a3∈(2,4),∴∴③÷②:1<q<4④③÷①:或q>⑤由④⑤可得:<q<4∴a4=a3q,∴a4∈.故选:D.【点评】本题考查了等比数列的通项公式与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.三、解答题(共5小题,满分80分)17.(14分)(2017•浦东新区二模)如图所示,球O的球心O在空间直角坐标系O﹣xyz的原点,半径为1,且球O分别与x,y,z轴的正半轴交于A,B,C三点.已知球面上一点.(1)求D,C两点在球O上的球面距离;(2)求直线CD与平面ABC所成角的大小.【考点】MI:直线与平面所成的角;L*:球面距离及相关计算.【分析】(1)求出球心角,即可求D,C两点在球O上的球面距离;(2)求出平面ABC的法向量,即可求直线CD与平面ABC所成角的大小.【解答】解:(1)由题意,cos∠COD==,∴∠COD=,∴D,C两点在球O上的球面距离为;(2)A(1,0,0),B(0,1,0),C(0,0,1),重心坐标为(,,),∴平面ABC的法向量为=(,,),∵=(0,﹣,﹣),∴直线CD与平面ABC所成角的正弦=||=,∴直线CD与平面ABC所成角的大小为.【点评】本题考查球面距离,考查线面角,考查学生分析解决问题的能力,属于中档题.18.(14分)(2017•浦东新区二模)某地计划在一处海滩建造一个养殖场.(1)如图1,射线OA,OB为海岸线,,现用长度为1千米的围网PQ依托海岸线围成一个△POQ的养殖场,问如何选取点P,Q,才能使养殖场△POQ的面积最大,并求其最大面积.(2)如图2,直线l为海岸线,现用长度为1千米的围网依托海岸线围成一个养殖场.方案一:围成三角形OAB(点A,B在直线l上),使三角形OAB面积最大,设其为S1;方案二:围成弓形CDE(点D,E在直线l上,C是优弧所在圆的圆心且),其面积为S2;试求出S1的最大值和S2(均精确到0.01平方千米),并指出哪一种设计方案更好.【考点】5D:函数模型的选择与应用.【分析】(1)设OP=a,OQ=b,则12=a2+b2﹣2abcos,再利用基本不等式的性质与三角形面积计算公式即可得出.(2)方案一:设OA=x(0<x<1),则OB=1﹣x.则S1=(1﹣x)sin∠AOB,利用基本不等式的性质即可得出最大值.方案二:设半径r(0<r<1),则=1.解得r=.可得S2=+,即可比较出S1与S2的大小关系.【解答】解:(1)设OP=a,OQ=b,则12=a2+b2﹣2abcos≥2ab+ab,可得ab,当且仅当时取等号.S=absin≤=.∴当且仅当时,养殖场△POQ的面积最大,(平方千米)(2)方案一:设OA=x(0<x<1),则OB=1﹣x.则S1=(1﹣x)sin∠AOB≤=,当且仅当x=时取等号.∴(平方千米),方案二:设半径r(0<r<1),则=1.解得r=.∴S2=+≈0.144(平方千米)∴S1<S2,方案二所围成的养殖场面积较大,方案二更好.【点评】本题考查了基本不等式的性质、三角形面积计算公式、余弦定理、圆的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(18分)(2017•浦东新区二模)已知双曲线,其右顶点为P.(1)求以P为圆心,且与双曲线C的两条渐近线都相切的圆的标准方程;(2)设直线l过点P,其法向量为=(1,﹣1),若在双曲线C上恰有三个点P1,P2,P3到直线l的距离均为d,求d的值.【考点】KM:直线与双曲线的位置关系.【分析】(1)利用点到直线的距离公式,求出圆的半径,即可求出圆的标准方程;(2)求出与直线l平行,且与双曲线消去的直线方程,即可得出结论.【解答】解:(1)由题意,P(2,0),双曲线的渐近线方程为y=±x,P到渐近线的距离d==,∴圆的标准方程为(x﹣2)2+y2=;(2)由题意,直线l的斜率为1,设与直线l平行的直线方程为y=x+m,代入双曲线方程整理可得x2+8mx+4m2+12=0,△=64m2﹣4(4m2+12)=0,可得m=±1,与直线l:y=x+2的距离分别为或,即d=或【点评】本题考查双曲线的方程与性质,考查圆的方程,考查直线与双曲线位置关系的运用,属于中档题.20.(16分)(2017•浦东新区二模)若数列{A n}对任意的n∈N*,都有(k≠0),且A n≠0,则称数列{A n}为“k级创新数列”.(1)已知数列{a n}满足且,试判断数列{2a n+1}是否为“2级创新数列”,并说明理由;(2)已知正数数列{b n}为“k级创新数列”且k≠1,若b1=10,求数列{b n}的前n项积T n;(3)设α,β是方程x2﹣x﹣1=0的两个实根(α>β),令,在(2)的条件下,记数列{c n }的通项,求证:c n +2=c n +1+c n ,n ∈N *.【考点】8I :数列与函数的综合.【分析】(1)数列{2a n +1}是“2级创新数列”,下面给出证明:,可得a n +1+1=+1=≠0,即可证明.(2)正数数列{b n }为“k 级创新数列”且k ≠1,.b n ===…==.又b 1=10,利用指数的运算性质可得数列{b n }的前n 项积T n =.(3)α,β是方程x 2﹣x ﹣1=0的两个实根(α>β),可得β2﹣β﹣1=0,α2﹣α﹣1=0.在(2)的条件下,记数列{c n }的通项=βn ﹣1×=.【解答】(1)解:数列{2a n +1}是“2级创新数列”,下面给出证明:∵,∴2a n +1+1=+1=≠0,∴数列{2a n +1}是“2级创新数列”.(2)解:∵正数数列{b n }为“k 级创新数列”且k ≠1,∴.∴b n ====…==.又b 1=10,∴数列{b n }的前n 项积T n =b n b n ﹣1•…•b 1==.(3)证明:α,β是方程x 2﹣x ﹣1=0的两个实根(α>β), ∴β2﹣β﹣1=0,α2﹣α﹣1=0.在(2)的条件下,记数列{c n }的通项=βn ﹣1×=βn ﹣1×=.∴c n +2=.c n +1+c n =+.∴c n +2﹣(c n +1+c n )==0.∴c n +2=c n +1+c n .【点评】本题考查了数列递推关系、指数的运算性质、一元二次风吹草动根与系数的关系、作差法,考查了推理能力、计算能力,属于中档题.21.(18分)(2017•浦东新区二模)对于定义域为R的函数g(x),若函数sin[g(x)]是奇函数,则称g(x)为正弦奇函数.已知f(x)是单调递增的正弦奇函数,其值域为R,f(0)=0.(1)已知g(x)是正弦奇函数,证明:“u0为方程sin[g(x)]=1的解”的充要条件是“﹣u0为方程sin[g(x)]=﹣1的解”;(2)若f(a)=,f(b)=﹣,求a+b的值;(3)证明:f(x)是奇函数.【考点】3P:抽象函数及其应用.【分析】(1)根据正弦奇函数的定义,结合充要条件的定义,分别证明必要性和充分性,可得结论;(2)由f(x)是单调递增的正弦奇函数,f(a)=,f(b)=﹣,可得a,b互为相反数,进而得到答案.(3)根据f(x)是单调递增的正弦奇函数,其值域为R,f(0)=0得到:f(﹣x)=﹣f(x),可得结论.【解答】证明(1)∵g(x)是正弦奇函数,故sin[g(x)]是奇函数,当:“u0为方程sin[g(x)]=1的解”时,sin[g(u0)]=1,则sin[g(﹣u0)]=﹣1,即“﹣u0为方程sin[g(x)]=﹣1的解”;故:“u0为方程sin[g(x)]=1的解”的必要条件是“﹣u0为方程sin[g(x)]=﹣1的解”;当:“﹣u0为方程sin[g(x)]=﹣1的解”时,sin[g(﹣u0)]=﹣1,则sin[g(u0)]=1,即“u0为方程sin[g(x)]=1的解”;故:“u0为方程sin[g(x)]=1的解”的充分条件是“﹣u0为方程sin[g(x)]=﹣1的解”;综上可得:“u0为方程sin[g(x)]=1的解”的充要条件是“﹣u0为方程sin[g(x)]=﹣1的解”;解:(2)∵f(x)是单调递增的正弦奇函数,f(a)=,f(b)=﹣,则sin[f(a)]+sin[f(b)]=1﹣1=0,则a=﹣b,则a+b=0证明:(3)∵f(x)是单调递增的正弦奇函数,其值域为R,f(0)=0.故sin[f(﹣x)]+sin[f(x)]=0,即sin[f(﹣x)]=﹣sin[f(x)]=sin[﹣f(x)],f(﹣x)=﹣f(x),故f(x)是奇函数.【点评】本题考查的知识点是抽象函数及其应用,函数的奇偶性,函数的单调性,充要条件,难度中档.。
【学生版本】2017二模客观难题分析

目录1. 虹口 (2)2. 黄浦 (3)3. 杨浦 (4)4. 奉贤 (5)5. 长宁金山青浦 (6)6. 浦东 (7)7. 闵行 (8)8. 普陀 (9)9. 徐汇 (10)10. 静安 (11)11. 崇明 (12)12. 松江 (13)13. 嘉定 (13)14. 宝山 (14)15奉贤区: (15)16普陀区: (16)17杨浦区: (17)18闵行区 (17)19黄浦区 (18)20宝山区 (19)21浦东新区 (20)2017年上海市高三二模数学填选难题解析1. 虹口11. 在直角△ABC 中,2A π∠=,1AB =,2AC =,M 是△ABC 内一点,且12AM =, 若AM AB AC λμ=+,则2λμ+的最大值为12. 无穷数列{}n a 的前n 项和为n S ,若对任意的正整数n 都有12310{,,,,}n S k k k k ∈ ,则 10a 的可能取值最多..有 个16. 已知点(,)M a b 与点(0,1)N -在直线3450x y -+=的两侧,给出以下结论: ①3450x y -+>;② 当0a >时,a b +有最小值,无最大值;③ 221a b +>; ④ 当0a >且1a ≠时,11b a +-的取值范围是93(,)(,)44-∞-+∞ .正确的个数是( )A. 1B. 2C. 3D. 42. 黄浦11. 三棱锥P ABC -满足:AB AC ⊥,AB AP ⊥,2AB =,4AP AC +=,则该三棱锥的体积V 的取值范围是12. 对于数列{}n a ,若存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a是以T 为周期的周期数列,设1b m =(01)m <<,对任意正整数n 有11,11,01n n n n nb b b b b +->⎧⎪=⎨<≤⎪⎩,若数列{}n b 是以5为周期的周期数列,则m 的值可以是(只要求填写满足条件的一个m 值即可)16. 如图所示,23BAC π∠=,圆M 与AB 、AC 分别相切于点D 、E ,1AD =,点P 是 圆M 及其内部任意一点,且AP xAD yAE =+(,)x y R ∈,则x y +取值范围是( )A. [1,4+B. [4-+C. [1,2D. [23. 杨浦11. 已知0a >,0b >,当21(4)a b ab++取到最小值时,b =12. 设函数()||||a f x x x a =+-,当a 在实数范围内变化时,在圆盘221x y +≤内,且不在任一()a f x 的图像上的点的全体组成的图形的面积为16. 对于定义在R 上的函数()f x ,若存在正常数a 、b ,使得()()f x a f x b +≤+对一切x R ∈均成立,则称()f x 是“控制增长函数”,在以下四个函数中:① 2()1f x x x =++;② ()f x = 2()sin()f x x =;④ ()sin f x x x =⋅. 是“控制增长函数”的有( )A. ②③B. ③④C. ②③④D. ①②④4. 奉贤11. 已知实数x 、y 满足方程22(1)(1)1x a y -++-=,当0y b ≤≤()b R ∈时,由此方程可以确定一个偶函数()y f x =,则抛物线212y x =-的焦点F 到点(,)a b 的轨迹上点的距离最大值为12. 设1x 、2x 、3x 、4x 为自然数1、2、3、4的一个全排列,且满足1234|1||2||3||4|6x x x x -+-+-+-=,则这样的排列有 个16. 如图,在△ABC 中,BC a =,AC b =,AB c =,O 是△ABC 的外心,OD BC ⊥ 于D ,OE AC ⊥于E ,OF AB ⊥于F ,则::OD OE OF 等于( ) A. ::a b c B.111::a b cC. sin :sin :sin A B CD. cos :cos :cos A B C5. 长宁金山青浦11. 已知函数()||f x x x a =-,若对任意1[2,3]x ∈,2[2,3]x ∈,12x x ≠,恒有1212()()()22x x f x f x f ++>,则实数a 的取值范围为12. 对于给定的实数0k >,函数()kf x x=的图像上总存在点C ,使得以C 为圆心,1为半 径的圆上有两个不同的点到原点O 的距离为1,则k 的取值范围是16. 设1x 、2x 、…、10x 为1、2、…、10的一个排列,则满足对任意正整数m 、n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为( )A. 512B. 256C. 255D. 646. 浦东11. 已知各项均为正数的数列{}n a 满足11(2)(1)0n n n n a a a a ++--=*()n N ∈,且110a a =, 则首项1a 所有可能取值中最大值为12. 已知平面上三个不同的单位向量a 、b 、c 满足12a b b c ⋅=⋅= ,若e 为平面内的任意单位向量,则||2||3||a e b e c e ⋅+⋅+⋅的最大值为16. 已知等比数列1a 、2a 、3a 、4a 满足)1,0(1∈a ,)2,1(2∈a ,)4,2(3∈a ,则4a 的取值 范围是( )A. (3,8)B. (2,16)C. (4,8)D.7. 闵行11. 已知定点(1,1)A ,动点P 在圆221x y +=上,点P 关于直线y x =的对称点为P ',向量AQ OP '= ,O 是坐标原点,则||PQ的取值范围是12. 已知递增数列{}n a 共有2017项,且各项均不为零,20171a =,如果从{}n a 中任取两项i a 、j a ,当i j <时,j i a a -仍是数列{}n a 中的项,则数列{}n a 的各项和2017S =16. 设函数()y f x =的定义域是R ,对于以下四个命题: ① 若()y f x =是奇函数,则(())y f f x =也是奇函数; ② 若()y f x =是周期函数,则(())y f f x =也是周期函数; ③ 若()y f x =是单调递减函数,则(())y f f x =也是单调递减函数;④ 若函数()y f x =存在反函数1()y f x -=,且函数1()()y f x f x -=-有零点,则函数()y f x x =-也有零点.其中正确的命题共有( )A. 1个B. 2个C. 3个D. 4个8. 普陀11. 设0a <,若不等式22sin (1)cos 10x a x a +-+-≥对于任意的R x ∈恒成立,则a 的 取值范围是16. 关于函数2sin y x =的判断,正确的是( ) A. 最小正周期为2π,值域为[1,1]-,在区间[,]22ππ-上是单调减函数 B. 最小正周期为π,值域为[1,1]-,在区间[0,]2π上是单调减函数 C. 最小正周期为π,值域为[0,1],在区间[0,]2π上是单调增函数 D. 最小正周期为2π,值域为[0,1],在区间[,]22ππ-上是单调增函数9. 徐汇11. 如图:在△ABC 中,M 为BC 上不同于B 、C 的任意一点,点N 满足2AN NM = ,若AN xAB yAC =+,则229x y +的最小值为12. 设单调函数()y p x =的定义域为D ,值域为A ,如果单调函数()y q x =使得函数 (())y p q x =的值域也是A ,则称函数()y q x =是函数()y p x =的一个“保值域函数”,已 知定义域为[,]a b 的函数2()|3|h x x =-,函数()f x 与()g x 互为反函数,且()h x 是()f x 的一个“保值域函数”, ()g x 是()h x 的一个“保值域函数”,则b a -=16. 过椭圆2214x y m m +=-(4)m >右焦点F 的圆与圆22:1O x y +=外切,则该圆直径FQ 的端点Q 的轨迹是( )A. 一条射线B. 两条射线C. 双曲线的一支D. 抛物线10. 静安10. 若适合不等式2|4||3|5x x k x -++-≤的x 最大值为3,则实数k 的值为11. 已知1()1xf x x-=+,数列{}n a 满足112a =,对于任意*n N ∈都满足2()n n a f a +=,且0n a >,若2018a a =,则20162017a a +=15. 曲线C 为:到两定点(2,0)M -、(2,0)N 的距离乘积为常数16的动点P 的轨迹,以下 结论: ① 曲线C 经过原点;② 曲线C 关于x 轴对称,但不关于y 轴对称;③ △MPN 的面积不大于8;④ 曲线C 在一个面积为60的矩形范围内. 其中正确的个数为( ) A. 0 B. 1 C. 2 D. 311. 崇明11. 已知函数22sin(),0()3cos(),0x x x f x x x x πα⎧++>⎪=⎨⎪-++<⎩,[0,2)απ∈是奇函数,则α=12. 已知△ABC是边长为PQ 为△ABC 外接圆O 的一条直径,M 为△ABC 边长的动点,则PM MQ ⋅的最大值是16. 设函数()x x x f x a b c =+-,其中0c a >>,0c b >>,若a 、b 、c 是△ABC 的三条 边长,则下列结论:① 对于一切(,1)x ∈-∞都有()0f x >;② 存在0x >使x xa 、x b 、x c 不能构成一个三角形的三边长;③ 若△ABC 为钝角三角形,存在(1,2)x ∈,使()0f x =. 其中正确的个数为( )A. 3个B. 2个C. 1个D. 0个12. 松江11. 如图同心圆中,大、小圆的半径分别为2和1,点P 在大圆上,PA 与小圆相切于点A ,Q 为小圆上的点,则PA PQ ⋅的取值范围是13. 嘉定11. 设等差数列{}n a 的各项都是正数,前n 项和为n S ,公差为d . 若数列也是公差 为d 的等差数列,则}{n a 的通项公式为n a =12. 设x ∈R ,用[]x 表示不超过x 的最大整数(如[2.32]2=,[ 4.76]5-=-),对于给定的*n ∈N ,定义(1)([]1)(1)([]1)xnn n n x C x x x x --+=--+ ,其中[1,)x ∈+∞,则当3[,3)2x ∈时,函数xC x f 10)(=的值域是16. 已知()f x 是偶函数,且()f x 在[0,)+∞上是增函数,若(1)(2)f ax f x +≤-在1[,1]2x ∈上恒成立,则实数a 的取值范围是( )A. [2,1]-B. [2,0]-C. [1,1]-D. [1,0]-14. 宝山11. 设向量(,)m x y = ,(,)n x y =- ,P 为曲线1m n ⋅=(0)x >上的一个动点,若点P 到直 线10x y -+=的距离大于λ恒成立,则实数λ的最大值为15. 如图,在同一平面内,点P 位于两平行直线1l 、2l 两侧,且P 到1l 、2l 距离分别为1、3,点M 、N 分别在1l 、2l 上,||8PM PN +=,则PM PN ⋅ 的最大值为( )A. 15B. 12C. 10D. 916. 若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”,设2()x f x xλ+=(0)x >,若对于任意t ∈,总存在正数 m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ取值范围是( ) A. (0,2] B. (1,2] C. [1,2] D. [1,4]15奉贤区:11、已知实数y x ,满足方程1)1(122=-++-y a x )(,当)(0R b b y ∈≤≤时,由此方程可以确定一个偶函数,则抛物线221x y -=的焦点F 到点),(b a 的轨迹上点的距离最大值为 .12、设4321,,,x x x x 为自然数1,2,3,4的一个全排列,且满足643214321=-+-+-+-x x x x ,则这样的排列有 个.16、如图,在△ABC 中,Oc AB b AC a AB ,,,===是ABC∆的外心,,D BC OD 于⊥AC OE ⊥于E ,AB OF ⊥于F ,则OF OE OD ::等于( )A.c b a ::B.cb a 1:1:1 C.C B A sin :sin :sin D.C B A cos :cos :cos16普陀区:11、设0a <,若不等式22sin (1)cos 10+-+-≥x a x a 对于任意的x R ∈恒成立,则a 的取值范围是12、在ABC ∆中,D 、E 分别是AB 、AC 的中点,M 是直线DE 上的动点,若ABC ∆的面积为1,则2MB MC BC ⋅+ 的最小值为16、关于函数2sin y x =的判断,正确的是 ( )()A 最小正周期为2π,值域为[]1,1-,在区间,22ππ⎡⎤-⎢⎥⎣⎦上是单调减函数()B 最小正周期为π,值域为[]1,1-,在区间0,2π⎡⎤⎢⎥⎣⎦上是单调减函数()C 最小正周期为π,值域为[]0,1,在区间0,2π⎡⎤⎢⎥⎣⎦上是单调增函数()D 最小正周期为2π,值域为[]0,1,在区间,22ππ⎡⎤-⎢⎥⎣⎦上是单调增函数17杨浦区:11. 已知0a >,0b >,当21(4)a b ab++取到最小值时,b =12. 设函数()||||a f x x x a =+-,当a 在实数范围内变化时,在圆盘221x y +≤内,且不在 任一()a f x 的图像上的点的全体组成的图形的面积为16. 对于定义在R 上的函数()f x ,若存在正常数a 、b ,使得()()f x a f x b +≤+对一切x R ∈均成立,则称()f x 是“控制增长函数”,在以下四个函数中:① 2()1f x x x =++;② ()f x = 2()sin()f x x =;④ ()sin f x x x =⋅. 是“控制增长函数”的有( )A. ②③B. ③④C. ②③④D. ①②④18闵行区(2017二模闵行11)已知定点(1,1)A ,动点P 在圆221x y +=上,点P 关于直线y x =的对称点为P ',向量AQ QP '= ,O 是坐标原点,则||PQ的取值范围是(2017二模闵行12)已知递增数列{}n a 共有2017项,且各项均不为零,20171a =,如果从{}n a 中任取两项i a 、j a ,当i j <时,j i a a -仍是数列{}n a 中的项,则数列{}n a 的各项和2017S =(第11题图)16. 设函数()y f x =的定义域是R ,对于以下四个命题: ① 若()y f x =是奇函数,则(())y f f x =也是奇函数; ② 若()y f x =是周期函数,则(())y f f x =也是周期函数; ③ 若()y f x =是单调递减函数,则(())y f f x =也是单调递减函数;④ 若函数()y f x =存在反函数1()y f x -=,且函数1()()y f x f x -=-有零点,则函数()y f x x =-也有零点.其中正确的命题共有( )A. 1个B. 2个C. 3个D. 4个19黄浦区(2017二模黄浦11)三棱锥P ABC -满足:AB AC ⊥,AB AP ⊥,2AB =,4AP AC +=,则该三棱锥的体积V 的取值范围是 .(2017二模黄浦12)对于数列{}n a ,若存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 是以T 为周期的周期数列.设1(01)b m m =<<,对任意正整数n 都有111)1(01) (n n n n nb b b b b +->⎧⎪=⎨<⎪⎩≤,,若数列{}n b 是以5为周期的周期数列,则m 的值可以是 .(只要求填写满足条件的一个m 值即可)(2017二模黄浦16)如图所示,2π3BAC ∠=,圆M 与,AB AC 分别相切于点,D E , AD 1=,点P 是圆M 及其内部任意一点,且AP xAD yAE =+(,)x y ∈R ,则x y +的取值范围是( )A.[1,4+ B.[4-+ C.[1,2D.[220宝山区(2017二模宝山11)11. 设向量(,)m x y = ,(,)n x y =-,P 为曲线1m n ⋅= (0)x >上的一个动点,若点P 到直线10x y -+=的距离大于λ恒成立,则实数λ的最大值为(2017二模宝山12)设1x 、2x 、…、10x 为1、2、…、10的一个排列,则满足对任意正整数m 、n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为(第16题图)(2017二模宝山16)16. 若存在t R ∈与正数m ,使()()F t m F t m -=+成立,则称“函数()F x 在x t =处存在距离为2m 的对称点”,设2()x f x xλ+=(0)x >,若对于任意t ∈,总存在正数m ,使得“函数()f x 在x t =处存在距离为2m 的对称点”,则实数λ取值范围是( )A. (0,2]B. (1,2]C. [1,2]D. [1,4]21浦东新区(2017二模浦东11)已知各项均为正数的数列{}n a 满足:()()()11210N n n n n a a a a n *++--=∈,且101a a =,则首项1a 所有可能取值中的最大值为____________.(2017二模浦东12)已知平面上三个不同的单位向量,,a b c 满足12a b b c ⋅=⋅= ,若e 为平面内的任意单位向量,则23a e b e c e ⋅+⋅+⋅的最大值为____________.(2017二模浦东16)已知等比数列1234,,,a a a a 满足()10,1a ∈,()21,2a ∈,()32,4a ∈,则4a 的取值范围是( )A 、()3,8;B 、()2,16;C 、()4,8;D 、()青浦、长宁、金山区(2017二模青浦11)已知函数()a x x x f -=,若对于任意的,[][]2121,3,2,3,2x x x x ≠∈∈恒有()()222121x f x f x x f +>⎪⎭⎫ ⎝⎛+,则实数a 的取值范围是____________.(2017二模青浦12)对于给定的实数0>k ,函数()xkx f =的图像上总存在点C ,使得以C 为圆心,1为半径的圆上有两个不同的点到原点O 的距离为2,则k 的取值范围是_____________.(2017二模青浦16)设1x 、2x 、…、10x 为1、2、…、10的一个排列,则满足对任意正整数m 、n ,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为( ) A 、512; B 、256; C 、255()4,8; D 、64静安区10、若适合不等式2435x x k x -++-≤的x 最大值为3,则实数k 的值为 。
2017上海市奉贤区高三二模数学试题及答案

2017上海市奉贤区高三二模数学试题及答案2016-2017学年第二学期奉贤区调研测试高三数学卷201704考试时间120分钟,满分150分一、填空题(第1题到第6题每题4分,第7题到第12题每题5分,满分54分)1.函数()??-=x x f 2cos π的最小正周期是________. 2.若关于,x y 的方程组=+=+21y x y ax 无解,则=a ________.3.已知{}n a 为等差数列,若16a =,350a a +=,则数列{}n a 的通项公式为________.4.设集合{}{}23A x x ,B x x t =-≤=<,若A B=? ,则实数t 的取值范围是______.5.设点()9,3在函数()()()log 10,1a f x x a a =->≠的图像上,则()f x 的反函数()1f x -=________.6.若,x y 满足??≥≤+≥-020y y x y x ,则目标函数2z x y =+的最大值是________.7.在平面直角坐标系xOy 中,直线l 的方程为06=-+y x ,圆C 的参数方程为[)()πθθθ2,02sin 2cos 2∈?+==y x ,则圆心C 到直线l 的距离为________. 8.双曲线22y x -=的左右两焦点分别是12,F F ,若点P 在双曲线上,且21PF F ∠为锐角,则点P 的横坐标的取值范围是________.9.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为________.10.已知数列{}n a 是无穷等比数列,它的前n 项的和为n S ,该数列的首项是二项式71x x ??+ ??展开式中的x 的系数,公比是复数iz 311+=的模,其中i 是虚数单位,则n n S ∞→lim =_____.11.已知实数x 、y 满足方程()()22111x a y -++-=,当0y b ≤≤(b R ∈)时,由此方程可以确定一个偶函数()y f x =,则抛物线212y x =-的焦点F 到点(,)a b 的轨迹上点的距离最大值为________.12.设1x 、2x 、3x 、4x 为自然数1、2、3、4的一个全排列,且满足 643214321=-+-+-+-x x x x ,则这样的排列有________个.二、选择题(单项选择题,每题5分,满分20分) 13.已知x ,y R ∈,且0x y >>,则下列不等式中成立的是() A .1y -> B .sin sin 0x y -> C . 11()()022x y -< D .ln ln 0x y +>14.若()f x 为奇函数,且0x 是()x y f x e =-的一个零点,则0x -一定是下列哪个函数的零点() A .()1x y f x e =+ B .()1xy f x e-=--C .()1x y f x e =-D .()1xy f x e =-+15.矩形纸片ABCD 中,AB =10cm ,BC =8cm .将其按图(1)的方法分割,并按图(2)的方法焊接成扇形;按图(3)的方法将宽BC 2等分,把图(3)中的每个小矩形按图(1)分割并把4个小扇形焊接成一个大扇形;按图(4)的方法将宽BC 3等分,把图(4)中的每个小矩形按图(1)分割并把6个小扇形焊接成一个大扇形;……;依次将宽BC n 等分,每个小矩形按图(1)分割并把n 2个小扇形焊接成一个大扇形.当n ∞→时,最后拼成的大扇形的圆心角的大小为()A .小于2πB .等于2πC .大于2D .大于6.116.如图,在ABC ?中,,,BC a AC b AB c ===.O 是ABC ?的外心,OD BC ⊥于D ,OE AC ⊥于E ,OF AB ⊥于F ,则::OD OE OF 等于()A .::a b cB .111::a b cC .s :s :s inA inB inCD .cos :cos :cos A B C三、解答题(第17-19题每题14分,第20题16分,第21题18分,满分76分)17.如图,圆锥的底面圆心为O ,直径为AB ,C 为半圆弧AB 的中点,E 为劣弧CB 的中点,且2AB PO ==(1)求异面直线PC 与所成的角的大小;(2)求二面角P AC E --的大小.18.已知美国苹果公司生产某款iphone 手机的年固定成本为40万美元,每生产1只还需另投入16美元.设苹果公司一年内共生产该款iphone 手机x 万只并全部销售完,每万只的销售收入为()x R 万美元,且()>-≤<-=40,400007400400,64002x x xx x x R(1)写出年利润W (万美元)关于年产量x (万只)的函数解析式;(2)当年产量为多少万只时,苹果公司在该款手机的生产中所获得的利润最大?并求出最大利润.19.如图,半径为1的半圆O 上有一动点B ,MN 为直径,A 为半径ON 延长线上的一点,且2OA =,AOB ∠的角平分线交半圆于点C .(1)若3=?AB AC ,求cos AOC ∠的值;(2)若,,A B C 三点共线,求线段AC 的长.20.已知数列{}n a 的前n 项和为n S ,且22n n S a =-(*n N ∈).(1)求{}na 的通项公式;(2)设1122++-=n n n b b ,81=b ,n T 是数列{}nb 的前n 项和,求正整数k ,使得对任意*n N ∈均有k n T T ≥恒成立;(3)设11(1)(1)n n n n a c a a ++=++,n R 是数列{}n c 的前n 项和,若对任意*n N ∈均有n R λ<恒成立,求λ的最小值.21.已知椭圆E :22221(0)x y a b a b+=>>,左焦点是1F .(1)若左焦点1F 与椭圆E 的短轴的两个端点是正三角形的三个顶点,点??21,3Q 在椭圆E 上.求椭圆E 的方程;(2)过原点且斜率为()0t t >的直线1l 与(1)中的椭圆E 交于不同的两点,G H ,设()()0,2,1,011A B ,求四边形11AGB H 的面积取得最大值时直线1l 的方程;(3)过左焦点1F 的直线2l 交椭圆E 于,M N 两点,直线2l 交直线()0x p p =->于点P ,其中p 是常数,设1MF PM λ=,1NF PN μ=,计算μλ+的值(用b a p ,,的代数式表示).奉贤高三二模练习卷参考答案一、填空题(第1题到第6题每题4分,第7题到第12题每题5分,满分54分) 1、2π; 2、1;3、n a =82n -;4、1t ≤-;5、21x+; 6、3;7、 8、,??+∞-∞? ? ????U ;9、28π; 10、70; 11、2; 12、9;二、选择题(单项选择题,每题5分,满分20分)13、C; 14、A;15、C; 16、D;三、解答题(第17-19题每题14分,第20题16分,第21题18分,满分76分)17、【解答】(1)证明:方法(1)∵PO 是圆锥的高,∴PO ⊥底面圆O ,根据中点条件可以证明OE ∥AC , 2分PCA ∠或其补角是异面直线PC 与OE 所成的角; 1分2,2AC PC PA ====== 2分所以3PCA π∠= 1分异面直线PC 与OE 所成的角是3π1分(1)方法(2)如图,建立空间直角坐标系,()()),,0,,P B A C, 3分()1,1,0E 1分 ()0,1,1=,( )2,0,2-=,()0,2,2=,设与夹角θ,z21222cos ===θ 2分异面直线PC 与OE 所成的角3π1分(2)、方法(1)、设平面APC 的法向量()1111,,z y x n ==?=?011AC n n111100==,()1,1,11-=∴n 3分平面ACE 的法向量()1,0,02=n 1分设两平面的夹角α,则33131cos ===α 2分所以二面角P AC E --的大小是1分方法(2)、取AC 中点为D ,连接,PD OD ,又圆锥母线PA AC =,∴PD AC ⊥ ∵底面圆O 上OA OC =∴OD AC ⊥又E 为劣弧CB 的中点,即有E ∈底面圆O∴二面角P AC E --的平面角即为PDO ∠ 3分∵C 为半圆弧AB 的中点,∴090AOC ∠=又直径AB =∴112OD AC ==∵PO ⊥底面圆O 且OD ?底面圆O ,∴PO OD ⊥又PO =Rt PDO ?中,PD 3分∴OD cos PDO PD ∠==所以二面角P AC E --的大小是1分18、【解答】(1)当040x <≤时,()()21640(4006)(1640)638440W xR x x x x x x x =-+=--+=-+-;3分当40x >时,()()()27400400004000016401640736016W xR x x x x x x x x ??=-+=--+=--3分∴>--≤<-+-=40,40000167360400,4038462x x x x x x W ;(2)当040x <≤时,()226384406326104W x x x =-+-=--+;∴当32x =时,()max 326104W W ==; 3分当40x >时,400007360167360W x x =--≤-当且仅当4000016x x=,即50x =时,()max 505670W W ==5760 3分∵61045760>∴当32x =时,W 的最大值为6104万美元. 2分 19、【解答】(1)以O 为原点,OA 为x 轴正半轴建立平面直角坐标系,设AOC θ∠=,()2,0A()cos ,sin C θθ,()cos2,sin 2B θθ, 2分()θθsin ,2cos -=,()θθ2sin ,22cos -= 2分()()cos 2cos 22sin sin 2θθθθ=--+uuu r uu u rcos cos 22cos 22cos sin sin 24θθθθθθ=--++22cos 2cos 44cos cos 6θθθθ=--+=--+ 2分24cos cos 63θθ∴--+=3cos ,cos 14θθ==-(舍去)(不舍扣1分) 3分(2),,A B C 三点共线,所以cos 22sin 2cos 2sin θθθθ-=- 2分3cos 4θ∴= 1分214212cos 2AC θ∴=+-=AC ∴= 2分19(1)方法二、设AOC θ∠=,+=,+= 2分()()+?+?+=+?+=?∴22分()()412cos 212cos cos 42cos 2cos πθπθθθθ=+??-+??-+=-- 2分24cos cos 63θθ∴--+=3cos ,cos 14θθ==-(舍去) 3 分20、【解答】(1)由22n n S a =-,得1122n n S a ++=- 两式相减,得1122n n n a a a ++=-∴ 12n n a a += 2分数列{}na 为等比数列,公比2q =又1122S a =-,得1122a a =-,12a =∴ 2n n a = 2分(2)1 122++-=n n n b b 11122n nn nb b ++=- 1分 ()()111122n n b b n =+-?-,()25nn b n =- 2分方法一当5n ≤时,()25n n b n =-0≥ 1分因此,1234T T T T <<< >>=65T T 1分∴ 对任意*n N ∈均有45n T T T =≥,故4k =或5。
2017年闵行区高考数学二模试卷含答案

()
(A) 充要条件
(B) 充分不必要条件
(C) 必要不充分条件
(D) 既不充分也不必要条件
14.
将函数
y
sin
x
12
图像上的点
P
4
,t
向左平移
s(s
0)
个单位,得到点
P ,若
P 位于函数 y sin 2x 的图像上,则
()
(A) t 1 , s 的最小值为
2
6
(B) t 3 , s 的最小值为
.
6. 某空间几何体的三视图如右图所示,则该几何体的侧面积
是
.
7. 若函数 f (x) 2x (x a) 1在区间0,1上有零点,则实
数 a 的取值范围是
.
8. 在约束条件 x 1 y 2 3 下,目标函数 z x 2 y 的
4
主视图
4
俯视图
4
左视图
最大值为
.
9. 某学生在上学的路上要经过 2 个路口,假设在各路口是否遇到红灯是相互独立的,遇
1
到红灯的概率都是 ,则这名学生在上学的路上到第二个路口时第一次遇到红灯的概率是
3
.
10.
已知椭圆 x2
y2 b2
10 b
1,其左、右焦点分别为 F1、
F2 , F1F2 2c .若此
椭圆上存在点 P ,使 P 到直线 x
1 c
的距离是
PF1
与
PF2
的等差中项,则 b
的最大值
为
.
11. 已uu知ur定点uuuAr(1,1) ,动点 P 在圆 x2 uuyur2 1上,点 P 关于直线 y x 的对称点为 P ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年上海市高三二模数学填选难题I.虹口1 uiur uuu II.在直角△ ABC 中,A - , AB 1, AC2 , M 是厶ABC 内一点,且AM —,若AM AB2 2则2的最大值为_____________12.无穷数列{a n}的前n项和为S n,若对任意的正整数n都有S n{&, k?*?丄,心},a®的可能取值最多个16.已知点M(a,b)与点N(0, 1)在直线3x 4y 5 0的两侧,给出以下结论:①3x 4y 5 0 ;②当2 2 b 1 9 3a b有最小值,无最大值;③ ab 1 ;④当a 0且a 1时,的取值范围是(,—)U(—,a 1 4 4的个数是( )A. 1B. 2C. 3D. 42. 黄浦2017-4uuirAC,a 0时, ).正确11.三棱锥P ABC 满足:AB AC , AB AP , AB 2 , AP AC 4,则该三棱锥的体积 V 的取值范围是12.对于数列{可},若存在正整数T ,对于任意正整数n 都有a n 丁3. 杨浦a n 成立,则称数列{a n }是以T 为周期的周期数列,设b m (0 m 1),对任意正整数n 有b n !则m 的值可以是 _________ (只要求填写满足条件的一个 b n 1, b n 11 c 」 J 若数列{b n }是以5为周期的周期数列, ,0 b n 1 b nm 值即可)1,点P 是圆M 及其内部任意一点,uuu 且APuuir xAD uuu yAE (x, yR ),则x y 取值范围是()A. [1,42.3]B. [4 2、3,4 2 .3]C. [1,2.3]D. [23,23]16.如图所示, BAC —,圆M 与AB 、AC 分别相切于点 D 、E ,AD311•已知a 0, b 0,当(a 4b)2 —取到最小值时,bab点的全体组成的图形的面积为 __________16.对于定义在R 上的函数f (x),若存在正常数a 、b ,使得f (x a) f (x) b 对一切x 是“控制增长函数”,在以下四个函数中:①f (X ) X 2 X 1 :②f(x)、..两:③f (x) x sinx .是“控制增长函数”的有()A.②③B.③④C.②③④D.①②④4. 奉贤12.设函数f a (x)|x| |x a|,当a 在实数范围内变化时,在圆盘2 2x y 1内,且不在任f a (x)的图像上的R 均成立,则称f (x)2f (x) sin(x ):④11.已知实数x 、y 满足方程(x a 1)2 (y 1)21,当0 y b (b R)时,由此方程可以确定一个偶函数y f(x),则抛物线y ^x 2的焦点F 到点(a,b)的轨迹上点的距离最大值为 _____________________25. 长宁金山青浦12.设人X 2、X 3、X 4为自然数1、2、3、4的一个全排列,且满足I X 1 1||X 2 2| |x 3 3| |x 4 4| 6,则这样的排列有 _________ 个16.如图,在△ ABC 中,BC a , AC b , AB OF AB 于 F ,贝V OD:OE:OF 等于( )c ,O 是厶ABC 的外心,OD BC 于 D , OE AC 于 E ,, 1 1 1A. a : b: cB. ::- a b cC. sinA:sin B :sinCD.cosA: cosB : cosC11.已知函数f(x) x|x a|,若对任意X i [2,3] , x2[2,3],人x,,恒有f(^ 竺)丄®,则实2 2数a的取值范围为__________k12.对于给定的实数k 0,函数f(x)—的图像上总存在点C,使得以C为圆心,1为半径的圆上有两个不同的x点到原点O的距离为1,则k的取值范围是___________16.设人、x、…、为。
为1、2、…、10的一个排列,则满足对任意正整数m、n,且1 m n 10,都有x m m 人n 成立的不同排列的个数为( )A. 512B. 256C. 255D. 646. 浦东11.已知各项均为正数的数列{a n}满足(2a n 1 a n)(a n 1可1) 0 (n N ),且引弘,贝y首项a1所有可能取值中16.已知等比数列a-a2、a3、a4 满足a- (0,1) ,a2 (1,2),a3 (2,4),则a4的取值范围是(A. (3,8)B. (2,16)C. (4,8)D. (2 2,16)7.闵行11.已知定点A(1,1),动点P在圆xunr uuury 1上,点P关于直线y x的对称点为P,向量AQ OP,O是坐标最大值为_________12•已知平面上三个不同的单位向量a、b、c满足a r r r r r r| a e| 2|be| 3|ce|的最大值为 ________________ c -,若e为平面内的任意单位向量,则22uuu原点y |PQ |的取值范围是12.已知递增数列{a n }共有2017叽 且各项均不为零,a 2017 1 ,如果从{a n }中任取两项a 、a j ,当i j 时,a 」a i仍是数列{a n }中的项,则数列{a n }的各项和S 201716.设函数y f(x)的定义域是R ,对于以下四个命题:f (x)是奇函数,则yf (f (x))也是奇函数;其中正确的命题共有(f(x)是周期函数,则y f (f (x))也是周期函数; 若函数 f(x)是单调递减函数,则y f (f (x))也是单调递减函数;y f (x)存在反函数f 1(x),且函数y f (x) f 1(x)有零点,则函数y f (x) x 也有零点.A. 1个B. 2个C. 3个D. 4个8. 普陀11.设a 0 ,若不等式sin2 x (a 1)cos x a2 1 0对于任意的x R恒成立,则a的取值范围是222则X 9y 的最小值为 ____________12.在厶ABC 中,D 、E 分别是 AB 、AC 的中点,LLIir umur UULT 2MB MC BC 的最小值为 _____________M 是直线DE 上的动点 若厶ABC 的面积为1,则216.关于函数y sin x 的判断,正确的是( )A. 最小正周期为2 ,值域为[1,1],在区间[—,^]上是单调减函数B. 最小正周期为 ,值域为[1,1],在区间[0,孑]上是单调减函数C. 最小正周期为 ,值域为[0,1],在区间[0,$]上是单调增函数D. 最小正周期为2 ,值域为[0,1],在区间[-,^]上是单调增函数9. 徐汇UULT11.如图:在厶 ABC 中,M 为BC 上不同于B 、C 的任意一点,点 N 满足ANUUUUUULUU U xABUUL T AC12.设单调函数y p(x)的定义域为D,值域为A,如果单调函数y q(x)使得函数y p(q(x))的值域也是A,与g(x)互为反函数,且h(x)是f(x)的一个“保值域函数” ,g(x)是h(x)的一个“保值域函数”,则b a2 216.过椭圆— 1 (m 4)右焦点F的圆与圆0:x2 y2 1外切,则该圆直径FQ的端点Q的轨迹是m m 4( )A. 一条射线B.两条射线C.双曲线的一支D.抛物线10. 静安210.若适合不等式|x 4x k| |x 3| 5的x最大值为3,则实数k的值为__________________________________________则称函数y q(x)是函数y p(x)的一个“保值域函数”,已知定义域为[a,b]的函数h(x),函数f (x)|x 3|1 x1 *11.已知f (x) ,数列{a n }满足a i ,对于任意n N 都满足a n 2 f (a n ),且a n 0 ,若a ?o %,则 1 x 2 a 2016 a 20仃 ________15.曲线C 为:到两定点 M( 2,0)、N(2,0)的距离乘积为常数 16的动点P 的轨迹,以下结论: ① 曲线C 经过 原点;② 曲线C 关于x 轴对称,但不关于 y 轴对称;③ △ MPN 的面积不大于8;④ 曲线C 在一个面积为60的 矩形范围内•其中正确的个数为() A. 0 B. 1 C. 2 D. 311. 崇明x 2 sin(x —), x 011.已知函数f(x) 3 [0,2 )是奇函数,则 ______________x2 cos(x ), x 012.已知△ ABC是边长为2.3的正三角形,PQ ABC外接圆0的一条直径,M ABC边长的动点,则uuun uiLurPM MQ的最大值是___________16.设函数f(x) a x b x c x,其中c a 0, c b 0,若a、b、c是厶ABC的三条边长,则下列结论:①对于一切x ( ,1)都有f(x) 0 ;②存在x 0使xa x、b x、c x不能构成一个三角形的三边长;③ 若厶ABC为钝角三角形,存在x (1,2),使f(x) 0.其中正确的个数为( )A. 3个B. 2个C. 1个D. 0个12. 松江11.如图同心圆中,大、小圆的半径分别为uuu uuuPA PQ的取值范围是 _________12题、16题同闵行12题、16题13. 嘉定11.设等差数列{a n}的各项都是正数,前n项和为S.,公差为d .若数列{.,.S}也是公差为d的等差数列,则{a n}的通项公式为a n_____________12.设x R,用[x]表示不超过x的最大整数(如[2.32] 2,[ 4.76] 5),对于给定的n N*,定义C n X n(n 讥(n [x] J 其中x [1 x(x 1)L (x[x] 1)'八),则当x [3,3)时,函数f (x) %的值域是__________216.已知f(x)是偶函数,且f(x)在[0, )上是增函数,若f(ax 1) f (x 2)在x [-,1]上恒成立,则实数a的2取值范围是(A. [ 2,1]B. [ 2,0]C. [ 1,1]D. [ 1,0]14. 宝山IT T11.设向量m (x, y),n(x, y),P为曲线m n 1 (x 0)上的一个动点,若点P到直线x y 1 0的距离大于恒成立,则实数的最大值为12题同长宁16题15.如图,12上,在同一平面内, uuuu| PMUULTPN |A. 15B.1216.若存在t设f (x) R与正数2x占八、、P位于两平行直线h、uuuu8,则PMC. 10m,使F (tI2两侧,且P到h、I2距离分别为1、3,点M、N分别在h、uuurPNm)的最大值为D.9WF(t m)成立,则称“函数F(x)在x t处存在距离为2m的对称点”,的对称点”A. (0,2](x 0),若对于任意x,则实数取值范围是(B. (1,2]t (•、6),总存在正数m ,使得“函数f (x)在x t处存在距离为2m)C. [1,2]D. [1,4]。