第七章 汽车前轴和转向轮系统的震动
第七章转向系

(一)转向器正效率 η + 受转向器的类型、结构、制造质量等因素影响。 η + 受转向器的类型、结构、制造质量等因素影响。 1.转向器的类型、结构特点与效率 转向器的类型、 转向器的类型 不同类型的转向器因其工作原理不同,导致内部摩擦阻力不同 不同类型的转向器因其工作原理不同,导致内部摩擦阻力不同→ η+、 不同。 η-不同。 如:常用的转向器有:循环球式,蜗杆滚轮式,齿轮齿条式,蜗杆 常用的转向器有:循环球式,蜗杆滚轮式,齿轮齿条式, 指销式等。 齿轮齿条式,循环球式η+ 最高, 以上。 指销式等。而齿轮齿条式,循环球式 最高,达85%以上。 以上
(1)齿轮齿条式优、缺点 : )齿轮齿条式优、 优点:机构简化,无需转向摇臂、转向直拉杆, 优点:机构简化,无需转向摇臂、转向直拉杆,因而转向轮转 角可以设计较大;传动效率可高达90% 角可以设计较大;传动效率可高达 缺点:逆效率高,可达 缺点:逆效率高,可达60%~70%,所以转向轮受到的冲击力大部分 , 传到转向盘。即反冲严重。 传到转向盘。即反冲严重。
tan(α 0 − ρ ) η− = tan α 0
(7-2)
二、传动比的变化特性
i − 力传动比 (一)转向系传动比有 p iω 0 − 角传动比
2F 1.力传动比 i p = w 力传动比 Fh
M Fw = r a
Fh = Mh Dsw 2
地面对转向轮施以一个转向阻力(摩擦力)使轮胎转动 因为是两个转向轮,所以是2Fw Fh : 转向盘上手力
tan α 0 η+ = tan(α 0 + ρ )
(7-1) )
ρ
摩擦角
ρ = arctan f
α0
α0 :螺杆的螺线导程角
汽车传动系统的振动与噪声分析

汽车传动系统的振动与噪声分析随着汽车的普及和发展,汽车传动系统的振动与噪声问题逐渐受到人们关注。
因为汽车传动系统的振动和噪声不但会影响驾驶舒适度,也可能会加速汽车的损耗和磨损程度,进一步影响汽车的使用寿命和安全性。
因此,汽车传动系统的振动与噪声分析成为汽车制造业的一个重要研究方向。
1. 振动与噪声的本质振动和噪声是指汽车传动系统中出现的机械运动过程中产生的波动现象。
它们的本质不同:振动是指物体在一定时间内有规则地加速运动并产生重复性波动的现象;噪声则是振动通过空气或其他传递媒介将能量传播出来,进而引起人类听觉的反应。
因此,汽车传动系统的振动与噪声问题不仅涉及到机械工程、力学等领域,同时也和声学有关,是一个涉及多个学科的复合性问题。
2. 汽车传动系统的振动与噪声的来源和分类汽车传动系统中振动和噪声的产生是由多种因素综合作用而引起。
其中,引起振动的因素可以分为自然因素和非自然因素。
自然因素主要包括轮胎的动平衡、阻尼系统的完整性等;非自然因素则主要来自发动机的运转过程。
另一方面,引起噪声的因素则主要来自于发动机的排放系统、轮胎的道路噪声和车身的空气噪声等。
就振动和噪声的分类而言,汽车传动系统的振动主要可以分为自由振动和受迫振动两种类型。
其中,自由振动是指在没有外力作用的条件下,传动系统因自身结构固有特性而产生的振动,其频率和振幅由系统的自身参数决定。
受迫振动则是指在有外力作用下,传动系统产生的振动,其频率与外力频率一致或是其倍频,振幅与外力振幅大小相关。
而噪声则可以分为气动噪声、机械噪声和燃烧噪声等类型。
其中,气动噪声主要来自汽车在运动过程中荧光可视模测造成的空气流动噪声;机械噪声主要来自于发动机运转和传动系统摩擦等因素所引起;燃烧噪声主要来自于发动机燃烧过程中的热量和气体的振动引起。
3. 汽车传动系统的振动与噪声的影响因素汽车传动系统的振动与噪声的影响因素涉及到多个因素引起的复杂作用。
其中,汽车设计参数的合理性是影响传动系统振动和噪声的重要因素之一。
汽车动力系统的噪音与振动控制

汽车动力系统的噪音与振动控制在现代社会,汽车已经成为人们生活中不可或缺的交通工具。
然而,随着人们对汽车舒适性和品质要求的不断提高,汽车动力系统的噪音与振动问题逐渐受到关注。
过大的噪音和振动不仅会影响驾驶者和乘客的乘坐体验,还可能对车辆的性能和耐久性产生不利影响。
因此,有效地控制汽车动力系统的噪音与振动至关重要。
汽车动力系统产生噪音和振动的原因是多方面的。
首先,发动机内部的燃烧过程会产生压力波动和机械冲击,这是噪音和振动的主要来源之一。
其次,传动系统中的齿轮啮合、传动轴旋转不平衡等也会引起振动和噪音。
此外,进排气系统中的气流脉动、风扇运转等同样会产生相应的噪音。
为了控制汽车动力系统的噪音与振动,工程师们采取了一系列的措施。
在发动机方面,优化燃烧过程是一个重要的手段。
通过改进喷油策略、进气道设计以及点火正时等,可以使燃烧更加平稳,减少压力波动,从而降低噪音和振动。
同时,采用轻质的活塞、连杆和曲轴等部件,以及增加平衡轴来抵消惯性力,也能有效地减少发动机的振动。
对于传动系统,提高齿轮的制造精度和安装精度,采用合适的齿轮齿形和润滑方式,可以减小齿轮啮合时的冲击和噪音。
此外,使用双质量飞轮、液力变矩器等部件,可以有效地隔离发动机的振动传递,降低传动系统的振动水平。
进排气系统的优化也是降低噪音的关键。
合理设计进气歧管和排气歧管的形状和长度,安装消声器和共鸣器,可以有效地减少气流脉动产生的噪音。
同时,采用隔音材料包裹进排气管道,也能起到一定的降噪作用。
除了在硬件方面进行改进,软件控制策略也在噪音与振动控制中发挥着重要作用。
例如,发动机电子控制单元(ECU)可以根据不同的工况,调整气门正时、喷油时间和点火提前角等参数,以实现更加平稳的动力输出,减少噪音和振动。
在车辆启动和熄火过程中,通过控制发动机的转速变化曲线,也可以降低启动和熄火时的冲击和噪音。
在车辆的整体设计中,采用良好的车身结构和悬挂系统也有助于减少噪音和振动的传递。
汽车转向系统振动异响问题研究

固有 频率 / Hz 问题类 型
3 2 振动 异 响
3 4 振动 异 响
5 2 手 感凸跳
5 l 无 问题 件
2 . 3 转向管柱模块 内部结构的更换分析
在 替换 后 的 4件 转 向管 柱产 品 中 ,经 初 步 的手 感检 测 ,发现 其 中 3件转 动顺 畅 ,另 外 3件 上 的中 问轴 单 元轴 向滑 动也 表现 顺滑 ;而最 后 1 件 的转 向 管 柱 模块 则 表 现 出 了明显 的转 动 凸跳 感 ( 即力 矩 波 动) , 经 检 测 证 明 此 管 柱 已不 符 合 设 计 验 证 标 准
向机两 部分 组成 。其 中转 向管柱部 分 由中间轴 、壳
体及 支架所 组成 ,而转 向机 则 由阀芯 、齿条 、缸体
及拉杆 球头 等组成 。
后 ,发现有 2种 类型 的异 响存在 。一 种为变速 箱 档
位在 1 ~2档 、怠速 7 o 0 ~1 5 0 0 r / mi n的转速下 ,会 发 出连续 如 “ 噔噔 ” 的响声 ,并在转 动方 向盘 的 同
时伴 有 明显 的振 动 ;另一 种在把 方 向盘转 到左右 极
限 位 置 时 , 以绕 同心 圆 的方 式 让整 车 以 5 k m/ s的 时 速 行驶 , 从方 向盘 处 会 传 来 轻 微 的 、不 规则 的
“ 咯 咯 ”声 ,同时方 向盘上伴 有不 明显 的振动 。在
实 车试验 中 , 共有 1 0台试验 车辆 , 其 中 3台发 生 了 任 意位 置转 向的振动 异响 ,1 台车辆 的左右 极 限位 置存 在轻微 异 响 。 由于 在汽 车底盘 中,转 向系统作 为 唯一与 驾驶 者 发生相 互作 用 的部 件 ,也能够 传递 由于 其他 部件 问题 所导 致 的振 动异 响 。为排 除这一 因素对 转 向系 统异 响分 析 的干扰 ,准备 了 3辆试验 车辆 ,每辆 车 底盘 的其 余部件 都经 过 了测 量和 验证 ,事 先都装 配 了没有异 响振 动 的转 向系 统进 行实车 试验 。在 确认 无 误 后 ,换 上 了 问题 车 辆 的转 向系 统 ,经 过 再次 的 实际驾评 ,振 动异 响 的 问题在 替换 后 的车 辆上 依
汽车抖动分析

车辆抖动分析原理一、汽车振动的影响因素分析:1、汽车是一个由多个子系统组成的多自由度振动系统,通常的整车振动模型由车桥系统、悬架系统、发动机及传动系统,驾驶室系统组成。
汽车各子系统的动态特性和相互协调直接地影响着各激励源振动传递的效果:各子系统在特定频率段里对某些振动进行衰减,对某些振动则会放大,尤其在共振点附近为甚。
因此,各子系统应合理匹配,避免各部分振动耦合太严重而导致整车局部振动加强;同时,驾驶室系统的(0.75-)倍固有频率范围里应尽量不出现其它各子系统主振动频率和主要激励能量集中的频率。
2、汽车振动的激励源十分复杂,汽车行驶的道路及相关的外部环境是外部激励源,汽车本身各零部件尤其是旋转运动件和悬挂件是内部激励源。
路面不平度是汽车振动的主要激励源。
汽车通过路面的接缝或无规则凹凸时,使驾驶室及车身产生稳态随机振动。
发动机由旋转质量、往复质量运动产生的惯性力、力矩以及由于燃料在气缸内着火爆发面在缸体上产生绕平行于曲轴轴线的力矩(着火脉冲)而生产周期性的振动。
传动系主要由一系列传输动力的旋转部件组成,它受到发动机不平衡力、力矩以及自身不平衡的作用和影响,会产生弯曲振动和扭转振动。
车轮总成对汽车振动的影响因素主要可分为三项:轮胎的不均匀度、车轮总成的动不平衡、钢圈径跳端跳。
二、车轮总成对汽车振动的影响1、现在轻型卡车轮胎均为斜交胎,由纤维、钢丝、橡胶等构成的复合材料品,且大部分靠手工成型,因此其成品精度较一般的金属制品差,往往有周圆部分的尺寸变化、刚度变化和非对称性,从而导致轮胎滚动时要承受从路面来的周期性变化的反作用力。
车轮总成的动不平衡包括轮胎的动平衡和钢圈的动平衡,车轮总成的动不平衡将引起周期性的不平衡向心力及不平衡力矩。
以上两项影响因素引起的周期力按作用方向可分为:径向力变化(RFV)、侧向力变化(LFV)、切向力变化(TFV)。
通常径向力变化(RFV)会导致汽车的垂直振动,侧向力变化(LFV)会导致汽车的左右摇摆,切向力变化(TFV)会导致汽车的前后牵动。
汽车转向摆振原因分析教材

汽车转向摆振原因分析教材汽车转向摆振是指在行驶过程中汽车在进行转向操作时,出现车身摆动的现象。
这种现象通常会导致驾驶者的不适感,并可能对行车安全产生影响。
下面将对汽车转向摆振的原因进行分析。
首先,汽车转向摆振可能是因为悬挂系统的问题引起的。
悬挂系统是汽车的重要组成部分,它通过支撑车身和减震的作用,保证了汽车的行驶稳定性。
然而,当悬挂系统出现故障时,车辆就容易出现转向摆振现象。
例如,悬挂系统的减震器松动或损坏,会导致车轮在行驶过程中无法稳定地贴地,从而引起转向摆振。
此外,悬挂系统弹簧过松或过紧也可能对转向稳定性产生影响。
其次,轮胎的问题也是导致汽车转向摆振的原因之一。
轮胎是汽车与地面直接接触的部分,它的状况直接影响着汽车的行驶稳定性。
当轮胎磨损不均匀或胎压不正确时,会导致车辆在转向时出现摆振现象。
例如,当汽车前轮轮胎内外磨损差异较大时,转向时不同程度的磨损部分会与地面产生不均匀的摩擦力,从而导致转向摆振。
此外,胎压不正确也会导致轮胎与地面的接触面积减小,进而影响车辆的行驶稳定。
再次,制动系统的问题也可能是导致汽车转向摆振的原因之一。
制动系统是汽车行驶过程中必不可少的部分,它负责减速和停车。
然而,当制动系统出现问题时,会对汽车的行驶稳定性产生影响,可能导致转向摆振。
例如,制动盘或制动鼓不平衡、制动片磨损不均匀等问题,会导致车轮在制动过程中产生不均衡的力,进而引起转向摆振。
最后,驾驶员的操作也可能是导致汽车转向摆振的原因之一。
驾驶员在驾驶过程中的操作技巧和经验水平直接影响着汽车的行驶稳定性。
当驾驶员忽视转向操作时的力度和技巧,或者在行驶过程中突然变换方向,都有可能导致转向摆振。
此外,驾驶员不规范的操作方式,例如频繁踩刹车、加速等,也可能对车辆的行驶稳定性产生影响。
综上所述,汽车转向摆振的原因可以归结为悬挂系统问题、轮胎问题、制动系统问题以及驾驶员操作问题等。
为了避免转向摆振的发生,驾驶员应该注意日常维护保养,及时检查悬挂系统、轮胎和制动系统的状况,并养成正确的驾驶习惯,避免突然转向等操作。
汽车前轮摆振原因分析与排除大学毕设论文

毕业论文(设计)题目汽车前轮摆振原因分析与排除系部汽车工程系专业汽车检测与维修班级 13级汽修一班学生姓名王振指导教师肇世华职称讲师2015年 06 月任务书2.任务书任务书由指导教师按学院统一格式编写,包括论文(设计)的任务、要求、时间安排等,下发到每名学生,由指导教师、学生、毕业论文(设计)工作委员会主任三方签字确认,在上交毕业论文时,装订在封面之后。
【目录】第一章·汽车前轮摆振的现象........................................................ . I 第二章·汽车前轮摆振原因......................................................... I I 第三章·汽车前轮摆振分析........................................................ I II 第四章·汽车前轮摆振的排除...................................... I错误!未定义书签。
第五章·结论.......................... 错误!未定义书签。
【参考文献】............................................. I X 致谢................................................ V II第一章·汽车前轮摆振的现象【摘要】汽车在一定车速下直线行驶时前轮发生左右摆动,其行驶轨迹不是直线,行驶方向难以控制。
汽车行驶中,前轮发摆是一种常见故障,分低速摆振和高速摆振两种。
低速摆振大多是由转向系统机件磨损松旷及调整间隙过大引起;高速摆振除包括低速摆振的原因之外,主要是车轮不平衡、前轮定位失准、前轮变形及钢板弹簧发生位移等原因造成的。
汽车动力学基础 第七章 汽车侧倾动力学

当汽车承受侧向力时,车身便相对地发生侧向倾斜,使法向力在左、右轮 间重新分配,影响着弹性轮胎的侧偏特性,还引起前轮定位参数发生变化以及 侧倾转向,从而影响汽车稳态及瞬间转向特性等。
过大的车身侧倾会使车辆发生绕其纵轴旋转90o以上的侧翻,造成严重的交 通事故。
车侧倾动力学主要内容包括侧倾中心、车轮侧倾外倾、侧倾转向、侧倾动 力学模型、汽车侧翻运动及抗侧倾性评价指标等。目前,汽车侧倾动力学在客 车、货车等高质心商用车研究和开发中受到更多重视。
ks
m
2
n
整个悬架的线刚度
Kl
2ks
m n
2
Δφr Δst
Δss
Cs Gs
m n
FZ
7.2.2 悬架的侧倾角刚度
悬架的侧倾角刚度:在单位车身侧倾转 角下(车轮保持在地面上),悬架系统
Kl
B 2
d
施加给车身总的弹性恢复力偶矩。
dT
K d
Kl
车身发生小侧倾角dφ时
dT
2
K
' l
B 2
d
B 2
7.1 侧倾几何学 7.1.1 侧倾中心
车身在前、后轴处横断面上的瞬时转动中心。
O24
Om
vd
E
F
D
G
vg
单横臂独立悬架侧倾中心
O23
O12
2
3
O13
1 4
O14
O34
四连杆机构的相对运动瞬心
7.1 侧倾几何学 7.1.1 侧倾中心 :车身在前、后轴处横断面上的瞬时转动中心。
vd
Ol
Om
vd
Ol
FYγl FYαl
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
) 0.95
代人式(7—12),得
I z S cS be
0
回目录
由于 很小,
e
( K v ) ln 20S
K 1 ln 20S v
K ln 20)S b 0 v .
I z S 2 (c b
..
与此相对应可写成
K 系统中总阻尼系数用 代替 ,a c b ln 20 v
回目录
阻力F与位移的 波形图和示功图
振幅与力幅相同时,不同 相位差φ 和输入系统能量 的关系 图7-7
回目录
由图中可见,不同相位差 时 F x 所形成的 面积,即所产生的能量是不同的,当相位差为 90时输入能量最大,此能量的输入形成了 系统的负阻尼,为了在数学上说明这一现象,可 将前轮简化成为单自由度摆振系统,其振动方程 为
2.系统振动频率与激振频率 一致,摆振明显发生在共振区, 而共振车速范围很窄
无需有持续周期作用的激 励,只要有偶然的单次性 激励
系统振动频率接近系统绕主销 振动的固有频率,与车轮速度 (相当于激励频率)不一致,发 生振动车速范围较宽 其激振力是伴随振动体的运动 而产生,振动体运动停止,激 振力消失
回目录
式中
I k为车轮绕自转轴的转动惯量。
d M T I k k dt
(7-8)
回目录
图 7-4
汽车前轮的陀螺效应
回目录
陀螺力矩方向可用图7-4中左手法则决定, 当行驶中车轮遇到一个凸起障碍时,车轮平面产 生( d dt )角速度,则会激发陀螺力矩:
v d MT Ik R dt
(7-9)
L[b(t )] b(S)e S
.. .
式(7—10)如考虑到弹性恢复力矩滞后的情况, 则改写为
I z c b(t ) 0
进行拉氏变换
2 S
(7-11)
[I z S cS be ](S) 0 (7-12)
轮胎迟滞特性可用下式表示 ( vt k ) 0
d Iz C3 2 dt
(7-4)
回目录
如果计及转向机构及拉杆的弹性,则应用综 合刚度 Cs代替 C 3,根据郭孔辉院士所著“汽车操 纵动力学”一书介绍
i 2C1C2C3 Cs 2 i C1C3 i(i 1)C1C2 C2C3
(7-4a)
图7-1 前桥振动模型
图 7-2
回目录
回目录
在此前提下可考虑系统有如下振动及其固有特性。
1. 前轴绕汽车纵轴振动(图7-1)。 设前轴绕汽车纵轴的转动惯量为I x ,于是 可写出前轴在垂直平面内的自由振动微分方程 d 2 1 2 I x 2 (a K 1 B 2K 2 ) 0 (7-1) dt 2 式中 m; M1 a 2K 1 2 ——悬架变形时产生的恢复力矩,N· m。 M 2 B2K 2 2 ——轮胎变形时产生的恢复力矩,N·
第七章 汽车前轴和转向轮系统
的振动
第一节 前轴和转向轮组成的振动系统
第二节 外界激振力
第三节 前轴与车轮振动的耦合
回主目录
第一节 前轴和转向轮组成的振动系统
前轴和转向轮组成的振动系统包括与前轮 相连的转向杆系和转向器以及由前轴支承 的弹簧和簧载质量,但在分析中作如下简化。 1. 由于转向器在系统中刚度最小,因此把 转向纵拉杆到转向盘简化成一个自由度系统, 系统质量集中于转向盘,由于此系统的频率 很低,所以可把转向盘看成固定不动。 2. 认为悬架以上质量振动可忽略不计,即 认为它也是固定不动的。 3. 轮胎特性仅考虑侧向刚度 以及侧偏刚 度K,而车轮定位参数只考虑轮胎拖距 ,不 考虑外倾角和主销的内倾角。
回目录
轮胎侧偏特性对摆振也有重要影响,在图79(b)中画出了轮胎模型示意图,在这一模型中包 含了轮胎侧向刚度 、侧偏刚度 K 和轮胎拖距 , 而不考虑外倾和前束的影响。
(7-4b)
回目录
由此可得转向轮绕主销振动的.固有频率为
Cs i 2C1C2 s Iz I z (i 2C1 C2 )
(rad/s)
上式表明 C s愈小, I z 愈大,则就 s 愈小,目 前由于汽车平顺性的要求,采用转向系统的刚度 较小,故 s也是有下降趋势。 上述两种振动系统中,在外界激振力的干扰下, 可激发起有阻尼的自由振动、强迫振动和自激振 动。
试验表明,两轮之间转向梯形机构刚度对摆 振有重要影响,因此将两轮之间转向杆视为弹性 元件并有一定阻尼,而把左、右转向轮绕主销的 摆振作为两个自由度系统来考虑。
回目录
图 7-8 前轴绕纵轴振动系统如图7-9所示,此系统 中根据7.1节中假定,把簧载质量固定不动,同 时,加入了悬架中阻尼作用,而把轮胎垂直弹性 用考虑在内。
回目录
图 7-5 货车转向机构 当前悬架采用独立悬架时,悬架与转向杆系的 运动协调问题主要取决于横拉杆上断开点选择是否 合理,如选择不当也会引起前轮摆振。
回目录
7.2.2
偶然和单次性激励
当汽车直线行驶时,汽车受偶然的侧向阵风或 汽车车轮受侧向路面障碍作用下,车轮会发生起始 偏转,当外激力消除后,如由于系统内存在足够阻 尼,使振动逐步衰减,这种振动称为有阻尼自由振 动。另一种现象是当外激力消除后,振动并不衰减, 相反的却因这种振动出现而激起系统内部的某种周 期交变力的发生,从而引起持续的振动,这种振动 称为自激振动,从力学上看,当系统受到的激振力 是位移、速度或加速度的函数时,在一定条件下就 可能产生自激振动,自激振动的频率接近于系统的 固有频率,从能量守恒的原理来分析,产生自激振 动的系统必定有外部能源存在,依靠系统本身的运 动把外部能源转换成激振的能量,振动系统的自激 振动能否维持下去,取决于系统的能量输入与输出 的关系,如图7-6所示。
I z a b 0
a
c
当 b K ln 20 c , a 0 ,系统总阻尼为负值就激
发自激振动。
v
综上所述不同激励方式都能使车轮发生绕主销的 摆振,一种是属于受迫振动类型,一种是属于自 激振动类型,区别这两种类型可从以下三点判断。
回目录
受
迫
振
动
自
激
振
动
1. 由周期变化的外界激励持 续作用引起,如 a.车轮不平衡 b.在波形路面上陀螺力矩 c.悬架与转向系运动不协调
回目录
v2 v M g Fgxe Fg sin e me sin t R R
(7-6)
二、车轮陀螺力矩
汽车行驶时,可把高速转动的车轮看成是一 个转子,而绕主销转动的转向节视为该转子的框 架,从而构成一个二自由度的陀螺,力学中的陀 螺就是除能绕其自转轴转动外,还能绕其他轴转 动的刚体。根据陀螺理论,当转子(车轮)以k高 速旋转时,如果框架也以某角速度d dt 转动, 则框架上将受到一个力矩作用,此力矩称为陀螺 力矩 M T
回目录
第二节
外界激振力
外界激振力既可以是周期变化的,也可以是偶然 单次的。
7.2.1
周期变化激振力
周期变化的激振力有以下几种:
一、车轮不平衡质量产生的离心惯性力
车轮与轮胎由于制造上的误差、材料的不均 匀性,在车轮转动时,不平衡质量将产生沿车轮 半径方向的离心惯心力 Fg 如图7-3所示。 由图中可见
I z c b 0
c ——阻尼系数,N m s rad ;
..
.
(7-10)
2 kg m rad ; 式中 I z ——绕主销转动惯量,
m。 b ——弹性恢复力矩,N·
回目录
上面已经提到由于轮胎弹性恢复力滞后于轮 胎的变形,这样 b不是时间 t的函数,而是 ( t )的函数, 为滞后时间,其拉氏变换为
式中
m/rad; C1 ——转向轴刚度,N·
i
——转向系传动比;
度,N· m/rad;
N· m/rad。
C2 ——转向机与转向轮之间转向连接杆的刚
C3——转向机壳体与车身的固紧刚度,
如转向机壳与车身连接十分牢固,固定刚度很 大( C3 ),上式可改为
i 2C1C2 Cs 2 i C1 C2
回目录
其输出能量随振幅
成二次曲线关系, 如图7-6中-E,此时 输人能量可能是E1,
E2 , E 3,若为 E1就不
能形成自激振动,因
为 E1
E2 ,若为 E2或
图 7-6 自振系统的能量关系
E 3,能形成自激振动,
相应的稳定振幅为A 2和A 3 。
回目录
自激振动系统在何种条件下有能量输入呢? 如果是转向系统,能量最终来自发动机,但它通 过地面与弹性轮胎的相互作用输入到前轮转向系 中,这是由于轮胎有横向振动时,轮胎弹性恢复 力滞后于轮胎变形,这是轮胎固有的弹滞特性, 其力和变形关系如图7-7所示。
3. 激振力的存在与振动体运 动无关
第三节
前轴与车轮振动的耦合
在实际行驶中,前轴绕纵轴的振动和前轮绕 主销的振动可能同时发生、相互耦合,这种振动 对行驶稳定性和操纵性的危害更为严重,因而更 值得进一步加以研究。 7.3.1 数学模型的建立
为了分析的方便首先采用 7.1 节中3 点假定, 这样前轮绕主销摆振的振动系统将如图 7-8 所示。
M T 愈大, 它使车轮绕主销摆动,车速越高, M T 使车 如左轮升高,M T使车轮右摆,左轮下降, 轮左摆。
如果车轮行驶在波形路面上(如搓板路),则 车轮持续上下跳动,陀螺力矩将使车轮摆振,持 续不停。
回目录
设不平路面波长为 ,则其激励频率 为 f v ,其角频率 2f 2v ,当此 激励频率与车轮绕主销摆动的固有频率接近时, 摆振将加剧,形成共振,解决办法是采用等长臂 的独立悬架,使车轮上下跳动时,其平面不偏转, 但其副作用是引起轮距变化和轮胎横向滑移,使 轮胎早期磨损,目前悬架设计中采取折衷设计方 案,取导向机构上臂长=0.6~0.7下臂长(双横臂 悬架)。