连铸坯质量对轧钢生产的影响
连铸坯质量控制

连铸坯质量控制连铸坯质量控制引言连铸坯质量是决定钢铁产品质量的重要因素之一。
在连铸过程中,通过控制连铸坯的凝固结晶形貌、尺寸尺寸以及内部缺陷等,可以保证最终钢铁产品的质量稳定性。
本文将介绍连铸坯质量控制的基本原则和常用技术手段。
1. 连铸坯凝固结晶形貌控制1.1 凝固路径设计连铸坯的凝固路径设计是影响凝固结晶形貌的关键因素。
凝固路径包括主要凝固温度区间、凝固速度以及凝固过程中应有的温度梯度等要点。
通过科学合理地设计凝固路径,可以控制连铸坯的凝固结晶形貌,提高产品的均匀性和致密性。
1.2 凝固浸没深度控制凝固浸没深度是指连铸坯在铸机中浸没的深度。
凝固浸没深度的调整可以通过调整浇注速度、浇注高度和结晶器深度等因素来实现。
恰当地控制凝固浸没深度可以优化凝固结构,减少坯壳厚度和缩孔等缺陷的发生。
2. 连铸坯尺寸控制2.1 坯型设计连铸坯的尺寸控制需要科学合理地设计坯型。
坯型设计要考虑连铸机的性能和工艺条件,以及产品需要达到的尺寸要求。
有效的坯型设计可以保证连铸坯尺寸的精确控制,减少修磨损失并提高铸坯产量。
2.2 坯型换边控制连铸坯在连铸过程中,由于挤压力和引拉力的作用,容易发生坯型换边的情况。
坯型换边会导致铸轧过程中尺寸控制困难,甚至导致产品尺寸不合格。
通过控制连铸机的工艺参数和优化设备结构,可以有效地控制坯型换边,提高铸坯质量。
3. 连铸坯内部缺陷控制3.1 结晶器设计结晶器是连铸过程中控制坯内部缺陷的关键设备。
结晶器的设计应考虑到坯内部的流动状态,并通过合理的传热和传质方式,控制连铸坯内的气体和夹杂物等缺陷。
合理的结晶器设计可以有效减少坯内部夹杂物和气体等缺陷的产生。
3.2 液相线保护措施液相线是连铸过程中凝固结构变化的关键位置。
液相线的形成过早或过晚都会导致内部缺陷的产生。
通过合理的冷却水设定和轧制工艺,可以保证液相线的稳定形成,有效控制坯内部缺陷。
结论连铸坯质量控制是保证钢铁产品质量稳定的关键环节。
连铸坯的缺陷与控制技术

目录摘要 (1)ABSTRACT (2)引言 (3)1 连铸坯的形状质量控制 (4)1.1鼓肚变形 (4)1.1.1 鼓肚产生的原因 (4)1.1.2 采取的措施 (4)1.2菱形变形(脱方) (4)1.2.1 脱方成因 (5)1.2.2 减少脱方的措施 (5)1.3圆铸坯变形 (6)1.3.1 椭圆形变形 (6)1.3.2 不规则变形 (6)2 连铸坯的表面质量控制 (7)2.1振动痕迹 (7)2.2表面裂纹 (7)2.2.1 表面纵裂纹 (7)2.2.2 表面横裂纹 (8)2.3表面夹渣 (10)2.3.1 表面夹渣形成的原因 (10)2.3.2 解决表面夹渣的方法[5] (11)2.4保护渣性能对连铸圆坯表面质量的影响[7] (11)3 连铸坯的内部质量控制 (13)3.1连铸坯的中心裂纹 (13)3.1.1内部裂纹产生的原因及预防措施 (13)3.2连铸坯的内部夹杂物 (14)3.2.1夹杂物的分类 (15)3.2.2 夹杂物的来源[9] (15)3.2.3 连铸坯中夹杂物的控制方法[10] (16)结论 (18)致谢 (19)参考文献 (20)摘要连铸坯质量决定着最终产品的质量。
从广义来说所谓的连铸坯质量是得到严格产品所允许范围以内,叫合格产品。
连铸坯质量是从一下几个方面进行评价的:1. 连铸坯的外观形状:是指连铸坯的几何尺寸是否符合规定的要求。
与结晶器内腔尺寸和表面状态及冷却的均匀程度有关。
2. 连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹,夹渣等缺陷。
连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度,拉坯速度,保护渣性能,浸入式水口的设计,结晶式的内腔形状,水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。
3. 连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹,偏析,疏松等缺陷程度。
二冷区冷却水的合理分配,支撑系统的严格对中是保证铸坯质量的关键。
连铸坯质量控制

连铸坯质量控制连铸坯质量控制1. 引言2. 连铸坯质量特点连铸坯的质量特点主要包括以下几个方面:2.1 凝固结构连铸坯是通过冷却凝固过程形成的,其凝固过程直接影响到坯体的凝固结构。
凝固结构的好坏会对后续的加工以及材料性能产生重要影响。
2.2 化学成分均匀性连铸坯的化学成分均匀性是其质量的重要指标之一。
成分不均匀容易导致后续钢材性能不稳定,从而影响到产品的质量。
2.3 表面缺陷由于连铸坯制造过程中的一些不可避免的因素,气体夹杂、氧化皮等,会在坯体表面形成一些缺陷。
这些表面缺陷会对后续产品的外观质量产生负面影响。
2.4 尺寸偏差连铸坯的尺寸偏差是指坯体的实际尺寸与标准尺寸之间的差异。
尺寸偏差会影响到钢材的加工工艺和成形质量。
3. 连铸坯质量控制因素及措施连铸坯质量的影响因素众多,包括原料质量、连铸工艺参数、设备状况等。
针对这些影响因素,可以采取以下控制措施来提高连铸坯的质量:3.1 原料质量控制通过严格控制原料的化学成分和物理性能,确保连铸坯的化学成分均匀性和机械性能达到要求。
3.2 连铸工艺参数控制连铸工艺参数的合理设置对坯体的凝固结构和表面质量具有决定性影响。
需要通过优化连铸工艺参数,如冷却水流量、浇注速度等,来控制连铸坯的质量。
3.3 设备维护与改进连铸设备的状态对连铸坯质量也有重要影响。
定期进行设备维护和检修,及时处理设备故障,可以保证设备处于良好状态,进而提高连铸坯的质量。
3.4 检测手段与技术利用先进的检测手段和技术,如超声波检测、磁力检测等,可以对连铸坯进行质量检测,及时发现问题并采取相应措施。
4.连铸坯质量控制是钢铁生产中至关重要的环节。
通过对连铸坯质量特点的分析和影响因素的控制,可以采取相应的措施来提高连铸坯的质量。
这不仅对于保证下游产品质量,还对于提高工业生产效益和降低资源消耗具有重要意义。
开展连铸坯质量控制工作是必不可少的。
连铸工作中的问题与总结

连铸工作中的问题与总结连铸工作中的问题与总结连铸是钢铁生产过程中相当重要的一环,它直接关系到钢铁工业的精度和效率。
然而,在连铸工作中也常常会出现各种问题,这些问题往往会导致工作效率的降低,甚至还会对钢铁质量带来影响。
因此,正确的总结连铸工作中存在的问题,以及对这些问题的解决方案的总结,不仅可以提高连铸工作效率,而且可以保障钢铁生产的精度和效率。
一、连铸工作中存在的问题1.1 温度控制难度大对于连铸来说,温度控制非常重要,无论是高温还是低温,在控制方面都有一定的难度。
在高温方面,温度过高会导致钢水氧化,以及表面起鼓等情况的发生。
而在低温方面,孔洞出现和内部缺陷的出现也会使钢铁的质量受到影响。
温度过高或者过低都会导致钢铁质量下降、浇口变形,以及连铸设备的损坏变形等情况。
1.2 浇口压力不易控制在连铸过程中,浇口的压力也是一个很重要的因素。
因为,当浇口的压力不稳定的时候,就会导致钢水流速的不稳定,出现一些问题,如不稳定的流速就会导致钢铁坯面整平不良、表面有凸起等问题;如果压力太大,就会导致过削钢铁表面,影响钢铁的外观质量。
1.3 浇注速度控制困难在连铸中,加工铸坯的速度对钢水流体的控制也会有影响。
高速浇注增加了钢水氧化和钢水粘滞度的风险,同时也并不利于钢水的混匀,会对钢铁产品的质量产生负面影响。
低速浇注的阻力较大,只能增加钢水流体的切应力,不能达到良好的混合效果。
因此,快并不一定好,慢也不一定准确,调节浇注速度是一项十分困难的任务。
1.4 非均匀铸坯厚度虽然连铸设备可以控制铸坯的厚度,但越往两端,铸坯的厚度也越难控制。
对于非均匀厚度的铸件,在铸造过程中,可能会出现鱼鳞状的铸态,严重影响铸件表面质量。
同时,厚度的不均匀也会导致温度不均匀,进一步影响铸坯质量。
二、针对问题的解决方案2.1 温度控制温度控制是一项非常重要的工作,如果能保持均衡的温度,并且能够避免过高或者过低的温度,就可以使得铸坯的质量得到保证。
炼钢与连铸若干新技术

炼钢-连铸是钢铁制造的核心工序,是实现钢产品高品质、高效率、低消耗、低排放生产的关键。
在炼钢与连铸过程中,若干新技术被应用以提高效率和产品质量,以下是一些炼钢与连铸的若干新技术:高品质钢低碳转炉冶炼理论与关键技术:该技术通过研究转炉内物理化学过程与生产节奏的改变及钢水质量控制难度的提升等问题,实现转炉废钢比的显著提升,从源头降低钢铁行业CO₂排放量。
新一代钢包喷射冶金技术:此技术通过精确控制溶池液位和保护渣厚度,保证结晶器均匀浇铸拉坯,对生产高质量的钢坯具有重大意义。
紧凑型探测仪同步测定钢水液位和保护渣渣层:此技术通过测量溶池液位方式控制进入结晶器的钢水流动,正确且快速的测量对浇铸稳定性至关重要。
采用大转矩直驱电机,取得结晶器振动最佳效果:大转矩直驱电机可以替代传统的传动装置,提高结晶器振动装置的稳定性和可靠性,从而优化连铸过程。
此外,在炼钢-连铸过程中,还可以采用以下新技术:高效化冶炼:通过优化冶炼过程,降低能源消耗和减少环境污染。
连铸坯热装热送:通过提高连铸坯的温度和质量,减少再加热和轧制过程中的能源消耗和环境污染。
近终形化生产:通过采用先进的工艺和技术,生产更小断面的连铸坯,提高成材率和生产效率。
精确控制结晶器液面和保护渣厚度:通过精确控制结晶器液面和保护渣厚度,提高连铸坯的质量和稳定性。
电磁搅拌技术:通过采用电磁搅拌技术,改善连铸坯的凝固过程,提高产品质量和生产效率。
自动化的物流系统:通过采用先进的物流系统和技术,实现生产过程中物料的自动化运输和跟踪管理,提高生产效率和产品质量。
高效节能的轧制技术:通过采用高效节能的轧制技术,降低轧钢过程中的能源消耗和提高产品质量。
环保型轧制工艺:通过采用环保型轧制工艺和技术,减少轧钢过程中的环境污染和资源浪费。
集成化工艺控制技术:通过采用集成化工艺控制技术,将炼钢、连铸和轧制等工艺过程进行优化和控制,提高生产效率和产品质量。
这些新技术的应用可以显著提高炼钢-连铸生产的效率和产品质量,同时降低能源消耗和环境污染。
连铸连轧综述

薄板坯连铸连轧综述1.前言连铸连轧技术作为钢铁生产工业近年来最重要的技术进步之一,具有节约能源、流程短、设备少、成材率高、生产成本低、产品质量好、品种开发潜力大等突出优点[1~5]。
而在薄板坯在生产过程中应用该技术时获得的组织晶粒细小、二次枝晶间距小、偏析程度低,应用该技术进行生产优势更加明显[6]。
因此,全世界各大钢铁生产企业纷纷引进投建薄板坯连铸连轧生产线。
近些年来,随着薄板坯连铸连轧技术日益成熟和广泛,使人们认识到原来的薄板坯连铸连轧技术仍有许多不足之处,开始进行技术的再开发和提高,使技术更臻于成熟和完善。
2.薄板坯连铸连轧技术简介2.1连铸连轧技术连铸连轧全称连续铸造连续轧制,是将液态金属连续通过水冷结晶器凝固后直接进入轧机进行塑性变形的工艺方法。
传统生产工艺是用熔炼炉将炼好的钢液铸成铸锭,经过保温、锻造制成锻坯,之后再通过均热炉加热到高温并保温一段时间后才进行热轧。
这一过程需要多次加热保温,既浪费了能源,也使生产周期过长。
而连铸连轧技术则是把熔炼好的液态钢倒入连铸机中轧制出钢坯(称为连铸坯),然后不经冷却,在均热炉中保温一定时间后直接进入热连轧机组中轧制成型的钢铁轧制工艺。
这种工艺巧妙地把铸造和轧制两种工艺结合起来,相比于传统的先铸造出钢坯后经加热炉加热再进行轧制的工艺具有简化工艺、改善劳动条件、增加金属收得率、节约能源、提高连铸坯质量、便于实现机械化和自动化的优点[1~5]。
2.2薄板坯连铸连轧连铸坯在轧制之前依据板坯厚度可以分为厚板坯连铸、中厚板坯连铸和薄板坯连铸。
随着连铸坯厚度的减小,板坯中部的冷却速度增大。
冷却速度增大之后,铸坯中部的晶粒变得细小、缺陷减少、偏析减轻、二次枝晶的间距也随之减小。
表1为文献[7]中根据钢研院提供的报告资料所做的统计。
因此,连铸连轧技术应用于薄板坯后的优势更加明显。
3.薄板坯连铸连轧技术的发展历史根据产品生命周期理论和薄板坯连铸连轧技术各个不同发展阶段的具体特征,特别是市场特征,可将薄板坯连铸连轧技术的发展分为下列四个阶段[8~12]:1、研发期(1985~1989)1986年德国施罗曼—西马克公司(SMS)建造了一台采用“漏斗型”结晶器的立弯式薄板坯连铸机,并以6 m/min的拉速成功地生产出50 mm×1600 mm的薄板坯,该技术被称为CSP。
连铸坯缺陷及对策

连铸坯在凝固过程中形成裂纹的原因随着市场竞争的日趋激烈,产品的质量已经成为占有市场的主要砝码,连铸坯作为炼钢厂的终端产品,其质量直接影响着轧材单位的产量和轧材质量,据统计炼钢厂连铸坯质量缺陷中约70%为连铸坯裂纹,连铸坯裂纹成为影响连铸坯产量和质量的重要缺陷之一,下面将对铸坯在凝固过程中裂纹的形成做简要分析:一、铸坯凝固过程的形成铸坯在连铸机内的凝固可看成是一个液相穴很长的钢锭,而凝固是沿液相穴的固液界面在液固相温度区间把液体转变为固体把潜热释放出来的过程。
在固液界面间刚凝固的晶体强度和塑性都非常小,当作用于凝固壳的热应力、鼓肚力、矫直力、摩擦力、机械力等外力超过所允许的外力值时,在固液界面就产生裂纹,这就形成了铸坯内部裂纹。
而已凝固的坯壳在二冷区接受强制冷却,由于铸坯线收缩,温度的不均匀性,坯壳鼓肚、导向段对弧形不准,固相变引起质点如(AlN)在晶界的沉淀等,容易使外壳受到外力和热负荷间歇式的突变,从而产生裂纹就是表面裂纹。
二、连铸坯裂纹形态和影响因素连铸坯裂纹形态分为表面裂纹和内部裂纹,表面裂纹有纵向、横向角部裂纹、表面横裂和纵裂、网状裂纹和凹陷等,内部裂纹有中间、中心和矫直裂纹等。
连铸坯裂纹的影响因素:连铸坯表面裂纹主要决定于钢水在结晶器的凝固过程,它是受结晶器传热、振动、润滑、钢水流动和液面稳定性所制约的,铸坯内部裂纹主要决定于二冷区凝固冷却过程和铸坯支撑系统(导向段)的对弧准确性。
铸坯凝固过程坯壳形成裂纹,从工艺设备和钢凝固特性来考虑影响裂纹形成的因素可分为:1、连铸机设备状态方面有:1)结晶器冷却不均匀2)结晶器角部形状不当。
3)结晶器锥度不合适。
4)结晶器振动不良。
5)二冷水分布不均匀(如喷淋管变形、喷咀堵塞等)。
6)支承辊对弧不准和变形。
2、工艺参数控制方面有:1)化学成份控制不良(如C、Mn/S)。
2)钢水过热度高。
3)结晶器液面波动太大。
4)保护渣性能不良。
5)水口扩径。
6)二次冷却水分配不良,铸坯表面温度回升过大。
连铸坯质量的控制

连铸坯质量的控制
一、引言
连铸是钢铁生产过程中的重要环节,其连铸坯的质量影响着钢质的稳定性、物
理性能和化学成分等方面。
因此,连铸坯质量控制一直是钢铁生产中的关键技术之一。
二、连铸坯质量的影响因素
1.原料质量:包括钢水、氧化渣等的质量;
2.坯型结构和尺寸:坯型结构和尺寸的设计直接影响坯料的冷却效果和
内部应力状态;
3.坯料表面状态:表面缺陷会在浇铸过程中暴露出来,影响坯料的质量;
4.坯料内部缺陷:坯料内部缺陷会影响钢材的使用寿命和物理性能;
5.连铸工艺参数:包括浇注速度、结晶器温度和冷却水流量等。
三、连铸坯质量控制的措施
为了控制连铸坯质量,需要在生产过程中采取以下措施:
1.加强原料质量控制:保证钢水、氧化渣等原料的质量,避免对坯料质
量的不利影响;
2.优化坯型设计:通过设计合理的坯型结构和尺寸,使坯料均匀冷却、
内部应力均匀分布;
3.改进坯料清理技术:减少表面缺陷的产生;
4.加强坯料表面处理:处理坯料表面缺陷,消除缺陷部位;
5.控制连铸工艺参数:调整浇注速度和结晶器温度等工艺参数控制坯料
成分,改善坯料品质。
四、
通过加强原料质量控制、优化坯型设计、改进坯料清理技术、加强坯料表面处
理和控制连铸工艺参数等措施,可以有效地控制连铸坯质量。
同时,连铸坯质量控制也是钢铁生产中不可或缺的环节,对于提高钢材质量和降低成本都具有非常重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连铸坯质量对轧钢生产的影响在钢铁行业生产系统中,炼钢与轧钢作为上下工序是息息相关的,从生产组织到工艺技术要求再到成本利润,只有轧钢提质降耗轧出合格的产品才能画上圆满的句号。
连铸坯质量问题主要表现在以下几个方面:1、连铸坯的纯净度:夹杂物数量、分布程度等;2、表面缺陷:角裂、纵裂、横裂、夹渣、脱方、鼓肚、凹坑、断面切割流渣等;3、内部缺陷:中间裂纹、中心偏析、内生夹杂、外来夹杂、疏松、缩孔等;4、化学成分:不稳定、不均匀等。
由于连铸坯经常性的存在以上缺陷,对轧钢生产带来很多生产事故,导致轧钢生产综合效益降低。
对作业率、成材率、合格率的提高、成品性能的稳定、成本消耗、员工的劳动强度等带来的一系列的影响。
为了更好地实现高效、快捷、均衡、顺行的生产模式,创造良好的整体效益,炼钢与轧钢就要双向挖潜提标。
首先炼钢方面要严控工艺技术要求,实实在在地提高连铸坯的质量。
其次炼钢技术管理人员、质检人员要本着下道工序为上帝的宗旨严把质量关。
再次要与轧钢系统做好联系沟通、及时跟踪、及时整改、及时优化创新,这样我们的水平才能提高,我们的整体效益才能做好。
山东临钢薛传刚
2013年8月18日星期日。