人教版必修高一数学第三章三角恒等变换测试题及答案
人教版高一数学第三章《三角恒等变换》测试题(A卷)及答案

i
sin
1
B.-3
cos
a的值为
1
代3
3—sin70的
8.2等于
2—cos10
1 2
A.2b.~2"
1n
9.把尹n20+cos(§—
2,3
3
C.
2
n
2 0)]—sin —cosCf^+20)化简,可得
A.sin20B.—sin20C.cos20D.—cos20
10.已知3cos(2a+ 3+5cos3=0,贝U tan(a+ 3tana的值为
三、解答题(共76分).
15.(本题满分
12分)已知
cosa—sin
a=
3.2,且
n«|n,求
sin2a+2sin
1—tana
a的值.
16.(本题满分12分)已知
(X、
B均为锐角,且
cos
^5
sinA ,w,求
a—3的值.
1
17.(本题满分12分)求证:丽
疏=|2cos20°
高中数学必修
考试时间:100分钟,满分:150分
、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代
号填在题后的括号内(每小题5分,共50分)
2
1.计算1-2sin 22.5的结果等于
A.1B晋
2 2
2.cos39 cos(—9°)—sin39
1
A.2
7
A.8
C.
3.已知
4,则
A. ±4B.4C.—4D.1
二、填空题(每小题6分,共计24分).
11.(1+tan17 )(1+tan28的=.
高一必修三角恒等变换练习题及答案

高一必修三角恒等变换练习题及答案Revised by BLUE on the afternoon of December 12,2020.2006学年高一必修4三角恒等变形练习题满分100分,时间:100分钟增城市新塘中学 段建辉 一、选择题(每题4分,计40分)1.已知0,2παβπ<<<<又,54)sin(,53sin -=+=βαα,则sin β=( ).()A 1- ()B 1-或257- ()C 257- ()D 2572.如果1sin ,cos 33αα=-=则2α为第____象限角. ()A 一 ()B 二 ()C 三 ()D 四3.设1tan 2,1tan xx +=-则sin 2x 的值是( ).()A 35 ()B 34- ()C 34()D 1-4.已知(,2)αππ∈等于( ).()A sin2α()B cos2α()C sin2α- ()D cos2α-5.化简1sin 2cos 21sin 2cos 2αααα+-++的结果是( )()A 2sin α ()B cos α ()C n ta α ()D 2tan α6.cos 23x x a +=-中,a 的取值域范围是( )()A 2521≤≤a ()B 21≤a ()C 25>a ()D 2125-≤≤-a 7.若x 是一个三角形的最小内角,则函数sin cos y x x =-的值域是( )()A [ ()B 1(1,]2- ()C 1[1,]2- ()D 1(1,)2-8.设0020sin13cos13,142b c α=+=-=则( ) ()A a c b >> ()B c b a >> ()C b c a >> ()D c a b >>9函数cos 1sin xy x=-的单调增区间是( )()A 3[2,2]22k k ππππ-+ ()B [2,2]22k k ππππ-+ ()C 3[2,2]22k k ππππ-- ()D [,]22k k ππππ-+10.在ABC ∆中,tan tan tan A B A B +=,则C 等于( )()A 3π ()B 23π ()C 6π ()D 4π二、填空题(每小题4分,共16分)11.已知),4,0(,135)4sin(πααπ∈=-则=+)4cos(2cos απα______.12.已知βαtan ,tan 是方程04332=++x x 的两根,且),2,2(,ππβα-∈则βα+等于______.13.函数xx xx y 2sin 2cos 2sin 2cos -+=的最小周期是______14.在ABC ∆中,,53sin ,135cos ==B A 则C cos =______.三、解答题15(10分)化简000020cos 1)]10tan 31(10sin 50sin 2[+++16(10分)已知)(,2,2,sin 3)2sin(Z k k k ∈+≠++≠=+ππβαππαββα求证:αβαtan 2)tan(=+.17(12分)已知函数).(),12(sin 2)62sin(3)(2R x x x x f ∈-+-=ππ(1)求)(x f 的最小正周期.(2)求使函数)(x f 取得最大值时x 的集合.18(12分)如图所示,已知OPQ 是半径为1,圆心角为3π的扇形,ABCD 是扇形的内接矩形,C B ,两点在圆弧上,OE 是POQ ∠的平分线,连接OC ,记α=∠COE ,问:角α为何值时矩形ABCD面积最大,并求最大面积.Q[参考答案]1~5:CDADC 5~10: ABCAA(11)1324 (12) 23π- (13)2π (14)651615.解:原式=630cos 22)1040cos(22]10sin 40sin 10cos 40[cos 22]40sin 10sin 210cos 50sin 2[210cos ]10cos 40sin 210sin 50sin 2[210cos 2]10cos 10sin 310cos 10sin 50sin 2[10cos 2)]10cos 10sin 31(10sin 50sin 2[000000000000000000020=⋅=-=+=+=⋅⋅+=⋅+⋅+=++16.证明:))sin((3))sin((sin 3)2sin(ββααβαββα-+=++⇒=+ββαββαββαββαsin )cos(3cos )sin(3sin )cos(cos )sin(+-+=+++⇒ββαββαsin )cos(4cos )sin(2+-=+-⇒ αβαtan 2)tan(=+⇒17.解:(1))]12(2cos(1[)62sin(3)(ππ--+-=x x x f1)62cos()62sin(3+---=ππx x1)]62cos(21)62sin(23[2+---=ππx x 1)32sin(2+-=πxππ==+22min T (2)当Z k k x ∈+=-,2232πππ即Z k k x ∈+=,125ππ时,3max =y 解:设OE 交AD 于M ,交BC 于N ,显然矩形ABCD 关于OE 对称,而M ,N 均为AD ,BC 的中点,在ONC Rt ∆中,cos ,sin αα==ON CN ,sin 3336tan/απ====CN DM DM OMααsin 3cos -=-=∴OM ON MN即ααsin 3cos -=ABαsin 22==∴CN BC故:αααsin 2sin 3cos ⋅-=⋅=)(矩BC AB S ααα2sin 32cos sin 2-=)(αα2cos 132sin --=32cos 32sin -+=αα 332sin 2-+=)(πα32323,320,60ππαππαπα<+<<<∴<< 故当,232ππα=+即12πα=时,矩形S 取得最大,此时32-=矩形S。
高一数学三角恒等变换试题答案及解析

高一数学三角恒等变换试题答案及解析1.(12分)(1)求的值.(2)若,,,求的值.【答案】(1)1(2)【解析】(1)原式……6分(2),①②①-②得,. ……12分【考点】本小题主要考查利用和差角公式、同角三角函数基本关系式等求三角函数值,考查学生的运算求解能力.点评:解决给值求值问题时,要尽量用已知角来表示未知角.2.设-3π<α<-,则化简的结果是()A.sin B.cosC.-cos D.-sin【答案】C【解析】∵-3π<α<-π,∴-π<<-π,∴cos<0,∴原式==|cos|=-cos.3.已知cos2α-cos2β=a,那么sin(α+β)·sin(α-β)等于()A.-B.C.-a D.a【答案】C【解析】法一:sin(α+β)sin(α-β)=(sinαcosβ+cosαsinβ)(sinαcosβ-cosαsinβ)=sin2αcos2β-cos2αsin2β=(1-cos2α)cos2β-cos2α(1-cos2β)=cos2β-cos2α=-a,故选C.法二:原式=-(cos2α-cos2β)=-(2cos2α-1-2cos2β+1)=cos2β-cos2α=-a.4.若cos2α=m(m≠0),则tan=________.【答案】【解析】∵cos2α=m,∴sin2α=±,∴tan===.5.求sin42°-cos12°+sin54°的值.【答案】【解析】sin42°-cos12°+sin54°=sin42°-sin78°+sin54°=-2cos60°sin18°+sin54°=sin54°-sin18°=2cos36°sin18°=====.6.给出下列三个等式f(xy)=f(x)+f(y),f(x+y)=f(x)·f(y),f(x+y)=,下列函数中不满足其中任何一个等式的是()A.f(x)=3x B.f(x)=sin xC.f(x)=logx D.f(x)=tan x2【答案】B【解析】对选项A,满足f(x+y)=f(x)·f(y),对选项C,满足f(xy)=f(x)+f(y),对选项D,满足f(x+y)=,故选B.7.的值为()A.2+B.C.2-D.【答案】C【解析】sin6°=sin(15°-9°)=sin15°cos9°-cos15°sin9°,cos6°=cos(15°-9°)=cos15°cos9°+sin15°sin9°,∴原式=tan15°=tan(45°-30°)==2-,故选C.8.已知α、β为锐角,cosα=,tan(α-β)=-,则tanβ的值为()A.B.C.D.【答案】B【解析】∵α是锐角,cosα=,故sinα=,tanα=∴tanβ=tan[α-(α-β)]==.9.已知sinα=,α为第二象限角,且tan(α+β)=1,则tanβ的值是() A.-7B.7C.-D.【答案】B【解析】由sinα=,α为第二象限角,得cosα=-,则tanα=-.∴tanβ=tan[(α+β)-α]===7.10.若a=tan20°,b=tan60°,c=tan100°,则++=()A.-1B.1C.-D.【答案】B【解析】∵tan(20°+100°)=,∴tan20°+tan100°=-tan60°(1-tan20°tan100°),即tan20°+tan60°+tan100°=tan20°·tan60°·tan100°,∴=1,∴++=1,选B.11.如果tan=2010,那么+tan2α=______.【答案】2010【解析】∵tan=2010,∴+tan2α=+====tan=2010.12.若π<α<,化简+.【答案】-cos【解析】∵π<α<,∴<<,∴cos<0,sin>0.∴原式=+=+=-+=-cos.13. cos75°cos15°-sin255°sin15°的值是()A.0B.C.D.-【答案】B【解析】原式=cos75°·cos15°+sin75°sin15°=cos(75°-15°)=cos60°=.14.已知0<α<<β<π,cosα=,sin(α+β)=-,则cosβ的值为() A.-1B.-1或-C.-D.±【答案】C【解析】∵0<α<, <β<π,∴<α+β<π,∴sinα=,cos(α+β)=-,∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=×+×=-,故选C.15. cos+sin的值为()A.-B.C.D.【答案】B【解析】∵cos+sin=2=2=2cos=2cos=.16.=________.【答案】【解析】=cos cos-sin sin=cos cos+sin sin=cos=cos=.17.已知α、β为锐角,且tanα=,tanβ=,则sin(α+β)=________.【答案】【解析】∵α为锐角,tanα=,∴sinα=,cosα=,同理可由tanβ=得,sinβ=,cosβ=.∴sin(α+β)=sinαcosβ+cosαsinβ=×+×=.18.函数y=cos x+cos的最大值是________.【答案】【解析】法一:y=cos+cos=cos·cos+sin sin+cos=cos+sin==cos=cos≤.法二:y=cos x+cos x cos-sin x sin=cos x-sin x==cos,当cos=1时,y=.max19.已知<β<α<,cos(α-β)=,sin(α+β)=-,求sin2α的值.【答案】-.【解析】∵<β<α<,∴π<α+β<,0<α-β<.∴sin(α-β)===.∴cos(α+β)=-=-=-.则sin2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=×+×=-.20.在△ABC中,若sin A=,cos B=,求cos C.【答案】【解析】∵0<cos B=<,且0<B<π.∴<B<,且sin B=.又∵0<sin A<<,且0<A<π,∴0<A<或π<A<π.若π<A<π,则有π<A+B<π,与已知条件矛盾,∴0<A<,且cos A=.∴cos C=cos[π-(A+B)]=-cos(A+B)=sin A sin B-cos A cos B=×-×=.[点评]本题易忽视对角范围的讨论,直接由sin A=得出cos A=±,导致错误结论cos C=或.。
第三章 3.2简单的三角恒等变换(一)答案

2019-2020学年高一数学必修四校本作业课题:3.2 简单的三角恒等变换(一)班级_______姓名________座号________一、选择题1.已知tan θ-1tan θ=m ,则tan2θ=( ) A .-1m B .-2mC .2m D.2m解析:tan θ-1tan θ=m =tan 2θ-1tan θ又tan2θ=2tan θ1-tan 2θ=-2tan θtan 2θ-1,∴tan θ=-2m . 答案:B2.已知cos α=15,α∈⎝⎛⎭⎫3π2,2π,则sin α2等于( ) A.105 B .-105 C.265 D.255 考点 利用简单的三角恒等变换化简求值题点 利用半角公式化简求值答案 A解析 ∵α∈⎝⎛⎭⎫3π2,2π,∴α2∈⎝⎛⎭⎫3π4,π, sin α2=1-cos α2=105. 3.化简2sin 2α1+cos 2α·cos 2αcos 2α的结果为( ) A .tan α B .tan 2α C .1 D .2考点 利用简单的三角恒等变换化简求值题点 利用半角公式化简求值答案 B解析 原式=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α. 4.sin x cos x +sin 2x 可化为( )A.22sin ⎝⎛⎭⎫2x -π4+12B.2sin ⎝⎛⎭⎫2x +π4-12 C .sin ⎝⎛⎭⎫2x -π4+12 D .2sin ⎝⎛⎭⎫2x +3π4+1 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 A解析 y =12sin 2x +1-cos 2x 2=12sin 2x -12cos 2x +12=22⎝⎛⎭⎫22sin 2x -22cos 2x +12=22sin ⎝⎛⎭⎫2x -π4+12.故选A. 5.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .c <b <a B .a <b <cC .a <c <bD .b <c <a考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C解析 a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°)=sin 24°,b =2sin 13°cos 13°=sin 26°,c =sin 25°,∵当0°≤x ≤90°时,y =sin x 是单调递增的,∴a <c <b .6.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( )A.π6 B.π3 C.π2 D.2π3考点 利用简单的三角恒等变换化简求值题点 利用辅助角公式化简求值答案 D解析 f (x )=sin(2x +θ)+3cos(2x +θ)=2sin ⎝⎛⎭⎫2x +π3+θ.当θ=23π时,f (x )=2sin(2x +π)=-2sin 2x 是奇函数.7.已知函数f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1,则函数f (x )的单调递增区间为()A.⎣⎡⎦⎤2k π-π3,2k π+π6(k ∈Z )B.⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z )C.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z )D.⎣⎡⎦⎤2k π-π6,2k π+π3(k ∈Z )考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C解析 因为f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1=32sin 2x -12cos 2x +cos 2x =32sin 2x +12cos 2x =sin ⎝⎛⎭⎫2x +π6,所以函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ),故选C. 二、填空题8.已知α∈⎝⎛⎭⎫0,π2,sin 2α=12,则sin ⎝⎛⎭⎫α+π4=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 32解析 因为1-2sin 2⎝⎛⎭⎫α+π4=cos ⎝⎛⎭⎫2α+π2=-sin 2α, 所以sin 2⎝⎛⎭⎫α+π4=34, 因为α∈⎝⎛⎭⎫0,π2, 所以α+π4∈⎝⎛⎭⎫π4,3π4, 所以sin ⎝⎛⎭⎫α+π4=32. 9.若cos α=-45,α是第三象限角,则1+tan α21-tan α2等于( ) A .-12 B.12C .2D .-2 考点 利用简单的三角恒等变换化简求值题点 利用弦化切对齐次分式化简求值答案 A解析 ∵α是第三象限角,cos α=-45,∴sin α=-35.∴1+tan α21-tan α2=1+sinα2cos α21-sin α2cos α2=cos α2+sin α2cos α2-sin α2=cos α2+sin α2cos α2-sin α2·cos α2+sin α2cos α2+sin α2=1+sin αcos α=1-35-45 =-12.故选A. 10.化简:sin50°(1+3tan10°).解:原式=sin50°cos10°+3sin10°cos10°=2sin50°sin40°cos10°=sin80°cos10°=1. 11.设0≤α≤π,不等式8x 2-8x sin α+cos 2α≥0对任意x ∈R 恒成立,则α的取值范围是________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 Δ=(8sin α)2-4×8×cos 2α≤0,即2sin 2α-cos 2α≤0,所以4sin 2α≤1,所以-12≤sin α≤12. 因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π. 三、解答题12.已知α,β为锐角,tanα=43,cos(α+β)=-55. (1)求cos2α的值;(2)求tan(α-β)的值.解析 (1)因为tanα=43,tanα=sinαcosα, 所以sinα=43cosα. 因为sin 2α+cos 2α=1,所以cos 2α=925, 因此,cos2α=2cos 2α-1=-725. (2)因为α,β为锐角,所以α+β∈(0,π).因为cos(α+β) =-55,所以sin(α+β)=1-cos 2(α+β)=255. 因此tan(α+β)=-2. 因为tanα=43,所以tan2α=2tanα1-tan 2α=-247, 因此tan(α-β)=tan[2α-(α+β)]=tan2α-tan (α+β)1+tan2αtan (α+β)=-211.13.已知函数f (x )=cos x ·sin(x +π3)-3cos 2x +34,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间[-π4,π4]上的值域.解:(1)由已知有f (x )=cos x (12sin x +32cos x )-3cos 2x +34=12sin x cos x -32cos 2x +34=14sin2x -34(1+cos2x )+34=14sin2x -34cos2x=12sin(2x -π3).∴f (x )的最小正周期T =2π2=π.(2)∵x ∈[-π4,π4],∴2x -π3∈[-5π6,π6].当2x -π3=-π2,即sin(2x -π3)=-1时,f (x )取最小值为-12.当2x -π3=π6,即sin(2x -π3)=12时,f (x )取最大值为14.∴f (x )在区间[-π4,π4]上的值域为[-12,14]14.已知sin θ=m -3m +5,cos θ=4-2mm +5⎝⎛⎭⎫π2<θ<π,则tan θ2等于() A .-13 B .5C .-5或13D .-13或5 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换化简求值答案 B解析 由sin 2θ+cos 2θ=1,得⎝ ⎛⎭⎪⎫m -3m +52+⎝ ⎛⎭⎪⎫4-2m m +52=1, 解得m =0或8,当m =0时,sin θ<0,不符合π2<θ<π. ∴m =0舍去,故m =8,sin θ=513,cos θ=-1213, tan θ2=1-cos θsin θ=1+1213513=5. 15.已知α,β均为锐角,且sin2α=2sin2β,则( )A .tan(α+β)=3tan(α-β)B .tan(α+β)=2tan(α-β)C .3tan(α+β)=tan(α-β)D .3tan(α+β)=2tan(α-β)解析:∵sin2α=2sin2β,∴sin[(α+β)+(α-β)]=2sin[(α+β)-(α-β)], ∴sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=2sin(α+β)cos(α-β)-2cos(α+β)sin(α-β), ∴3cos(α+β)sin(α-β)=sin(α+β)cos(α-β), ∴tan(α+β)=3tan(α-β),故选A.答案:A。
人教必修高一数学第三章三角恒等变换测试题及答案

高中数学必修4第三章《三角恒等变换》测试题A 卷考试时间:100分钟,满分:150分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.计算1-°的结果等于 ( )2.cos39°cos(-9°)-sin39°sin(-9°)等于 ( ) C .-12D .-323.已知cos ⎝ ⎛⎭⎪⎫α-π4=14,则sin2α的值为 ( )B .-78D .-344.若tan α=3,tan β=43,则tan(α-β)等于 ( )A .-3B .-13C .35.cos 275°+cos 215°+cos75°·cos15°的值是( )D .1+236.y =cos 2x -sin 2x +2sin x cos x 的最小值是 ( ) B .-2 C .2D .-27.已知sin ⎝ ⎛⎭⎪⎫α-π3=13,则cos ⎝ ⎛⎭⎪⎫π6+α的值为 ( )B .-13D .-233等于 ( )C .29.把12[sin2θ+cos(π3-2θ)]-sin π12cos(π12+2θ)化简,可得 ( )A .sin2θB .-sin2θC .cos2θD .-cos2θ10.已知3cos(2α+β)+5cos β=0,则tan(α+β)·tan α的值为 ( )A .±4B .4C .-4D .1二、填空题(每小题6分,共计24分). 11.(1+tan17°)(1+tan28°)=________. 12.化简3tan12°-3sin12°·4cos 212°-2的结果为________.13.若α、β为锐角,且cos α=110,sin β=25,则α+β=______.14.函数f (x )=sin ⎝⎛⎭⎪⎫2x -π4-22sin 2x 的最小正周期是________.三、解答题(共76分).15.(本题满分12分)已知cos α-sin α=352,且π<α<32π,求sin2α+2sin 2α1-tan α的值.16.(本题满分12分)已知α、β均为锐角,且cos α=25,sin β=310,求α-β的值.17.(本题满分12分)求证:1sin 210°-3cos 210°=32cos20°.18.(本题满分12分)已知-π2<α<π2,-π2<β<π2,且tan α、tan β是方程x 2+6x +7=0的两个根,求α+β的值.19.(本题满分14分)已知-π2<x <0,sin x +cos x =15,求:(1)sin x -cos x 的值;(2)求3sin 2x 2-2sin x 2cosx2+cos 2x2tan x +1tan x的值.20.(本题满分14分)已知函数f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),其图象过点⎝ ⎛⎭⎪⎫π6,12.(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.高中数学必修4第三章《三角恒等变换》测试题A 卷参考答案一、选择题 1. 【答案】B.【解析】 1-°=cos45°=22,故选B.2. 【答案】B.【解析】 cos39°cos(-9°)-sin39°sin(-9°)=cos(39°-9°)=cos30°=32.3. 【答案】B.【解析】 sin2α=cos(2α-π2)=2cos 2⎝ ⎛⎭⎪⎫α-π4-1=-78.4. 【答案】 D【解析】 tan(α-β)=tan α-tan β1+tan αtan β=3-431+3×43=13.5. 【答案】 A 【解析】原式=sin 215°+cos 215°+sin15°cos15°=1+12si n30°=54. 6. 【答案】 B【解析】y =cos2x +sin2x =2sin(2x +π4),∴y max =-2.7. 【答案】B.【解析】 cos ⎝ ⎛⎭⎪⎫π6+α=sin ⎝ ⎛⎭⎪⎫π2-π6-α =sin ⎝ ⎛⎭⎪⎫π3-α=-sin ⎝ ⎛⎭⎪⎫α-π3=-13.8.【答案】C.【解析】 3-sin70°2-cos 210°=3-sin70°2-1+cos20°2=23-cos20°3-cos20°=2.9.【答案】A.【解析】原式=12[cos(π2-2θ)+cos(π3-2θ)]-sin π12cos(π12+2θ)=cos(5π12-2θ)cos π12-sin π12sin(5π12-2θ)=cos[(5π12-2θ)+π12]=cos(π2-2θ)=sin2θ. 10.【答案】C.【解析】 3cos[(α+β)+α]+5cos β=0,即3cos(α+β)cos α-3sin(α+β)sin α+5cos β=0.3cos(α+β)cos α-3sin(α+β)sin α+5cos[(α+β)-α]=0,3cos(α+β)cos α-3sin(α+β)sin α+5cos(α+β)·cos α+5sin(α+β)sin α=0,8cos(α+β)cos α+2sin(α+β)sin α=0,8+2tan(α+β)tan α=0,∴tan(α+β)tan α=-4. 二、填空题 11. 【答案】 2【解析】原式=1+tan17°+tan28°+tan17°·tan28°,又tan(17°+28°)=tan17°+tan28°1-tan17°·tan28°=tan45°=1,∴tan17°+tan28°=1-tan17°·tan28°,代入原式可得结果为2. 12.【答案】-43【解析】3tan12°-3sin12°·4cos 212°-2=3tan12°-32sin12°·cos24°=3tan12°-32cos12°2sin12°·cos12°·2cos24°=23sin 12°-6cos12°sin48°=43sin12°·cos60°-cos12°·sin60°sin48°=-43sin48°sin48°=-43.13.【答案】3π4【解析】∵α、β为锐角,∴sin α=31010,cos β=55,∴cos(α+β)=cos αcos β-sin αsin β =1010×55-31010×255=-22<0,又0<α<π2,0<β<π2,∴π2<α+β<π. ∴α+β=3π4.14.【答案】π【解析】f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4-22sin 2x =sin ⎝⎛⎭⎪⎫2x -π4-2(1-cos2x ) =sin2x cos π4-sin π4cos2x +2cos2x -2=22sin2x -22cos2x +2cos2x - 2 =22sin2x +22cos2x -2=sin ⎝⎛⎭⎪⎫2x +π4-2∴最小正周期为π. 三、解答题15. 解: 因为cos α-sin α=325,所以1-2sin αcos α=1825,所以2sin αcos α=725. 又α∈(π,3π2),故sin α+cos α=-1+2sin αcos α=-425,所以sin2α+2sin 2α1-tan α=2sin αcos α+2sin 2αcos αcos α-sin α=2sin αcos αcos α+sin αcos α-sin α=725×-425325=-2875. 16. 解: 已知α、β均为锐角,且cos α=25,则sin α=1-252=15.又∵sin β=310,∴cos β=1-3102=110. ∴sin(α-β)=sin αcos β-cos αsin β =15×110-25×310=-550=-22.又∵sin α<sin β,∴0<α<β<π2.∴-π2<α-β<0.∴α-β=-π4.17. 证明:左边=11-cos20°2-31+cos20°2=21-cos20°-61+cos20°=8cos20°-41-cos 220°=8cos20°-12sin 220° =8cos20°-cos60°sin 220°=8[cos40°-20°-cos40°+20°]sin 220°=16sin40°sin20°sin 220°=32sin 220°cos20°sin 220°=32cos20°=右边, ∴原式成立.18. 解: 由题意知tan α+tan β=-6,tan αtan β=7 ∴tan α<0,tan β<0. 又-π2<α<π2,-π2<β<π2,∴-π2<α<0,-π2<β<0.∴-π<α+β<0.∵tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1,∴α+β=-3π4.19. 解:(1)由sin x +cos x =15,得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925, ∵-π2<x <0.∴sin x <0,cos x >0.∴sin x -cos x <0.故sin x -cos x =-75.(2)3sin 2x 2-2sin x 2cos x2+cos 2x2tan x +1tan x=2sin 2x2-sin x +1sin x cos x +cos xsin x=sin x cos x ⎝⎛⎭⎪⎫2sin 2x2-sin x +1 =sin x cos x [2(1-cos 2x2)-sin x +1)]=sin x cos x ⎝ ⎛⎭⎪⎫1-2cos 2x2+2-sin x=sin x cos x (-cos x +2-sin x )=⎝ ⎛⎭⎪⎫-1225×⎝ ⎛⎭⎪⎫2-15 =-108125.20. 解:(1)因为f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),所以f (x )=12sin2x sin φ+1+cos2x 2cos φ-12cos φ=12sin2x sin φ+12cos2x cos φ =12(sin2x sin φ+cos2x cos φ) =12cos(2x -φ). 又函数图象过点⎝ ⎛⎭⎪⎫π6,12,所以12=12cos ⎝ ⎛⎭⎪⎫2×π6-φ,即cos ⎝ ⎛⎭⎪⎫π3-φ=1. 又0<φ<π,∴φ=π3.(2)由(1)知f (x )=12cos ⎝⎛⎭⎪⎫2x -π3. 将f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,变为g (x )=12cos ⎝⎛⎭⎪⎫4x -π3.∵0≤x ≤π4,∴-π3≤4x -π3≤2π3.当4x -π3=0,即x =π12时,g (x )有最大值12;当4x -π3=2π3,即x =π4时,g (x )有最小值-14.。
高一必修 三角恒等变换练习题及答案

高一必修三角恒等变换练习题及答案2006学年高一必修4三角恒等变形练题满分100分,时间:100分钟______一、选择题(每题4分,计40分)1.已知 $\frac{\pi}{4}<\alpha<\beta<\pi$。
又,$\sin\alpha=\frac{2}{5}$,$\sin(\alpha+\beta)=-\frac{7}{25}$,则$\sin\beta=$($\quad$)。
A)-1$ $(B)-\frac{1}{2}$ $(C)-\frac{7}{25}$ $(D)\frac{7}{25}$2.如果$\sin\alpha=-\frac{1}{2}$,$\cos\alpha=-\frac{\sqrt{3}}{2}$,则$\alpha$所在的象限是($\quad$)。
A)$一 $(B)$二 $(C)$三 $(D)$四3.设$\frac{1+\tan x}{1-\tan x}=2$,则$\sin 2x$的值是($\quad$)。
A)-\frac{3}{4}$ $(B)-\frac{4}{3}$ $(C)-\frac{3}{5}$ $(D)-\frac{5}{4}$4.已知$\alpha\in(\pi,2\pi)$,则$\frac{1+\sin^2\alpha-\cos^2\alpha}{1+\sin^2\alpha+\cos^2\alpha}$等于($\quad$)。
A)\sin\alpha$ $(B)\cos\alpha$ $(C)-\sin\alpha$ $(D)-\cos\alpha$5.化简$\frac{2\sin\alpha}{1+\cos\alpha}$的结果是($\quad$)。
A)2\sin\alpha$ $(B)\cos\alpha$ $(C)\tan\alpha$ $(D)2\tan\alp ha$6.在$3\sin x+\cos x=2a-3$中,$a$的取值范围是($\quad$)。
2023-2024学年高一上数学必修一:三角恒等变换(附答案解析)

一、选择题(每小题 5 分,共 40 分)
1.cos2π-1的值为( B ) 84
A. 2-1 B. 2+1 C. 2 D. 2
4
4
4
2
解析:cos2π-1=1+cosπ4-1= 2+1.
84
2
44
2.若sinα+cosα=1,则 tan2α等于( B ) sinα-cosα 2
第3页共6页
9.化简 cos(36°+α)cos(α-54°)+sin(36°+α)sin(α-54°)=0.
解析:原式=cos[(36°+α)-(α-54°)]=cos90°=0.
10.如图,在平面直角坐标系中,锐角α,β的终边分别与单位圆
交于
A,B
两点,如果点
A
的纵坐标为3,点 5
B
的横坐标为 5 ,则 13
3- 2. 2
解析:由题可得
f(x)=
22sin
2x-π4
+3,所以最小正周期 2
T=π,
最小值为3- 2. 2
三、解答题(共 45 分)
12.(15 分)求证:ta1ncαo-s2tαanα2=14sin2α. 2
第4页共6页
cos2α
cos2α
cos2α
证明:左边=
1 sinα
-1-cosα sinα
2sin10°cos10°
1cos10°- 3sin10°
2
2
=
4sins3in02°-0°10°=14.
4.tan13°+tan32°+tan13°tan32°等于( D )
A.- 2 B. 2 C.-1 D.1 22
第1页共6页
三角恒等变形测试题及答案解析

三角恒等变形测试题及答案解析一、命题意图恒等变形能力是数学学习和应用中的一项重要的基本功。
基本的三角恒等变形公式是实践中经常使用的工具。
在力学、物理、电气工程、机械制造、图象处理以及其他科学研究和工程实践中经常会用到这些公式。
基本三角恒等变形公式及简单应用,提高了学生理解和运用三角恒等变形公式的能力,培养学生数形结合的思想能力。
本章内容一直是高考的热点、重点,新课改下仍立于不败之地。
本套试题紧扣教学大纲,依据往届高考要求,注重基础知识、基本技能考察,体现了新课程标准数学的基本理念,考察了学生的运用能力和基础知识的掌握情况,难度适中,对新课程标准要求下的三角恒等变形知识的有很好的检测作用。
二、试卷结构特点本章试题是对高一数学必修4第三章“三角恒等变换”的单元检测,满分150分,时间90分钟,分为Ⅰ卷和Ⅱ卷,共有试题22道,其中12道选择题,共60分;5道填空题,共30分;5道解答题,共60分。
难度为中等水平,既有基础题,也有拔高题。
用基础题考察学生对基本知识技能的掌握情况,也同时用拔高题来提高学生的灵活应用能力,为培养学生的数学意识和数学知识的实践与应用能力打基础。
三、典型试题例说以18题为例:18.已知12cos,13α=求sinα和tanα[分析]本题易错,学生看到题目只考虑角在第一象限的情况,或忽视了第四象限这一种情况造成结果不全。
[解析]因为12cos13α=>0,且cosα≠1,所以α是第一或第四象限的角.当α是第一象限的角时,sinα>0.5sin sin,13sin5135tan.cos131212αααα=====⨯=当α是第四象限角时,sin0.α<5sin,13sin5tan.cos12αααα==-==-(参考评分说明:写对角所在象限得2分,分两中情况每种得6分.)以19题为例:19.设cos(α-β2)=-19,sin(α2-β)=23,且π2<α<π,0<β<π2,求cos (α+β).[分析]讲求做题技巧和方法,培养学生的创新意识是新课标理念,对本题学生易受惯性思维的影响,拿到题容易直接展开做,结果南辕北辙。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修4第三章《三角恒等变换》测试题A 卷考试时间:100分钟,满分:150分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.计算1-°的结果等于 ( )2.cos39°cos(-9°)-sin39°sin(-9°)等于 ( )C .-12D .-323.已知cos ⎝ ⎛⎭⎪⎫α-π4=14,则sin2α的值为 ( ) B .-78 D .-344.若tan α=3,tan β=43,则tan(α-β)等于 ( )A .-3B .-13C .35.cos 275°+cos 215°+cos75°·cos15°的值是( )D .1+236.y =cos 2x -sin 2x +2sin x cos x 的最小值是 ( ) B .- 2 C .2D .-27.已知sin ⎝ ⎛⎭⎪⎫α-π3=13,则cos ⎝ ⎛⎭⎪⎫π6+α的值为 ( ) B .-13D .-233等于 ( ) C .29.把12[sin2θ+cos(π3-2θ)]-sin π12cos(π12+2θ)化简,可得 ( )A .sin2θB .-sin2θC .cos2θD .-cos2θ10.已知3cos(2α+β)+5cos β=0,则tan(α+β)·tan α的值为 ( ) A .±4 B .4 C .-4 D .1 二、填空题(每小题6分,共计24分). 11.(1+tan17°)(1+tan28°)=________.12.化简3tan12°-3sin12°·4cos 212°-2的结果为________. 13.若α、β为锐角,且cos α=110,sin β=25,则α+β=______.14.函数f (x )=sin ⎝⎛⎭⎪⎫2x -π4-22sin 2x 的最小正周期是________.三、解答题(共76分).15.(本题满分12分)已知cos α-sin α=352,且π<α<32π,求sin2α+2sin 2α1-tan α的值.16.(本题满分12分)已知α、β均为锐角,且cos α=25,sin β=310,求α-β的值.17.(本题满分12分)求证:1sin 210°-3cos 210°=32cos20°. 18.(本题满分12分)已知-π2<α<π2,-π2<β<π2,且tan α、tan β是方程x 2+6x +7=0的两个根,求α+β的值.19.(本题满分14分)已知-π2<x <0,sin x +cos x =15,求:(1)sin x -cos x 的值;(2)求3sin 2x 2-2sin x 2cos x2+cos2x2tan x +1tan x的值.20.(本题满分14分)已知函数f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),其图象过点⎝ ⎛⎭⎪⎫π6,12. (1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.高中数学必修4第三章《三角恒等变换》测试题A 卷参考答案一、选择题1. 【答案】B.【解析】 1-°=cos45°=22,故选B. 2. 【答案】B.【解析】 cos39°cos(-9°)-sin39°sin(-9°)=cos(39°-9°)=cos30°=32. 3. 【答案】B.【解析】 sin2α=cos(2α-π2)=2cos 2⎝⎛⎭⎪⎫α-π4-1=-78. 4. 【答案】 D【解析】 tan(α-β)=tan α-tan β1+tan αtan β=3-431+3×43=13. 5. 【答案】 A【解析】 原式=sin 215°+cos 215°+sin15°cos15°=1+12si n30°=54.6. 【答案】 B【解析】y =cos2x +sin2x =2sin(2x +π4),∴y max =- 2.7. 【答案】B.【解析】 cos ⎝ ⎛⎭⎪⎫π6+α=sin ⎝ ⎛⎭⎪⎫π2-π6-α =sin ⎝ ⎛⎭⎪⎫π3-α=-sin ⎝ ⎛⎭⎪⎫α-π3=-13. 8.【答案】C.【解析】 3-sin70°2-cos 210°=3-sin70°2-1+cos20°2=23-cos20°3-cos20°=2. 9.【答案】A.【解析】原式=12[cos(π2-2θ)+cos(π3-2θ)]-sin π12cos(π12+2θ)=cos(5π12-2θ)cos π12-sin π12sin(5π12-2θ)=cos[(5π12-2θ)+π12]=cos(π2-2θ)=sin2θ. 10.【答案】C.【解析】 3cos[(α+β)+α]+5cos β=0,即3cos(α+β)cos α-3sin(α+β)sin α+5cos β=0.3cos(α+β)cos α-3sin(α+β)sin α+5cos[(α+β)-α]=0,3cos(α+β)cos α-3sin(α+β)sin α+5cos(α+β)·cos α+5sin(α+β)sin α=0,8cos(α+β)cos α+2sin(α+β)sin α=0,8+2tan(α+β)tan α=0,∴tan(α+β)tan α=-4. 二、 填空题 11. 【答案】 2【解析】原式=1+tan17°+tan28°+tan17°·tan28°,又tan(17°+28°)=tan17°+tan28°1-tan17°·tan28°=tan45°=1,∴tan17°+tan28°=1-tan17°·tan28°,代入原式可得结果为2.12.【答案】-43【解析】3tan12°-3sin12°·4cos 212°-2=3tan12°-32sin12°·cos24° =3tan12°-32cos12°2sin12°·cos12°·2cos24°=23sin 12°-6cos12°sin48°=43sin12°·cos60°-cos12°·sin60°sin48° =-43sin48°sin48°=-4 3.13.【答案】3π4【解析】∵α、β为锐角,∴sin α=31010,cos β=55,∴cos(α+β)=cos αcos β-sin αsin β=1010×55-31010×255=-22<0,又0<α<π2,0<β<π2,∴π2<α+β<π. ∴α+β=3π4. 14.【答案】π【解析】f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4-22sin 2x =sin ⎝ ⎛⎭⎪⎫2x -π4-2(1-cos2x ) =sin2x cos π4-sinπ4cos2x +2cos2x -2正周期为π.三、 解答题15. 解: 因为cos α-sin α=325,所以1-2sin αcos α=1825,所以2sin αcos α=725.又α∈(π,3π2),故sin α+cos α=-1+2sin αcos α=-425,所以sin2α+2sin 2α1-tan α=2sin αcos α+2sin 2αcos αcos α-sin α=2sin αcos αcos α+sin αcos α-sin α=725×-425325=-2875.16. 解: 已知α、β均为锐角,且cos α=25,则sin α=1-252=15.又∵sin β=310,∴cos β=1-3102=110.∴sin(α-β)=sin αcos β-cos αsin β =15×110-25×310=-550=-22.又∵sin α<sin β,∴0<α<β<π2.∴-π2<α-β<0.∴α-β=-π4.17. 证明:左边=11-cos20°2-31+cos20°2=21-cos20°-61+cos20°=8cos20°-41-cos 220°=8cos20°-12sin 220° =8cos20°-cos60°sin 220°=8[cos40°-20°-cos40°+20°]sin 220°=16sin40°sin20°sin 220°=32sin 220°cos20°sin 220° =32cos20°=右边,∴原式成立.18. 解: 由题意知tan α+tan β=-6,tan αtan β=7 ∴tan α<0,tan β<0. 又-π2<α<π2,-π2<β<π2,∴-π2<α<0,-π2<β<0.∴-π<α+β<0.∵tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1,∴α+β=-3π4.19. 解:(1)由sin x +cos x =15,得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925,∵-π2<x <0.∴sin x <0,cos x >0.∴sin x -cos x <0.故sin x -cos x =-75.(2)3sin 2x 2-2sin x 2cos x2+cos2x2tan x +1tan x=2sin 2x2-sin x +1sin x cos x +cos xsin x=sin x cos x ⎝ ⎛⎭⎪⎫2sin 2x2-sin x +1=sin x cos x [2(1-cos 2x2)-sin x +1)]=sin x cos x ⎝ ⎛⎭⎪⎫1-2cos 2x2+2-sin x=sin x cos x (-cos x +2-sin x ) =⎝ ⎛⎭⎪⎫-1225×⎝ ⎛⎭⎪⎫2-15 =-108125. 20. 解:(1)因为f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),所以f (x )=12sin2x sin φ+1+cos2x 2cos φ-12cos φ=12sin2x sin φ+12cos2x cos φ =12(sin2x sin φ+cos2x cos φ) =12cos(2x -φ). 又函数图象过点⎝ ⎛⎭⎪⎫π6,12, 所以12=12cos ⎝ ⎛⎭⎪⎫2×π6-φ,即cos ⎝ ⎛⎭⎪⎫π3-φ=1.又0<φ<π,∴φ=π3.(2)由(1)知f (x )=12cos ⎝⎛⎭⎪⎫2x -π3.将f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,变为g (x )=12cos ⎝⎛⎭⎪⎫4x -π3.∵0≤x ≤π4,∴-π3≤4x -π3≤2π3.当4x -π3=0,即x =π12时,g (x )有最大值12;当4x -π3=2π3,即x =π4时,g (x )有最小值-14.。