铁的氧化物的热膨胀系数及导热系数
常见金属非金属材料导热系数表

常见⾦属⾮⾦属材料导热系数表导热率K是材料本⾝的固有性能参数,⽤于描述材料的导热能⼒,⼜称为热导率,单位为W/mK。
这个特性跟材料本⾝的⼤⼩、形状、厚度都是没有关系的,只是跟材料本⾝的成分有关系。
不同成分的导热率差异较⼤,导致由不同成分构成的物料的导热率差异较⼤。
单粒物料的导热性能好于堆积物料。
稳态导热:导⼊物体的热流量等于导出物体的热流量,物体内部各点温度不随时间⽽变化的导热过程。
⾮稳态导热:导⼊和导出物体的热流量不相等,物体内任意⼀点的温度和热含量随时间⽽变化的导热过程,也称为瞬态导热过程。
导热系数是指在稳定传热条件下,1m厚的材料,两侧表⾯的温差为1度(K,°C),在1秒内,通过1平⽅⽶⾯积传递的热量,⽤λ表⽰,单位为⽡/⽶·度导热系数与材料的组成结构、密度、含⽔率、温度等因素有关。
⾮晶体结构、密度较低的材料,导热系数较⼩。
材料的含⽔率、温度较低时,导热系数较⼩。
通常把导热系数较低的材料称为保温材料(我国国家标准规定,凡平均温度不⾼于350℃时导热系数不⼤于0.12W/(m·K)的材料称为保温材料),⽽把导热系数在0.05⽡/⽶摄⽒度以下的材料称为⾼效保温材料。
导热系数⾼的物质有优良的导热性能。
在热流密度和厚度相同时,物质⾼温侧壁⾯与低温侧壁⾯间的温度差,随导热系数增⼤⽽减⼩。
锅炉炉管在未结⽔垢时,由于钢的导热系数⾼,钢管的内外壁温差不⼤。
⽽钢管内壁温度⼜与管中⽔温接近,因此,管壁温度(内外壁温度平均值)不会很⾼。
但当炉管内壁结⽔垢时,由于⽔垢的导热系数很⼩,⽔垢内外侧温差随⽔垢厚度增⼤⽽迅速增⼤,从⽽把管壁⾦属温度迅速抬⾼。
当⽔垢厚度达到相当⼤(⼀般为1~3毫⽶)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。
对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。
⼀般常把导热系数⼩于0。
8x10的3次⽅⽡/(⽶时·摄⽒度)的材料称为保温材料。
例如⽯棉、珍珠岩等填缝导热材料有:导热硅脂、导热云母⽚、导热陶瓷⽚、导热矽胶⽚、导热双⾯胶等。
材料热膨胀系数

温度升高,Na-O键伸长,晶胞参 数沿c轴增加,P-O和Zr-O键的
键长不改变,必然导致键角的改 变,结果在垂直于c轴的二维方 向上发生收缩。
NZP的管状结构 [4]
[4]刘颖. 复合负热膨胀材料的合成, 表征及性质[D]. 河北大学, 2009.
1 2 负热膨胀系数材料 3
2.2 分类-各向异性
[4]刘颖. 复合负热膨胀材料的合成, 表征及性质[D]. 河北大学, 2009.
1 2 3 零热膨胀系数材料
3.1 简介
零膨胀材料外观尺寸受外界环境温度变化影 响小,甚至为零,有优异的抗热震性与尺寸 精确性,在工业界具有很大的应用价值。
目前,不仅在氧化物而且在合金等体系中发 现了一些具有零膨胀特性的材料。
1
热膨胀系数
23
1.3 不同材料的线膨胀系数(来自《材料热膨胀系数》 )1
热膨胀系数
23
1.3 不同材料的线膨胀系数
从上文可知,一般情况下,线膨胀系数α为正 。也就是说温度升高体积增大。但是也有例外 ,当水在0-4ºC之间,就会出现反膨胀,也就是 说在一定温度条件下有负的热膨胀系数。而一 些陶瓷材料在温度升高的情况下,几乎不发生 任何特性变化,其.2 热膨胀系数
实际应用中,有两种主要的热膨胀系数。 体膨胀系数
热膨胀系数 线膨胀系数(常用)
定义:当温度改变1ºC,固态物质长度的变化 和它在标准温度时的长度的比值
表达式: LL 02t2Lt11L0 Lt [1]
L1、L2 —— t1、t2温度时的样品长度; L0 —— 标准温度t0时的样品长度,t0常取0ºC或20ºC
堇青石晶体的热膨胀驱动力 是 [MgQ6] 八面体(图中的M) 的热变形, 由于Mg-O 之间 的弱键力,造成沿 a 、b轴 的膨胀和沿c 轴的收缩。
金属材料导热系数

金属材料导热系数
金属材料的导热系数是衡量金属导热性能的重要指标。
导热系数通常用λ表示,单位是瓦特/米·开尔文(W/m·K)。
金属材料的导热系数与其组成元素、晶粒结构、合金化元素、缺陷及杂质等因素有关。
一般来说,金属的导热性能是很好的,其导热系数通常高于非金属材料,这也是金属广泛应用于导热设备和结构的重要原因之一。
具体来说,让我们来看一些金属材料的导热系数:
1. 铜:铜是一种优良的导热金属,其导热系数约为401
W/m·K。
铜比较常见,广泛应用于电线、导热器件等。
2. 铝:铝是另一种导热性能较好的金属,其导热系数约为237 W/m·K。
铝具有较低的密度和良好的可加工性,广泛用于制
造各种导热设备和结构。
3. 铁:铁也是一种常见的金属材料,其导热系数约为80
W/m·K。
虽然与铜和铝相比较低,但由于铁的强度和刚性较高,在一些特殊的情况下也有其独特的应用。
4. 镅:镅是铜和铝的合金,具有更高的导热系数。
镅的导热系数约为400 W/m·K,比铝稍高,也因此在一些高温导热装置
中得以应用。
5. 银:银是导热性能最好的金属之一,其导热系数高达429
W/m·K。
但由于银的价格昂贵,通常用于一些特殊的导热和
电子设备。
需要注意的是,以上数值只是金属材料的导热系数的一些例子。
在实际应用中,具体的导热系数可能会受到其他因素的影响,并通过合金化、热处理等方式进行相应的调整和改进。
因此,选择合适的金属材料并根据具体的使用要求来考虑其导热性能是非常重要的。
常见材料导热系数全

常见材料导热系数全导热系数是材料的一个重要物理性质,用来描述材料的导热性能,即材料导热能力的大小。
导热系数越大,表示材料的导热性能越好,导热速度越快。
下面是一些常见材料的导热系数及其一些特点:1.金属:金属具有较好的导热性能,常见的导热系数较高的金属有铜(401W/m·K)、铝(205W/m·K)、铁(80W/m·K)等。
这些金属常用于制作散热器、导热器等散热设备。
2.水和液体:水的导热系数为0.58W/m·K,相较于气体来说,水的导热系数较高。
这是因为液体是由分子组成的,分子之间的相互作用力比气体大,导致了其导热能力更强。
3.气体:气体的导热系数相对较低。
空气的导热系数大约为0.024W/m·K,这也是为什么我们常常会感受到冬天的空气更冷的原因,因为空气的导热性能较差,无法很好地传递热量。
4.绝缘材料:绝缘材料的导热系数一般较低,常用于保温隔热。
例如,玻璃的导热系数为0.8-1.5W/m·K,矿棉的导热系数为0.03-0.04W/m·K,这些材料可以有效阻止热量的传递,保持室内的温度稳定。
5.塑料:塑料的导热系数一般较低,通常在0.15-0.25W/m·K之间。
这使得塑料具有良好的保温隔热性能,常用于制作保温杯、保鲜盒等容器,可以有效阻止热量的散失。
6.建筑材料:建筑材料的导热系数对于室内外温度的控制非常重要。
常见的建筑材料如混凝土的导热系数在0.6-2.5W/m·K之间,砖块的导热系数在0.6-1.0W/m·K之间。
选择适当的建筑材料可以减少能源的消耗,提高建筑的能效性能。
需要注意的是,导热系数是材料的一个物理性质,具体数值还会受到温度、湿度、材料形态等因素的影响。
此外,导热系数只是一种宏观参数,无法完全描述材料内部传热机理的微观特性,例如材料的晶格结构、分子间相互作用等。
因此,在实际应用中,需要综合考虑材料的其他性质和实际使用条件,选取合适的材料来满足具体需求。
常见金属非金属材料导热系数表

导热率K是材料本身的固有性能参数,用于描述材料的导热能力,又称为热导率,单位为W/mK。
这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。
不同成分的导热率差异较大,导致由不同成分构成的物料的导热率差异较大。
单粒物料的导热性能好于堆积物料。
稳态导热:导入物体的热流量等于导出物体的热流量,物体内部各点温度不随时间而变化的导热过程。
非稳态导热:导入和导出物体的热流量不相等,物体内任意一点的温度和热含量随时间而变化的导热过程,也称为瞬态导热过程。
导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度导热系数与材料的组成结构、密度、含水率、温度等因素有关。
非晶体结构、密度较低的材料,导热系数较小。
材料的含水率、温度较低时,导热系数较小。
通常把导热系数较低的材料称为保温材料(我国国家标准规定,凡平均温度不高于350℃时导热系数不大于0.12W/(m·K)的材料称为保温材料),而把导热系数在0.05瓦/米摄氏度以下的材料称为高效保温材料。
导热系数高的物质有优良的导热性能。
在热流密度和厚度相同时,物质高温侧壁面与低温侧壁面间的温度差,随导热系数增大而减小。
锅炉炉管在未结水垢时,由于钢的导热系数高,钢管的内外壁温差不大。
而钢管内壁温度又与管中水温接近,因此,管壁温度(内外壁温度平均值)不会很高。
但当炉管内壁结水垢时,由于水垢的导热系数很小,水垢内外侧温差随水垢厚度增大而迅速增大,从而把管壁金属温度迅速抬高。
当水垢厚度达到相当大(一般为1~3毫米)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。
对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。
一般常把导热系数小于0。
8x10的3次方瓦/(米时·摄氏度)的材料称为保温材料。
例如石棉、珍珠岩等填缝导热材料有:导热硅脂、导热云母片、导热陶瓷片、导热矽胶片、导热双面胶等。
金属氧化物热膨胀系数_解释说明以及概述

金属氧化物热膨胀系数解释说明以及概述1. 引言1.1 概述金属氧化物热膨胀系数是指金属氧化物在受热或冷却时线性膨胀或收缩的程度。
在材料工程和其他领域中,准确测量和理解金属氧化物的热膨胀系数对于设计和生产具有可靠性和稳定性的材料至关重要。
研究了金属氧化物热膨胀系数的特性,可以帮助我们更好地理解和控制材料的热膨胀行为。
1.2 文章结构本文将首先介绍什么是热膨胀系数,并阐述金属氧化物的热膨胀特性以及影响热膨胀系数的因素。
接下来,将探讨金属氧化物热膨胀系数在材料工程中的应用以及其在纳米材料领域方面的意义。
最后,我们将介绍常见的实验方法和测量技术,并给出选择测量设备和技术要点的建议。
最后,我们将总结并展望未来金属氧化物热膨胀系数研究的潜在影响和可能性。
1.3 目的本文的目的是对金属氧化物热膨胀系数进行解释说明并概述其应用和意义。
通过详细介绍金属氧化物热膨胀系数相关知识,可以为材料工程师、科学家和研究者提供有关金属氧化物材料设计和开发中工作的基础知识。
此外,本文还旨在促进对金属氧化物热膨胀系数测量方法和技术选择的理解,以及未来对金属氧化物热膨胀系数进行深入研究的展望。
2. 金属氧化物热膨胀系数解释说明2.1 什么是热膨胀系数热膨胀系数是一种描述物质在温度变化时体积变化的性质,它衡量了材料在单位温度变化下的线性尺寸的变化情况。
具体而言,热膨胀系数定义为单位温度变化时材料长度、面积或体积的相对变化。
2.2 金属氧化物的热膨胀特性金属氧化物是一类由金属和氧元素组成的化合物,其热膨胀特性与其分子结构和原子间相互作用有关。
一般来说,金属氧化物在升高温度时会呈现出正向的热膨胀特性,即随着温度的增加,其长度、面积或体积都会增加。
这是因为当材料被加热时,其中的原子或离子会受到能量激发而振动频率加大,导致原子间距离增大。
2.3 影响热膨胀系数的因素金属氧化物的热膨胀系数受到多种因素的影响,主要包括以下几个方面:- 材料的化学成分:金属氧化物的热膨胀系数与其化学成分密切相关。
金属氧化物的导热系数

金属氧化物的导热系数1. 引言1.1 金属氧化物的导热系数的重要性金属氧化物的导热系数在材料领域具有非常重要的意义。
导热系数是衡量材料传热性能的重要参数,它决定了材料在热传导过程中的表现。
对于金属氧化物来说,其导热系数直接影响着材料在高温环境下的热传导效率,进而影响着材料在各种应用中的表现。
研究金属氧化物的导热系数不仅可以深化我们对材料的认识,还可以为材料科学的发展和应用提供重要的指导。
对金属氧化物导热系数的研究将有助于我们更好地利用这些材料,推动材料科学领域的发展。
1.2 研究背景金属氧化物的导热系数一直是研究领域的重要课题。
导热系数是材料导热性能的重要参数之一,它直接影响着材料在热传导过程中的表现。
随着现代科技的不断发展,人们对材料的导热性能有了更高的要求,尤其是在一些高温、高压环境下,对材料的导热性能有了更严格的要求。
金属氧化物在许多实际应用中都起着重要的作用,比如在电子器件、光学器件、电加热器件等领域中都有广泛的应用。
金属氧化物的导热系数直接影响着它们在这些应用中的表现。
对金属氧化物的导热系数进行研究具有重要的意义。
金属氧化物的导热系数受到许多因素的影响,比如结构、纯度、晶粒大小等因素都会对导热性能产生影响。
研究金属氧化物的导热系数,不仅可以帮助我们更好地了解材料的导热性能,还可以为材料的改性和设计提供重要的参考。
通过对金属氧化物导热系数的深入研究,可以为材料科学领域的发展带来新的突破。
2. 正文2.1 金属氧化物的结构与导热系数金属氧化物是一类具有特殊结构和性质的物质,其结构与导热系数之间存在着密切的关系。
金属氧化物的结构可以分为晶态和非晶态两种类型。
在晶态结构中,金属氧化物的分子呈现规则的周期性排列,其中包含有序的晶体结构和无序的晶体结构。
晶态结构的金属氧化物导热系数比非晶态结构要高,因为晶态结构中的分子排列更加紧密,分子之间的空隙较小,能够更有效地传导热量。
金属氧化物的导热系数还与其晶格结构、晶体缺陷等因素密切相关。
常见物质及不锈钢的热膨胀系数

常见物质及不锈钢的热膨胀系数常见物质的热膨胀系数常见物质的热膨胀系数α(10‐6/k)小拓分享物质热膨胀系数α(10‐6/k)物质热膨胀系数α(10‐6/k)铝 23.3 钢 13锑 10.5 不锈钢14.4‐16 芳纶‐4.1 钛 10.8水泥6‐14 铋 14铬 6.2 钨 4.5钻石 1.3 锌 36铜 17.5 锰 23金 14.2 砖 5花岗岩 3 石墨 2玻璃(工业) 4.5 聚氯乙烯(PVC) 80玻璃(普通) 7.1 陶瓷 3玻璃(热派克) 3.25 胶木、硬橡皮64‐77 陶板4.6‐6 石墨板 5.5 石英 0.51 有机玻璃 130不透性石墨板 5.5 硬聚氯乙烯 59聚酰胺(尼龙6)110‐140 聚酰胺(尼龙1010)14‐16YD-TDS-1016 附录常用金属材料的热膨胀系数表YD100S TFE GUIDE 的长度计算:线膨胀系数8.3X10(-5 )厚度为1mm 1.区分A:瞬间热膨胀系数长度△L=(d+1)×π×8.3×10^(-5)×(200-20)所以L=(d+1)×π-1.832.区分B:平均热膨胀系数槽的内径公差=d×8.3×10^(-5)×(200-20)/10;为槽内的多余空间2050751001251501752002252502753003253503754004251 000A11.5211.9112.2412.5612.8613.1513.4613.7414.0314.3314.6314.8 915.1315.3715.5915.8116.01B11.5211.7611.8912.0512.2112.3712.5512.7012.8312.9913.1413.2 813.4213.5713.6813.8313.96A10.0510.7911.3711.9312.4612.9413.4113.8414.2314.5914.9215.2 215.4815.7215.9216.1016.23B10.0510.4610.7511.0411.3311.5911.8412.0912.3312.6012.8213.0 013.1813.3713.5413.7113.87A9.7310.4711.0711.6512.1912.6913.1613.6014.0114.3814.7315.05 15.3315.5715.7815.9716.12B9.7310.1010.3910.6911.0011.2811.5611.8512.1112.3512.5812.80 12.9913.1913.3613.5113.65A12.6212.9613.2213.4713.7213.9414.1714.3814.5814.7714.9615.1 315.2815.4215.5515.6815.80B12.6212.7912.9413.0913.2313.3813.4913.6213.7113.8113.9314.0 314.1414.2414.3114.4014.48A11.1411.6612.0612.4212.7413.0613.3513.6213.8814.1214.3614.5 714.7614.9515.1315.2915.42B11.1411.4011.6211.8212.0012.2112.3712.5412.6812.8312.9713.1 013.2313.3613.4713.5913.69A11.5912.0412.3012.5312.9413.2413.4513.7213.9214.1314.3114.4 714.6214.7414.8714.9815.11B11.5911.7811.9412.1012.2712.4312.5612.7012.8312.9613.0913.2 113.3313.4313.5213.6113.71A11.7311.9612.1512.3412.5212.6812.8613.0213.1813.3313.4813.6 313.7713.9114.0414.1714.30B11.7311.8212.0212.1412.2612.3712.4712.5312.5912.6612.7412.8 212.8912.9613.0413.1113.17A10.4710.7210.9311.1411.3511.5511.7411.9212.1012.2912.4612.6312.7912.9513.1113.2513.38B10.4710.5910.7310.8710.9911.0811.2111.3011.3911.4811.5811.6 711.7511.8511.9311.9912.07A15.1415.6616.0716.4716.8517.2217.5517.8618.1118.3518.5818.7 919.0019.2019.4019.5719.75B15.1415.4515.6315.8216.1016.1616.3816.5516.7216.8917.0317.1 817.3417.4717.5817.6617.81A10.6010.6010.6110.6210.6210.6210.6410.6410.6410.6410.6610.7 010.7510.8010.8710.9511.05B10.6010.6010.6110.6210.6210.6210.6410.6410.6410.6410.6610.6 710.6710.6810.6910.7110.73A14.2814.6714.9715.2515.5415.8216.0716.3216.5616.7917.0217.2 317.4317.6217.7917.9818.30B14.2814.5614.7514.8915.0615.2215.3615.4815.6015.7215.8415.9 516.0616.1816.2916.3816.48A15.2115.7216.0916.4316.7317.0417.3317.5917.8418.0818.3318.5 518.7618.9419.1119.2719.41B15.2115.4915.6815.8716.0516.2116.3716.5216.6616.8116.9417.0 717.2017.3317.4617.5717.67A16.1416.3316.5016.6616.8116.9417.0717.2017.3217.4417.5517.6 617.7717.8817.9818.0818.17B16.1416.3016.4216.5116.6116.6716.7416.8016.8716.9316.9917.0 317.0917.1517.2017.2517.29A15.3315.9016.3816.8317.2517.6217.9418.2418.4718.7018.9019.0 819.2519.4119.5719.7319.88B15.3315.6215.8516.1216.3616.6016.7716.9717.1417.3117.4717.6 117.7417.8517.9618.0618.14A16.3716.7116.9817.2417.5017.7417.9718.1918.4118.6118.8018.9 919.1719.3319.4819.6419.77B16.3716.5916.7516.9017.0517.1817.3217.4217.5417.6517.7517.8517.9518.0418.1418.2418.32A14.8215.1615.4215.6715.8916.1216.3316.5416.7416.9217.0917.2 517.4117.5517.6917.8117.94B14.8215.0215.1715.3015.4515.5815.7115.8015.9216.0216.1116.2 016.2916.3916.4816.5616.64A15.8516.0816.2216.3316.4116.5116.5916.6716.7116.7716.8316.8 816.9317.0017.0617.1417.2018.90B15.8516.0316.1516.2516.3216.3816.4116.4516.4816.5116.5416.5 716.5916.6216.6616.6916.70A14.7915.0815.3215.5615.7916.0116.2216.4216.6116.7916.9717.1 417.3117.4617.6117.7417.87B14.7914.9015.0215.1415.2615.3815.5115.6215.7415.8415.9316.0 316.1316.2316.3216.4016.50A15.6815.9816.1316.2716.4216.5716.7116.8617.0217.1717.3117.4 717.6317.7917.9318.0818.24B15.6815.8315.9616.0616.1916.2816.3616.4416.5116.5716.6316.7 016.7716.8516.9116.9917.06A10.6410.9711.2011.3911.5611.7111.8511.9712.0712.1512.2412.3 312.4212.5112.6012.6912.79B10.6410.8410.9911.1011.2311.3411.4211.5111.5711.6411.6911.7 311.7811.8411.8911.9512.00A9.589.8410.0510.2410.4110.5910.7710.9311.1011.2511.3911.541 1.6811.8111.9412.0712.18B9.589.739.859.9710.0810.1710.2510.3410.4210.5010.5810.6610.7 410.8210.9010.9611.03A9.039.189.309.439.549.659.789.9010.0110.1410.2610.3710.4910. 6110.7110.8410.95B9.039.169.239.299.379.429.469.539.589.649.709.749.809.869.919 .9710.02A12.1512.7313.1913.6013.9414.2314.4914.6914.8815.0615.1915.3 015.4115.5115.6015.7015.76B12.1512.5512.8113.0113.1813.3313.4913.6113.7213.8213.9314.0 314.1114.2114.3014.3914.47A13.9114.7215.1315.4215.6515.8516.0116.1416.2716.3816.4516.5 216.6016.6916.8016.9617.13B13.9114.4914.8215.0715.2915.4915.6515.7815.9016.0116.0916.1 616.2416.3316.4116.4916.56A13.4513.7013.9014.0814.2514.4114.5714.7314.8915.0615.2115.3 515.4815.6215.7515.8816.01B13.4513.6313.7713.9114.0214.1314.2314.3314.4314.5214.6114.7 714.8014.8914.9615.0515.12A12.0512.4112.7512.9713.0213.0513.1013.1813.2313.2913.4013.5 013.5813.7413.9414.1414.38B12.0512.2612.6112.8312.9012.9613.0413.1313.1713.2113.2813.3 613.4413.5113.5513.6113.68A12.6812.9313.1513.2513.5513.7213.9214.0814.2514.4114.5514.6 814.8214.9615.1015.2315.38B12.6812.8012.9113.0213.1213.2013.3013.3913.4913.5913.6713.7 613.8413.9214.0014.0814.14A12.0612.5212.7812.9913.1713.3313.5113.6513.7613.8313.8613.8 713.9013.9814.1214.3214.56B12.0612.3012.4812.6412.8112.9713.1313.2913.4113.4813.5013.5 113.5413.5913.6813.7913.91A13.4513.5813.8713.9314.2314.6514.8214.9715.0715.0715.0815.1 215.2315.3515.4715.6015.72B13.4513.5713.6813.7313.8213.9714.1114.2014.3014.3514.4314.4814.5314.6314.6814.7314.773.个材料的区分如下表示1)碳素钢、合金钢(区分1)碳素钢? 3/4Ni-1/2Mo-Cr-V ?3/4Ni-1Mo-3/4Cr ?碳?钼钢?3/4Ni-1/2Mo-1/3Cr-V ?1Ni-1/2Cr-1/2Mo ? 1/2Ni-1/2Mo-V ?3/4Ni-1/2Cr-Mo-V 2)碳素钢、合金钢(区分2)碳?硅钢? 1/2Cr-1/2Mo ?1Cr-1/5Mo-Si ?1/2Mo ?1Cr-1/5Mo-V ?1Cr-1/2Mo ?1Cr-1Mn-1/4Mo ?1Cr-1/5Mo ?1?3/4Cr-1/2Mo-Cu 0.15145.15 3)碳素钢、合金钢(区分3) 2.382712.4 ?碳?钼钢? 1?1/4Ni-1/2Mo ?2Cr-1/2Mo ?1/2Cr-1/4Mo-Si ?1?1/4Cr-1/2Mo-Si ?3Cr-1Mo ?1Cr-1/2Mo-V 4)碳素钢、合金钢(区分4) Mn-1/2Mo ?Mn-1/2Mo-1/2Ni ?Mn-1/2Mo-1/4Ni ?Mn-1/2Mo-3/4Ni 水泥在1000度以上的热膨胀系数为5.8 5)碳素钢、合金钢(区分5)310S在800度时热膨胀系数为18.5 ?1.1/4Ni-1Cr-1/2Mo ?2Ni-3/4Cr-1/4Mo ?3.1/2Ni ?1.3/4Ni-3/4Cr-1/4Mo ?2Ni-3/4Cr-1/2Mo 310S在1000度时热膨胀系数为19.5 ?3.1/2Ni-1.3/4Cr-1/2Mo-V ?2Ni-1Cu ?2.1/2Ni ?1Cr-1/2Mo-V 6)奥氏体不锈钢SS(区分1)7)奥氏体不锈钢SS(区分2) 8)奥氏体不锈钢SS(区分3) ?18Cr-13Ni-3Mo ?18Cr-12Ni-2Mo ?17Cr-4Ni-Cu18Cr-5Ni-3Mo9)奥氏体不锈钢SS(区分4) 10)奥氏体不锈钢SS(区分5) 11)奥氏体不锈钢SS(区分6) ?18Cr-8Ni ?18Cr-11Ni ?18Cr-10Ni-Ti 18Cr-10Ni-Cb 0.459 12)奥氏体不锈钢SS(区分7) 13)奥氏体不锈钢SS(区分8) 14)奥氏体不锈钢SS(区分9)0.505 ?18Cr-9Ni-Mo-W 22Cr-13Ni-5Mn25Cr-12Ni ?23Cr-12Ni ?25Cr-20Ni15)奥氏体不锈钢SS(区分10) 16)奥氏体不锈钢SS(区分11) ?(660)26Ni-15Cr-2Ti28Ni-19Cr-Cu-Mo17)马氏体不锈钢SS(区分1)12Cr ?12Cr-1Al ?13Cr ?13Cr-4Ni 18)马氏体不锈钢SS(区分2) 19)马氏体不锈钢SS(区分3) ?17Cr27Cr20)高镍合金(区分1) 21)高镍合金(区分2)22)高镍合金(区分3)Ni-Cr-Fe(NCF600) ?Ni-Fe-Cr(NCF800,NCF800H) ?Ni-Fe-Cr-Mo-Cu(NCF825,GNCF2種及び3種) 23)高镍合金(区分4)24)高镍合金(区分5)25)高镍合金(区分6) ?Ni-Cr-Mo-Cb(NCF625,GNCF1種)Ni-Fe-Cr-Mo-Cb(NCF718)Ni-Cr(NCF750)各温度的热膨胀系数(×10-6 ℃)温度(℃)材料碳素钢、合金钢(区分1)SCPH2/A105碳素钢、合金钢(区分2)碳素钢、合金钢(区分3)SCPH21/A182-F11奥氏体不锈钢SS(区分7)碳素钢、合金钢(区分4)碳素钢、合金钢(区分5)合金钢 2.25Cr 1Mo 合金钢 5.0Cr 0.5Mo 合金钢 7Cr 0.5Mo/9Cr1Mo奥氏体不锈钢SS(区分1)14A/16A(316/316L)奥氏体不锈钢SS(区分9)309S/309H/310S 奥氏体不锈钢SS(区分10)奥氏体不锈钢SS(区分11)马氏体不锈钢SS(区分1)SUS410/410SS 马氏体不锈钢SS(区分2)440A/B/C 奥氏体不锈钢SS(区分2)SUS630/17-4PH 奥氏体不锈钢SS(区分3)奥氏体不锈钢SS(区分4)13A/19A(304/304L)奥氏体不锈钢SS(区分5)321SS奥氏体不锈钢SS(区分6)347SS 高镍合金(区分6)镍?铬?铁合金690核工业规格区分马氏体不锈钢SS(区分3)高镍合金(区分1)高镍合金(区分2)高镍合金(区分3)高镍合金(区分4)高镍合金(区分5)奥氏体不锈钢SS(区分8)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Physical Properties of Iron-Oxide Scales on Si-Containing Steelsat High TemperatureMikako Takeda1,Takashi Onishi1,Shouhei Nakakubo1and Shinji Fujimoto21Materials Research Laboratory,Kobe Steel,Ltd.,Kobe651-2271,Japan2Graduate School of Engineering,Osaka University,Suita565-0871,JapanThe mechanical properties of oxide scales at high-temperature were studied in order to improve the surface quality of commercial Si-containing high strength steels.Specific oxides of Fe2O3,Fe3O4,FeO and Fe2SiO4were synthesized by powder metallurgy.The Vickers hardness,thermal expansion coefficient and thermal conductivity were measured at high-temperatures.A series of measurements confirmed that the physical properties of the synthesized oxides were different each other.From the Vickers hardness measurements,it was verified that the hardness of each synthesized oxide was identical with the naturally-formed iron oxide,as observed in the cross-section of oxide scales on steels. The influence of the Fe2SiO4formed on Si-containing steels on the scale adhesion at high temperature and the surface property is discussed on the basis of the physical properties of the oxides.[doi:10.2320/matertrans.M2009097](Received March18,2009;Accepted June4,2009;Published August25,2009)Keywords:high-temperature oxidation,oxide hardness,oxide thermal expansion coefficient,oxide thermal conductivity,silicon-containing steel,FeO,Fe3O4,Fe2O3,Fe2SiO4,adhesion,surface property1.IntroductionThe iron oxide scales that form on billets and slabs of hot-rolled steels are usually detached using a hydraulic descaling process.However,residual primary scales or secondary scales that form after the descaling process remain on the steel surface through subsequent hot-and cold-working,then influence the surface quality of thefinal products by modifying its mechanical properties,such as deformation, fracture and spalling.The residual scales may induce non-uniform surface temperature,which affects thefinal scale structure and mechanical properties of the steel.Hence,it is of great importance to examine/understand the physical and mechanical properties of iron oxide scales in order to control their formation and properties,and ultimately to improve the quality of steels.The oxide scales that form on steels include Fe2O3,Fe3O4, FeO,which form in lamellar strata from the substrate towards the outer layer.In the case of Si-containing steels,which are widely used for automobile bodies and frames in the form of high-tensile steel sheets,the inner-most layer,mainly composed of fayalite(Fe2SiO4)and FeO,can form at the interface between scale and steel.1–4)Therefore,the high-temperature physical properties such as hardness,thermal expansion coefficient,thermal conductivity,etc.of each oxide species need to be clarified in order to understand the deformation and fracture behaviour of scale and its influence on the surface properties after rolling.The high-temperature deformation and fracture behaviour of these oxide species are not yet well summarised in the literature.Amano et al.5)reported the Vickers hardness of Fe2O3,Fe3O4,FeO and Fe2SiO4at RT(room temperature) and at1000 C,as measured by employing micro-indenta-tion.6)In this study,5)Vickers hardnesses were measured for the lamellar constituent oxides in cross-sections of Si-containing steels.In terms of the deformation behaviour of oxides,Hidaka et al.reported on the deformation of Fe2O3, Fe3O4and FeO at600–1250 C by measuring stress-strain curves.7,8)In these studies,tensile-test specimens of pure iron were completely oxidized underfixed conditions and tensile tests atfixed strain rates were conducted to obtain the deformation and fracture behaviour.Although knowledge of such high-temperature mechanical properties of oxide scales is beneficial,their mechanical properties have been less extensively studied because high-purity specimens of specific iron oxides are required in order to measure these parameters with sufficient accuracy.This paper focuses on the hardness,thermal expansion coefficients and thermal conductivities at high-temperatures of Fe2O3,Fe3O4,FeO and Fe2SiO4which were prepared by powder metallurgy and oxidation under a controlled atmo-sphere.Furthermore,the influence of the Fe2SiO4formed on the Si-containing steel on the scale adhesion at high-temperature,and surface property were investigated.2.Experimental2.1Preparation of specific oxide specimensIn this study,pure high-density FeO,Fe3O4,Fe2O3and Fe2SiO4were prepared by powder metallurgy and oxidation under a controlled atmosphere.Sintered compacts of each oxide were used as test specimens to measure the physical properties at high temperature.Each synthesized specific oxide of iron-oxide was prepared using the following process.FeO forms on Fe under limited oxygen partial pressures, ranging from2:8Â10À13Pa(equilibrium oxygen pressure of Fe2SiO4/FeO at850 C)to2:6Â10À13Pa(equilibrium oxygen pressure of FeO/Fe3O4at850 C).FeO is the stable phase at temperatures of570 C and above,but is not stable below570 C.9)Therefore,FeO may decompose into Fe and Fe3O4at RT.FeO that is formed at high temperature can be ‘frozen-in’by quenching,but this type of material is not suitable for measuring the mechanical properties in the high-temperature phase because numerous pores are present in such FeO specimens.Materials Transactions,Vol.50,No.9(2009)pp.2242to2246 #2009The Japan Institute of MetalsIn order to prepare an FeO specimen,finely-powdered Fe and Fe3O4were mixed in the ratio8:10by weight,and were then formed into blocks,55mm square by8mm thick.The shaped blocks were compacted by cold isostatic pressing under a constant load of150MPa,and then sintered at 1100 C for3.6ks in an Ar atmosphere.The sintered blocks were pressed in a graphite mould at900 C for3.6ks in vacuum,under a constant load of50MPa.Dense sintered compacts of pure FeO werefinally obtained.On the other hand,Fe3O4forms on Fe over a wide range of oxygen pressures from2:6Â10À13Pa(equilibrium oxy-gen pressure of FeO/Fe3O4at850 C)to4:1Â10À3Pa (equilibrium oxygen pressure of Fe3O4/Fe2O3at850 C). Fe3O4is relatively stable,but can be oxidized to Fe2O3 under high partial pressures of oxygen,and is reduced to FeO under low oxygen partial pressures.In addition,Fe2O3 forms on Fe under limited partial pressures of oxygen above 4:1Â10À3Pa(equilibrium oxygen pressure of Fe3O4/Fe2O3 at850 C).Fe2O3is stable in high partial pressures of oxygen,but is unstable and can be reduced to Fe3O4under low partial pressures of oxygen,e.g.,in an inert atmosphere. The blocks offinely-powdered Fe3O4and Fe2O3were compacted by cold isostatic pressing under a constant load of300MPa,and then sintered at1100 C for3.6ks.The Fe3O4and Fe2O3were sintered in atmospheres of Ar and air,respectively.Si-containing steels promote the formation of lamellar fayalite:Fe2SiO4forms between the FeO layer and the steel substrate.Fe2SiO4forms in a narrow range of oxygen pressures between2:7Â10À14Pa(equilibrium oxygen pressure for SiO2/Fe2SiO4at850 C)and2:8Â10À13Pa (equilibrium oxygen pressure for Fe2SiO4/FeO at850 C), and therefore it is difficult to obtain pure Fe2SiO4by the oxidation of Si-containing steels.Therefore,Fe2SiO4was prepared by the sintering of fayalite powder.The natural fayalite minerals were powdered and classified into the appropriatefineness(below150mesh),then formed into blocks.The shaped blocks were compacted by cold isostatic pressing under a constant load of150MPa,and were sintered at1130 C for3.6ks in vacuum.2.2Quantitative analysis of purity and sintering densityof synthesized specific oxide specimensThe synthesized oxide specimens were identified and were quantitatively analyzed by X-ray diffraction.In the quanti-tative analysis of the synthesized oxides,the main peaks of the X-ray diffraction spectra werefitted to Gaussian curves, and the intensities of the main peaks were obtained.The relative concentrations of the synthesized specific oxide were calculated by substitution in the following equation for the peak intensity.C n¼A nÂY nÆðA iÂY iÞð1Þwhere C n is the relative concentration of component n,A n is the relative sensitivity coefficient of component n,and Y n is the peak intensity of component n.The synthesized oxide specimens were machined and their densities were obtained at room temperature by measuring the volume-to-weight ratio.2.3Measurements of physical properties2.3.1HardnessThe synthesized oxides,Fe2O3,Fe3O4,FeO and Fe2SiO4, were machined into work-pieces with dimensions of 10Â20Â3mm3,and then polished with a series of emery papers up to1500grit,buffed,finally degreased in acetone. The hardnesses of the work pieces were measured by a high-temperature micro indenter(Nikon MQ type)at temperatures up to1000 C using square-based diamond and sapphire pyramids.A load of50g was applied for30s,and3 impressions were recorded for each sample.Oxide scales that were formed on iron and steel substrates were also prepared as reference standards,and the hardnesses of these scales were also measured similarly.10mmÂ20mmÂ2mm work-pieces of high-purity Fe(99.99%)and an Fe-3.0mass%-Si alloy were oxidized at1000 C for1.8ks in an O2atmosphere.Oxide scales of about600m m in thickness were formed under the oxidation condition.The hardnesses of oxide scales were measured using the square-based diamond and sapphire pyramids as indenters for the lamellar oxides in a cross section.5)2.3.2Thermal expansion coefficientThe synthesized oxides were formed into3:5mmÂ3:5mmÂ18mm blocks,and were degreased in acetone. The thermal expansion coefficients of the work pieces were measured between room temperature and1000 C using a thermo-mechanical analyzer(Rigaku TMA8140type)at a heating rate of5 C/min.A fused quartz bar was used as a reference in this measurement.The thermal expansion coefficients of the synthesized oxides were measured in the air for Fe2O3,in an Ar atmosphere for Fe3O4and FeO,and in a He atmosphere for Fe2SiO4.2.3.3Thermal conductivityThe synthesized oxides were machined into work pieces with dimensions of 10mmÂ1:5mm,and were degreased in acetone prior to measurements.The thermal conductivities were measured at up to1000 C using a laserflash analyzer (ULVAC-RIKO TC-7000type).The specific heats were measured by differential scanning calorimetry in an Ar atmosphere.The thermal conductivities of the synthesized oxides were calculated using the thermal diffusion coeffi-cient,the specific heat and the sintering density.3.Results and Discussion3.1Purity and sintering density of iron oxide specimens The synthesized oxides were identified from X-ray diffraction spectra.Typical X-ray diffraction patterns of the synthesised oxides are shown in Figs.1to4.It was confirmed that the synthesised Fe2O3,Fe3O4and Fe2SiO4were composed of a pure single phase.Although,slight inclusions of residual -Fe and Fe3O4were indicated for the synthesized FeO as shown in Table1,FeO was the predominant compound because the concentration of Fe3O4was below 2.0mass%.From these results,we could assume that the synthesized oxides were essentially composed of single oxide species.The densities of the synthesized oxides of Fe2O3, Fe3O4,FeO and Fe2SiO4were4.69gÁcmÀ3,5.08gÁcmÀ3, 6.27gÁcmÀ3and4.08gÁcmÀ3,respectively.Considering thatPhysical Properties of Iron-Oxide Scales on Si-containing Steels at High Temperature2243the densities of Fe 2O 3,Fe 3O 4,FeO and Fe 2SiO 4noted in the literature are 5.27g Ácm À3,5.18g Ácm À3,5.70g Ácm À3and 4.34g Ácm À3respectively,the sintering density of our synthesized Fe 2O 3was slightly low and that of the synthesized FeO was slightly high compared with the values available in the literature.10)3.2HardnessThe hardnesses of synthesized iron oxides at room-and high-temperatures are shown in Fig.5.The hardnesses of all of the oxides decrease with increasing temperature,with the magnitude of the decrease occurring approximately in the following order:Fe 2SiO 4,Fe 2O 3,Fe 3O 4and FeO.In particular,the hardnesses of Fe 2SiO 4and Fe 2O 3are remarkably high at room temperature,but are equivalent to the other oxides above 400 C.The hardness of FeO is lower than the other oxides in the range between room temperature and 1000 C.The hardness of Fe 2SiO 4can not be exactly measured at 1000 C because the melting point of Fe 2SiO 4is 1170 C and the material begins to soften at 1000 C.In order to confirm the validity of these results,they were compared with the hardnesses of oxide scales formed on steels.The hardnesses of the synthesized iron oxides and of cross-sectional oxide scales on pure Fe and a Fe-3.0mass%Si alloy are listed in Table 2.Variation of hardness of the synthesized oxides is similar to that of scales formed on steels.Furthermore,the order of magnitude of thehardnessFig.1X-ray diffraction pattern of Fe 2O 3specimen.Fig.4X-ray diffraction pattern of Fe 2SiO 4specimen.Fig.2X-ray diffraction pattern of Fe 3O 4specimen.Fig.3X-ray diffraction pattern of FeO specimen.Table 1Concentration of oxide phase in FeO specimen (vol%).Fe 2O 3Fe 3O 4FeO -Fe 01.986.811.3Fig.5Hardness of the synthesized iron oxides at high-temperature.Table 2Comparison of Vickers hardness (GPa)of the respective iron oxide scales and the cross-sectional oxide scales on iron.TemperatureSample formSintered specimenScale formed on ironFeO RT 1.67 3.501000C 0.04360.05Fe 3O 4RT 1.64 4.001000 C 0.05050.08Fe 2O 3RT 3.27 6.701000 C 0.07340.53Fe 2SiO 4RT 3.29 5.501000 C—0.632244M.Takeda,T.Onishi,S.Nakakubo and S.Fujimotoof the synthesized oxides is consistent with that formed on the steels.However,the hardness of Fe 2O 3formed on the steel is much larger than synthesized Fe 2O 3at 1000 C.It is considered that the hardness of Fe 2O 3formed on the steel could not be measured precisely because its thickness is a few or several tens of m m .Therefore,it is concluded that the properties of synthesized iron oxides that had been fabricated with high purity and density corresponds to that of oxide scales formed on steels.3.3Thermal expansion coefficientAs shown in Fig.6,the thermal expansion coefficients of all of the synthesised oxides increase with increasing temperature,with magnitudes approximately in the following ascending order:FeO,Fe 3O 4,Fe 2O 3and Fe 2SiO 4.In particular,FeO exhibits the highest thermal expansion coefficient in the temperature range below 400 C.The thermal expansion coefficient of FeO abruptly increases at 600–700 C.This phenomenon may be caused by a stabiliza-tion of FeO,because FeO is becomes stable above 570 C.3.4Thermal conductivityThe temperature dependence of the thermal conductivity of the synthesized iron oxides is shown in Fig.7.The thermal conductivity is reduced approximately in the following ascending order:FeO,Fe 2O 3,Fe 3O 4and Fe 2SiO 4.A prominent feature is that FeO has the highest conductivity and Fe 2SiO 4shows the lowest in the temperature range between room temperature and 1000 C.The following is also noteworthy.The thermal conductivity of Fe 2O 3is the highest at RT,but changes remarkably smaller at high-temperature,while Fe 2SiO 4exhibits extremely reduced thermal conduc-tivity compared with FeO.3.5Influence of the physical properties of iron-oxide scales at high temperature on the surface properties of the Si-containing steelIt was shown in section 3.1–3.4that the high-temperature physical properties,such as hardness,thermal expansion coefficient,and thermal conductivity,are significantly differ-ent for each oxide species.The scale structure and oxidation behaviour on the Si-containing steel have been described in many literatures.1–4)On the Si-containing steel,inner-most layer consisting of FeO–Fe 2SiO 4mixture is formed beneath the outer FeO layer.1–4)However,Fe 2SiO 4in the inner-most layer,the amount of which increases as the Si content increases,suppresses the outward diffusion of Fe ions from steels and hence the inner diffusion of oxygen ions predominates in the oxide growth.11)Therefore,as the Si content increase,the composition of outer scale layer changes from FeO to Fe 3O 4and Fe 2O 3.11)These results show that the fayalite (Fe 2SiO 4)affects the structure of the outer and inner scale layers on Si-containing steel.In the following section,the influence of the fayalite (Fe 2SiO 4)formed on the high-Si steel on the scale adhesion at high temperature and surface properties are discussed on the basis of physical properties of iron-oxide scale.3.5.1The scale adhesion at high temperature of theSi-containing steelThe thermal stress generated by the difference in the thermal expansion coefficient between inner-most layer and steel causes a spalling and cracking of the scale during the hot-rolling process.As described above,the inner-most layer on the high-Si steel is mainly composed of Fe 2SiO 4.Therefore,the scale adhesion of high-Si steel is influenced by the difference in the thermal expansion coefficient between the Fe 2SiO 4and steel.As shown in Fig.6,the thermal expansion coefficient of Fe 2SiO 4increases as the temperature increases.The thermal expansion coefficient of Fe 2SiO 4at 1000 C is nearly equal to that of Fe(14:6Â10À6/ C at 800 C).12)By contrast,the difference in the thermal expansion coefficient of FeO and Fe is large at 1000 C.It is also reported that the scale adhesion of Fe 2SiO 4on steel at high temperature is greater than that of FeO.11)Therefore,the Fe 2SiO 4might strongly adhere to the substrate steel and is not detached by the descalingprocess.Fig.6Thermal expansion coefficients of the synthesized iron oxides athigh-temperature.Fig.7Thermal conductivities of the synthesized iron oxides at high-temperature.Physical Properties of Iron-Oxide Scales on Si-containing Steels at High Temperature 22453.5.2Surface property of the Si-containing steel afterrollingAs described above,the Fe2SiO4strongly adheres to the substrate steel,resulting in the deterioration of the descal-ability.The remaining Fe2SiO4suppresses the outward diffusion of Fe ions from the steel and hence the inner diffusion of oxygen ions predominates in the oxide growth.11) It is also shown in Fig.7that the thermal conductivity of Fe2SiO4is lower than that of other oxides.This result suggests that the remaining Fe2SiO4on the substrate steel brings about a reduction in the cooling rate and a rising of the surface temperature.As a result,the thick Fe2O3,which is a higher order oxide,is formed as the outer-most scale layer on the Fe2SiO4-coated substrate steel.Therefore,the fracture and deformation behaviour of Fe2O3may directly affect the surface properties of high-Si steel.It is shown in Fig.5that the hardness of Fe2O3is greater than that of the other oxides at800 C.It is also reported that the ability to deform Fe2O3is lower than that of FeO.7,8)As a result,the outer-most scale surface,mainly composed of Fe2O3,is crushed because of its hardness and stiffness at 800 C,corresponding to the hot-rolling temperature.Finely-ground Fe2O3is often observed on high-Si steels,which frequently form red scales on their surfaces and degrade the surface property of the high-Si steel.4.ConclusionIn the present study,we measured the high temperature physical properties of various iron oxides,constituents of oxide scales on steels,in order to clarify the dynamic behavior of the oxide scales that occur on practical steels. We selected FeO,Fe3O4,Fe2O3and Fe2SiO4as typical oxide species that formed on Si-containing steels,and synthesized artificial specimens of each type of oxide.The specimens were composed of a single oxide species,and were used to measure the hardness,the thermal expansion coefficient and the thermal conductivity over the temperature range between RT and1000 C.As a result,it was found that the physical properties of the synthesized iron oxides differed significantly from each other.The hardness of the synthe-sized iron oxides was identical with the naturally-formed corresponding iron oxide observed in cross-sectional oxide scales on practical steels.The experimental results from this study are confirmed as reflecting the physical properties of the oxide scales that form on practical steels. Moreover,we discussed the relationship between the physical properties of oxides at high temperature and surface property after rolling the Si-containing steel.It is possible that Fe2SiO4affects the high-temperature adhesion,surface temperature,and surface property of the Si-containing steel after rolling.REFERENCES1) C.W.Tuck:Corros.Sci.5(1965)631–643.2)W.W.Smeltzer,L.A.Morris and R.C.Logani:Can.Metall.Quart.9(1970)513–519.3)R.C.Logani and W.W.Smeltzer:Oxid.Met.3(1971)15–32.4)K.Yanagihara,S.Suzuki and S.Yamazaki:Oxid.Met.57(2002)281–296.5)T.Amano,M.Okazaki,Y.Takezawa,A.Shino,M.Takeda,T.Onishi,K.Seto,A.Ohkubo and T.Shishido:Mater.Sci.Forum522–523 (2006)469–476.6)G.R.Anstis,P.Chantikul,wn and D.B.Marshall:J.Am.Ceram.Soc.64(1981)533–538.7)Y.Hidaka,T.Anraku and N.Otsuka:Mater.Sci.Forum369–372(2001)555–562.8)Y.Hidaka,T.Anraku and N.Otsuka:Oxid.Met.59(2003)97–113.9)L.S.Darken and W.R.Gurry:Physical Chemistry of Metals,(McGrow-Hill Book Company,New York,1953)p.351.10)K.H.Hellwege ed.:Landolt Borstein numerical data tables,Group3,12,(Springer-Verlag,Berlin,1980)p.8.11)M.Takeda and T.Onishi:Mater.Sci.Forum522–523(2006)477–488.12)Metals Data Book,4th Edition,(Maruzen)p.14.2246M.Takeda,T.Onishi,S.Nakakubo and S.Fujimoto。