有源低通滤波器的课程设计-四阶巴特沃斯滤波器复习过程
【完整版毕业论文】巴特沃斯有源低通滤波器的设计

巴特沃斯有源低通滤波器的设计摘要随着社会科学技术的飞速发展,各种科技产品在人类社会中随处可见,极大的丰富了人们的日常生活。
物联设备、可穿戴设备以及虚拟仪器产品在各种应用和消费场合变得极为普遍。
就目前而言,在几乎所有的电子产品中,各种增益、带宽以及高性能的滤波器都发挥着至关重要的作用,例如可穿戴设备的语音信号输入系统中,运用高性能的低通滤波器进行语音信号的降噪、滤波、回声消除,来提高系统的音质和语音识别精准度等。
本论文通过对各种低通滤波器的通频带、增益和截止频率的分析,采用通频带最大扁平度技术(巴特沃斯技术)来设计实现四阶高性能低通滤波器,通过Multisum仿真软件,验证了设计的正确性。
在这基础上,本文还对如何提高该滤波器的响应速度进行了研究,提出了一种有效的提高响应速度的方案,并通过仿真软件得以验证。
这在低通滤波器的理论以及实际工程应用中,都具有非常重要的意义。
关键词:有源低通滤波器,巴特沃斯,运算放大器Design of Butterworth Active Low Pass FilterABSTRACTWith the rapid development of social science and technology, various technological products can be seen everywhere in human society, which greatly enriches people's daily lives. IoT devices, wearable devices, and virtual instrument products have become extremely common in various applications and consumer occasions. For now, in almost all electronic products, various gains, bandwidths, and high-performance filters play a vital role. For example, in the voice signal input system of wearable devices, the use of high-performance low-pass The filter performs noise reduction, filtering, and echo cancellation of the speech signal to improve the sound quality of the system and the accuracy of speech recognition.In this paper, through the analysis of the passband, gain and cutoff frequency of various low-pass filters, the maximum flatness of the passband technology (Butterworth technology) is used to design and implement a fourth-order high-performance low-pass filter, through Multisum simulation software To verify the correctness of the design. On this basis, this paper also studies how to improve the response speed of the filter, and puts forward an effective scheme to improve the response speed, which is verified by simulation software. This is of great significance in the theory of low-pass filters and in practical engineering applications.KEYWORDS:active low-pass filter,butterworth,amplifier1绪论1.1 引言在近现代的科技发展中,滤波器作为一种必不可少的组成成分,在仪器仪表、智能控制、计算机科学、通信技术、电子应用技术和现代信号处理等领域有着十分重要的作用。
LC低通滤波器设计(巴特沃斯低通滤波器归一化)讲解

C1 1.84776F C2 0.76537F
1NEW
0.76537 K 0.76537 4 12.29μH 5 M 2.512 10
L2NEW
1.84776 K 1.84776 4 29.42μH 5 M 2.512 10
待设计LPF的电容参数为 :
(1 2 )Hz
特征阻抗变换K 4 4 1 四阶Butterworth低通滤波器的电感电容参 数
2018/10/24
只因准备不足,才导致失败
7
四阶Butterworth低通滤波器的归一化LPF基 准滤波器的参数,设 L1 0.76537H L2 1.84776H 得:L
1.84776 1.84776 C1NEW 1.84 μF 5 M K 4 2.512 10 0.76537 0.76537 C2NEW 0.76μF 5 M K 4 2.512 10
2018/10/24 只因准备不足,才导致失败 8
电感采用无损磁芯及细包漆线绕制而成,其 电感值可用数字电桥测量仪器测量得到。
2018/10/24
只因准备不足,才导致失败
1
对滤波器截止角频率的变换是通过先求出待 设计滤波器截止角频率与基准角频率的比值 M,再用这个M去除滤波器中的所有元件值 来计算所需参数,其计算公式如下:
待设计滤波器的截止频 率 M 基准滤波器的截止频率
C (base) Cm(new) M
2018/10/24
5. 低通滤波器设计
1)归一化LPF设计方法 归一化低通滤波器设计数据,指的是特征阻 1 抗为 1 且截止频率为 0.159Hz 的基准 低通滤波器的数据。 2 在设计巴特沃思型的归一化LPF的情况下, 以巴特沃思的归一化LPF设计数据为基准滤 波器,将它的截止频率和特征阻抗变换为待 设计滤波器的相应值。
巴特沃斯数字低通滤波器课程设计

巴特沃斯数字低通滤波器课程设计目录1.题目.......................................................................................... .22.要求 (2)3.设计原理 (2)3.1 数字滤波器基本概念 (2)3.2 数字滤波器工作原理 (2)3.3 巴特沃斯滤波器设计原理 (3)3.4脉冲响应不法 (5)3.5实验所用MATLAB函数说明 (7)4.设计思路 (9)5、实验内容 (9)5.1实验程序 (9)5.2实验结果分析 (13)6.设计总结 (13)7.参考文献 (14)一、题目:巴特沃斯数字低通滤波器二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,阻带截止频率120Hz,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应曲线。
并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ。
用此信号验证滤波器设计的正确性。
三、设计原理1、数字滤波器的基本概念所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。
正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。
如果要处理的是模拟信号,可通过A\DC和D\AC,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。
2、数字滤波器的工作原理数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。
如数字滤波器的系统函数为H(Z),其脉冲响应为h(n),则在时间域内存在下列关系y(n)=x(n) h(n)在Z域内,输入输出存在下列关系Y(Z)=H(Z)X(Z)式中,X(Z),Y(Z)分别为输入x(n)和输出y(n)的Z 变换。
巴特沃斯低通滤波器课程设计

电路基础课程设计巴特沃斯低通滤波器设计目标:通带边界频率ωc=4396rad/s (f c=700Hz);通带最大衰减αmax=3dB;阻带边界频率ωs=26376rad/s(f s=4200Hz); 阻带最小衰减αmin=30dB;1.设计步骤⑴设计电压转移函数①将给定的电压衰减技术指标进行频率归一化选取归一化角频率ωr=ωc,这样通带边界频率Ωc=ωc/ ωr=1,阻带边界频率Ωs=ωs/ ωr=ωs/ωc。
②根据归一化的技术指标求出电压转移函数巴特沃斯低通滤波器的阶数n=Log(100.1αmin−1) 2Log(Ωs)带入数据求得n=1.93 取整得n=2由a k=2sin(2k−1)π2n,b k=1和H(s)=U out(s)U in(s)=∏A ks2+a k s+b kn2k=1可得到电压转移函数H(s)=U out(s)U in(s)=1s2+√2s+1将转移函数进行反归一化,即另s=sωc 得到实际转移函数H(s)=U out(s)U in(s)=1s243962+√2s4396+1⑵转移函数的实现选取下图作为实现转移函数的具体电路:列节点方程求解转移函数节点1 U1(1R1+1R2+s∗C1)−1R1U in−1R2−s∗C1∗U2=0节点2 (1R2+s∗C2)U2−1R2U1=0又有U out=U3解得H(s)=U outU in=11+(R2+R2)s∗C2+C1C2R1R2s2对比解得的电压转移函数和推得的电压转移函数里各项的系数并且令R1= R2,C1=1μF,可以得到C1=11000000F=1μFR1=250000√21099Ω=321.705ΩR2=250000√21099Ω==321.705ΩC2=12000000F=0.5μF因实验室没有0.5μF的电容因此取C2=0.47μF2.计算机仿真⑴软件环境:Multisim 10⑵电路图:⑶仿真结果:①700Hz下的波形图②4200Hz下的波形图③波特图◎700Hz下衰减2.673dB◎4200Hz下衰减30.491dB3.实验室实际操作因实验室没有0.5μF的电容和321.705Ω的电阻,因此取C2=0.47μFR1=R2=330Ω实际连电路时,选取集成电路块的第1、2、3引脚分别作为放大器的输出端、负端和正端,第4和11引脚作为供电端,C2一端连接电压源的接地线。
四阶低通滤波 方程

四阶低通滤波方程全文共四篇示例,供读者参考第一篇示例:四阶低通滤波器是一种常用的信号处理器件,广泛应用于通信、音频、图像处理等领域。
四阶低通滤波器可以有效地滤除高频噪声,保留信号中的低频成分,使得信号更加清晰和稳定。
在本文中,我们将介绍四阶低通滤波器的基本原理,推导其传递函数,并讨论如何设计四阶低通滤波器的方程。
让我们来了解四阶低通滤波器的基本原理。
四阶低通滤波器是一种具有四个滤波级联结构的滤波器,每个滤波级都具有一定的增益和相位延迟。
通过将四个滤波级连接在一起,可以实现对输入信号进行更精确和高效的滤波处理。
四阶低通滤波器的主要功能是将高频信号滤除,从而保留低频信号,并输出给下一级信号处理器件进行后续处理。
接下来,我们将推导四阶低通滤波器的传递函数。
传递函数是描述滤波器输入输出之间关系的数学表达式,通常表示为H(s),其中s为复频域变量。
对于四阶低通滤波器来说,传递函数可以通过级联四个一阶低通滤波器的传递函数得到。
一阶低通滤波器的传递函数为H1(s),则四阶低通滤波器的传递函数可以表示为H(s)=H1(s)·H1(s)·H1(s)·H1(s)。
将一阶低通滤波器的传递函数代入四阶低通滤波器的传递函数中,得到四阶低通滤波器的传递函数为H(s)=1/[(s+ω0/Q)^4]。
通过这个传递函数,我们可以得到四阶低通滤波器对输入信号进行滤波的效果,从而实现对信号进行降噪和去混叠的处理。
让我们来讨论如何设计四阶低通滤波器的方程。
在设计四阶低通滤波器时,首先需要确定滤波器的截止频率ω0和品质因数Q,这两个参数将直接影响滤波器的性能和特性。
通常情况下,截止频率ω0越低,滤波器的截止频率越低,品质因数Q越高,滤波器的带宽越窄。
根据所需的滤波器性能和特性要求,可以通过调整截止频率ω0和品质因数Q来设计出符合要求的四阶低通滤波器。
在实际设计中,可以利用电路设计软件或者MATLAB等数学工具进行仿真和调试,以确保设计的四阶低通滤波器能够满足实际应用需求。
巴特沃斯低通滤波器传递函数

巴特沃斯低通滤波器传递函数一、引言巴特沃斯滤波器是一种常见的滤波器,它可以用于信号处理、图像处理等领域。
其中,低通滤波器是最基本的一种。
本文将详细介绍巴特沃斯低通滤波器传递函数的计算方法。
二、巴特沃斯低通滤波器1. 巴特沃斯低通滤波器概述巴特沃斯低通滤波器是一种对频率响应有要求的低通滤波器,其传递函数为:H(s) = 1 / (1 + (s/wc)^2n)^0.5其中,s为Laplace变换中的复频率变量,wc为截止频率,n为阶数。
2. 巴特沃斯低通滤波器传递函数推导(1)将传递函数H(s)转化为标准形式:H(s) = 1 / (1 + (s/wc)^2n)^0.5= 1 / [(s/wc)^2n + 1]^0.5= 1 / [(s^2n + wc^2n) / wc^2n]^0.5= wc^n / [(s^2n + wc^2n)^0.5](2)将复平面上的频率变量s转化为极坐标形式:s = σ + jω= r * e^(jθ)其中,σ为实部,ω为虚部,r为模值,θ为相位角。
(3)将传递函数H(s)中的s用极坐标表示:H(s) = wc^n / [(s^2n + wc^2n)^0.5]= wc^n / [(r^2n * e^(j2nθ) + wc^2n)^0.5](4)将传递函数H(s)中的分母进行有理化:H(s) = wc^n / [(r^2n * e^(j2nθ) + wc^2n)^0.5] = wc^n * (r^2n * e^(j2nθ) - wc^2n)^-0.5(5)将传递函数H(s)中的极坐标形式转化为直角坐标形式:H(s) = wc^n * cos(nθ) - jwc^n * sin(nθ)----------------------------------(r^2n - wc^2n)^0.5(6)根据频率响应要求,令模值等于1时的频率为截止频率wc,则有:1 = |H(jwc)| = wc^n / (wc^2n - wc^2n)^0.5=> 1 = (wc/wc)^n=> n = 1 / [ln(1/√R)] / [ln(tan(π/4 + fc/fs/2))]其中,R为通带最大衰减,fc为通带截止频率,fs为采样频率。
巴特沃斯低通滤波器的设计精编资料

巴特沃斯低通滤波器的设计巴特沃斯低通滤波器的设计1、巴特沃斯滤波器的介绍巴特沃斯低通滤波器的幅度平方函数定义为2221|()|1NH j C λλ=+其中C 为一常数参数,N 为滤波器阶数,λ为归一化低通截止频率,/p λ=ΩΩ。
式中N 为整数,是滤波器的阶次。
巴特沃斯低通滤波器在通带内具有最大平坦的振幅特性,这就是说,N 阶低通滤波器在0Ω=处幅度平方函数的前2N-1阶导数等于零,在阻带内的逼近是单调变化的。
巴特沃斯低通滤波器的振幅特性如图a 所示。
滤波器的特性完全由其阶数N 决定。
当N 增加时,滤波器的特性曲线变得更陡峭,这时虽然由a 式决定了在p Ω=Ω处的幅度函数总是衰减3dB ,但是它们将在通带的更大范围内接近于1,在阻带内更迅速的接近于零,因而振幅特性更接近于理想的矩形频率特性。
滤波器的振幅特性对参数N 的依赖关系如图a 所示。
设归一化巴特沃斯低通滤波器的归一化频率为λ,归一化传递函数为()H p ,其中p j λ=,则可得:2221()1(1)N Np jH j C pλλ==+-p 图a 巴特沃斯低通滤波器的振幅特性由于221()()()1()a a jsNcH s H s AsjΩ=--=Ω=+Ω所以巴特沃斯滤波器属于全极点滤波器。
2、常用设计巴特沃斯低通滤波器指标pλ:通带截止频率;pα:通带衰减,单位:dB;sλ:阻带起始频率;sα:阻带衰减,单位:dB。
说明:(1)衰减在这里以分贝(dB)为单位;即222110lg10lg1()NCH jαλλ⎡⎤==+⎣⎦(2)当3dBα=时p CΩ=Ω为通常意义上的截止频率。
(3)在滤波器设计中常选用归一化的频率/Cλ=ΩΩ,即1,p sp sp pλλΩΩ===ΩΩ图b 为巴特沃斯低通滤波器指标3、设计巴特沃斯低通滤波器的方法如下:(1)计算归一化频率1p p pλΩ==Ω,ss pλΩ=Ω。
(2) 根据设计要求按照210101pC α=-和lg lg saN λ=其中a =特沃斯滤波器的参数C 和阶次N ;注意当3p dB α=时 C=1。
实验十九 四阶巴特沃斯滤波器

实验十九 四阶巴特沃斯滤波器一、实验目的1. 了解巴特沃斯滤波器的频率响应特性。
2. 掌握根据频率响应特性求网络传递函数()a H s ,并根据()a H s 来设计滤波器的方法。
二、实验内容1. 列写四阶巴特沃斯低通、高通和带通滤波器的网络函数。
2. 用示波器观察四阶巴特沃斯滤波器的幅频特性曲线。
3. 熟悉四阶巴特沃斯滤波器的设计方法。
三、实验仪器1. 信号与系统实验箱 一台 2. 信号系统实验平台3. 四阶巴特沃斯滤波器模块(DYT3000-65) 一块 4. 20MHz 双踪示波器 一台 5. 连接线若干四、实验原理实际的滤波电路往往难以达到理想的要求,如要同时在幅频和相频响应两方面都满足要求就更为困难。
因此,只有根据不同的实际需要,寻求最佳的近似理想特性。
例如,可以主要着眼于幅频响应,而不考虑相频响应;也可以从满足相频响应出发,而把幅频响应居于次要位置。
介绍一种最简单也是最常用的滤波电路——巴特沃斯滤波电路(又叫最平幅度滤波电路)。
这种滤波电路对幅频响应的要求是:在小于截止频率c ω的范围内,具有最平幅度的响应,而在c ωω>后,幅频响应迅速下降。
对于低通滤波电路来说,3dB 截止角频率c H n ωωω==。
n 阶低通滤波电路幅频响应的一般形式()cj A ωω=(式19-1)因为2()cj A ωω是偶次函数,所以c ω的奇次幂会出现。
考虑到在1c ω<时,巴特沃斯低通滤波电路的幅频响应是平坦的。
而在1c ω<时,主要是c ωω的低次项对分母起作用而使()cj A ωω下降。
如果()cj A ωω只与c ωω的高次项有关,则能较好的满足上述条件。
因此式19-1可写成()cj A ωω=(式19-2)这就是巴特沃斯低通滤波电路的特性方程。
由于1c ω=时,增益减小3dB ,由式19-2有2222(1)o o n A A K =+,可得21n K =,因而式19-2变为()cj A ωω=(式19-3)为便于归一化处理,引用归一化复频率S (c c S s j ωω==),这样在式中用s j 代替c ω,则得222()1(1)on nA A s S =+- (式19-4) 根据数学关系式2()()C jD C jD C jD +=+-,所以有222()()()1(1)on nS j cA A s A s A s S ωω==-=+- 则()()A s A s -的极点应满足21(1)0nnS +-= (式19-5)由式19-4的根便可以求出滤波电路的网络函数A (S )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气工程学院有源低通滤波器课程设计设计题目:有源低通滤波器设计学号:姓名:同组人:指导教师:设计时间:2012年11月20号设计地点:电气学院实验中心姓名学号课程设计题目:有源低通滤波器设计课程设计答辩或提问记录:成绩评定依据:课程设计预习报告及方案设计情况(30%):课程设计考勤情况(15%):课程设计调试情况(30%):课程设计总结报告与答辩情况(25%):最终评定成绩(以优、良、中、及格、不及格评定)指导教师签字:年月日学生姓名:指导教师:一、课程设计题目:有源低通滤波器设计二、课程设计要求1. 根据具体设计课题的技术指标和给定条件,独立进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整;2. 查阅有关参考资料和手册,并能正确选择有关元器件和参数,对设计方案进行仿真;3. 完成预习报告,报告中要有设计方案,设计电路图,还要有仿真结果;4. 进实验室进行电路调试,边调试边修正方案;5. 撰写课程设计报告——最终的电路图、调试过程中遇到的问题和解决问题的方法。
三、进度安排1.时间安排序号内容学时安排(天)1 方案论证和系统设计 12 完成电路仿真,写预习报告 13 电路调试 24 写设计总结报告与答辩 1合计 5设计调试地点:电气楼4102.执行要求课程设计共5个选题,每组不得超过2人,要求学生在教师的指导下,独力完成所设计的详细电路(包括计算和器件选型)。
严禁抄袭,严禁两篇设计报告雷同。
摘要滤波器用于对信号的频率具有选择性的电路,它的功能是使特定频率范围内的信号通过,有源滤波器被广泛用于信息处理、数据传送等电路中。
在对二阶有源低通滤波器的原理进行分析的基础上,采用2个2阶低通滤波电路级联的方案,设计了基于巴特沃斯逼近的4阶有源低通滤波器。
在Multisim软件中使用虚拟示波器、波特图示仪等设备,对设计的滤波器的交流特性进行仿真,并对仿真结果进行了分析,其交流特性符合理论设计,具有一定的参考价值。
关键词:滤波器,有源低通,巴特沃斯,multisimAbstractAbstract:Filter is the circuit which has a selective for the frequency of signals,its function is to make a specific range offrequency through.Source filter is widely used for information processing and data transmission circuit.Based on the analysis of principle of 2nd Source low passed filter,by using the Scheme of cascading two 2nd source low-passed filter and themethod of examining the table,the 4nd source low-passed filter based on Butterworth is designed.By using the oscilloscopeand Bode plotter in Multisim ,the AC Features of this Filter was Simulated,and the sim ulation results were analyzed,it SAC features met with theory design and has certain reference value.Key words: Source low—passed filter,Butterworth,Multisim目录摘要 (3)Abstract (3)目录 (4)第一章系统方案设计 (1)1.1 滤波器介绍 (1)1.2 有源低通滤波器的设计要求 (1)1.2.1设计内容 (1)1.2.2设计要求 (1)1.2.3元器件 (1)1.2.4考核标准 (1)1.3芯片介绍 (2)1.4有源低通滤波器的设计原理 (2)1.5有源低通滤波器的设计方案 (3)第二章仿真 (5)2.1仿真电路图 (5)2.2 仿真结果分析 (5)2.2.1瞬态特性分析 (5)2.2.2频率特性分析 (7)第三章电路调试 (10)3.1实物面包板图 (10)3.2调试最终元器件阻值 (11)3.3 PCB制版 (12)第四章结论 (13)第五章心得体会与建议 (14)参考文献 (15)附录1:元器件清单 (16)第一章系统方案设计1.1 滤波器介绍滤波器用于对信号的频率具有选择性的电路,它的功能是使特定频率范围内的信号通过,而阻止其他频率的信号通过。
有源滤波器具有设计标准化、模块化、易于制造等优点,因此被广泛用于信息处理、数据传送和抑制干扰等电路中。
低通滤波器分为无源和有源两种。
无源滤波器是由电感、电容及电阻构成的,由于受到尺寸和实际性能的限制,电感在某些频率范围不太适用,因此,近几年来有一种趋向, 即用能模拟电感效应的有源器件来代替电感。
几种低通原型滤波器是现代网络综合法设计滤波器的基础,各种低通、高通、带通、带阻滤波器大都是根据此特性推导出来的。
正因如此,才使得滤波器的设计得以简化,精度得以提高。
理想的低通滤波器应该能使所有低于截止频率的信号无损通过,而所有高于截止频率的信号都应该被无限的衰减,从而在幅频特性曲线上呈现矩形,故而也称为矩形滤波器(brick- wallfilter)。
遗憾的是,如此理想的特性是无法实现的,所有的设计只不过是力图逼近矩形滤波器的特性而已。
根据所选的逼近函数的不同,可以得到不同的响应。
虽然逼近函数多种多样,但是考虑到实际电路的使用需求,我们通常会选用“巴特沃斯响应”或“切比雪夫响应”。
“巴特沃斯响应”带通滤波器具有平坦的响应特性,而“切比雪夫响应”带通滤波器却具有更陡的衰减特性。
所以具体选用何种特性,需要根据电路或系统的具体要求而定。
1.2 有源低通滤波器的设计要求1.2.1设计内容设计一个有源低通滤波器。
1.2.2设计要求要求截止频率20k赫兹。
1.2.3元器件①运算放大器LM324二片;② 9012三极管;③ 9013 三极管;④电阻若干;⑤电容若干;1.2.4考核标准①预习方案报告;②独立设计;③独立调试;④验收;⑤设计报告;(含PCB图、原理图)1.3芯片介绍LM324系列器件带有差动输入的四运算放大器。
与单电源应用场合的标准运算放大器相比,它们有一些显著优点。
该四放大器可以工作在低到3.0伏或者高到32伏的电源下,静态电流为MC1741的静态电流的五分之一。
共模输入范围包括负电源,因而消除了在许多应用场合中采用外部偏置元件的必要性。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端V o的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。
图1 LM324管脚连接图1.4有源低通滤波器的设计原理本次设计选取选取巴特沃斯滤波器。
它的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。
在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。
一阶巴特沃斯滤波器的衰减率为每倍频6分贝,每十倍频20分贝。
二阶巴特沃斯滤波器的衰减率为每倍频12分贝、三阶巴特沃斯滤波器的衰减率为每倍频18分贝、如此类推。
巴特沃斯滤波器的振幅对角频率单调下降,并且也是唯一的无论阶数,振幅对角频率曲线都保持同样的形状的滤波器。
只不过滤波器阶数越高,在阻频带振幅衰减速度越快。
其他滤波器高阶的振幅对角频率图和低级数的振幅对角频率有不同的形状。
巴特沃斯低通滤波器的平方幅度响应为:其中,n为滤波器的阶数,Wc为低通滤波器的截止频率。
图2展示了2阶、4阶、8阶巴特沃斯低通滤波器的幅频特性。
可见阶数n越高,其幅频特性越好,低频检测信号保真度越高。
图2 巴特沃斯幅频滤波器的幅频特性1.5有源低通滤波器的设计方案4阶有源低通滤波器可以由2个2阶低通滤波器级联组成,其基本电路图如图3所示。
设计4阶巴特沃思低通滤波器的传递函数,用2个2阶巴特沃思低通滤波器构成1个4阶巴特沃恩低通滤波器,其传递函数为:为了简化计算,其参数满足如下条件:选取C=0.01uF,可算得R=796 Ω。
4阶巴特沃思低通滤波器2个阻尼系数为:-0.765,1.848,由此算得两个零频增益为:则传递函数为:可以选择两个2阶巴特沃斯低通滤波器级联组成。
增益分别为:对于第一级,若选取R3=61KΩ,则R4=9.27KΩ;对于第二级,若选取R7=20KΩ,则R4=24.7KΩ。
图3 4阶巴特沃斯低通滤波器基本电路第二章仿真2.1仿真电路图根据1.4的设计方案,选择合适的元器件,利用multisim进行仿真。
仿真电路图如图4所示。
R1 796ΩR2796ΩR361kΩR49.27kΩC10.01µFC20.01µFU1ALM324J321141VCC12VV13 Vrms 20kHz 0°R5796ΩR6796ΩR720kΩR824.7kΩC30.01µFC40.01µFU2ALM324J321141VCC12VV2-12 VV3-12 V图4 multisim仿真电路图2.2 仿真结果分析2.2.1瞬态特性分析用示波器观测电路瞬态仿真特性,连接如图所示。
R1 796ΩR2796ΩR361kΩR49.27kΩC10.01µFC20.01µFU1ALM324J321141VCC12VV12.5 Vrms 1kHz 0°R5796ΩR6796ΩR720kΩR824.7kΩC30.01µFC40.01µFU2ALM324J321141VCC12VV2-12 VV3-12 VXSC1A B C DGT 图5 利用示波器观察瞬态特性当输人信号为2V、1KHz时,输入、输出波形如图6所示,幅值放大了2.6倍;把信号频率调整到10 kHz,发现图7中波形不仅幅值已经明显衰减,相位也发生变化,可明显看出该滤波对大于截止频率的信号有较强的抑制作用;当输入信号变成50KHz时,图8中输出信号几乎衰减为0。
图6 fi=1kHz,Vi=2.5V时示波器的观察结果图7 fi=20kHz,Vi=2.5V时示波器的观察结果图8 fi=50kHz,Vi=2.5V时示波器的观察结果2.2.2频率特性分析利用波特仪可以观察输入信号与输出信号只见得频率特性,接法如图9所示。