基于单片机的霍尔测速报警系统-课程设计论文正文大学论文

合集下载

基于霍尔传感器的测速系统设计

基于霍尔传感器的测速系统设计

基于霍尔传感器的测速系统设计【摘要】本文主要围绕基于霍尔传感器的测速系统进行研究设计。

在我们介绍了背景信息、问题概述以及研究意义。

接着在我们分析了霍尔传感器的原理,设计了测速系统的硬件,并提出了信号处理算法。

随后我们进行了性能测试与分析,并对系统进行了优化设计。

最后在我们总结了实验结果,展望了设计未来的发展,并讨论了工程应用前景。

通过本文的研究,我们期望能够为基于霍尔传感器的测速系统的设计与应用提供有益的参考和指导。

【关键词】霍尔传感器、测速系统、硬件设计、信号处理算法、性能测试、系统优化设计、实验总结、设计展望、工程应用前景1. 引言1.1 背景介绍随着传感器技术和信号处理算法的不断发展,基于霍尔传感器的测速系统也得到了越来越多的关注和研究。

针对传统测速系统在精度和稳定性方面存在的问题,如测量误差大、响应速度慢等,基于霍尔传感器的测速系统设计成为了一个研究热点。

通过对霍尔传感器原理的深入研究、硬件设计、信号处理算法的优化以及系统性能的测试与分析,可以实现测速系统的高精度、高稳定性和高性能。

本文将对基于霍尔传感器的测速系统设计进行深入探讨和研究,旨在提高测速系统的测量精度和响应速度,为工业自动化领域提供更加可靠的测速解决方案。

1.2 问题概述在现代社会中,测速系统是汽车、火车、船舶等交通工具中不可或缺的组成部分。

通过测速系统,可以实时监测交通工具的速度,以确保安全驾驶和精准控制。

传统的测速系统存在一些问题,如精度不高、响应速度慢、易受外界干扰等。

为了解决这些问题,本文将基于霍尔传感器设计一种新型的测速系统。

问题一:精度不高传统测速系统常常受到机械磨损、温度变化等因素的影响,导致测速精度不高。

而霍尔传感器具有高分辨率、高灵敏度的特点,可以有效提高测速系统的精度。

问题二:响应速度慢传统测速系统的信号处理速度较慢,无法及时反映交通工具的变速情况。

而通过优化信号处理算法和采用高速霍尔传感器,可以显著提高测速系统的响应速度。

基于某单片机的霍尔测速报警系统

基于某单片机的霍尔测速报警系统
1.传感器模块,以将非电信号信号转化为电信号。
2.报警模块,当速度过低或过高时,启动此模块。
3.显示模块,通过单片机处理得出转速,送显示模块显示。
4.单片机模块,用以对脉冲计数,对外部信号进行处理。
5.电源模块,这里使用现有电源,初步确定为5v直流电源,故不再设计。
此外由于单片机有计数功能,计数模块在单片机模块中讨论
其中:n为电机转速,N为栅格数,即磁钢的个数。N1为中断次数,m为在规定时间内测得的脉冲数,T为T0的溢出时间。
2.1.2单片机模块的论证与选择
此系统十分简单,数据处理不大,采用8位单片机完全能满足需要,基于国内8位单片机领导厂商宏晶公司生产的STC系列单片机的低价格,高性能的优势,我选用了STC系类90C51八位单片机,编程和使用与一般80c51单片机一样。
2.4小结
通过本小计,对本设计的基本模块进行了选择,确定了显示,报警,计数,传感器,单片机选择的可行性。并在实现仪器功能的基础上充分考虑了成本问题。
4.2程序流程图
测量过程是测量转速的传感器和电机同轴连接。电机每转过一圈产生一个脉冲。经电压比较器整形后成为单片机计数器的输入脉冲,控制计数的时间就可以得到相应的转速,然后确定是否在所需量程以内,在则送数码管显示,不在则启动报警器。
电机计算转速的公式为:
n=60*m/(N1*T*N) (r/min)
3.2.2报警模块————————————————————7
3.2.3 LED数码管———————————————————8
3.2.4 STC90C51单片机——————————————————10
第四部分软件设计
4.1程序设计步骤———————————————————12
4.2程序流程图————————————————————13

基于单片机的汽车超速报警器的设计

基于单片机的汽车超速报警器的设计

基于单片机的汽车超速报警器的设计随着社会的发展和科技的进步,汽车已成为人们日常生活的重要交通工具。

然而,不适当的驾驶速度可能导致交通事故和生命财产的损失。

因此,设计一种基于单片机的汽车超速报警器,对保障行车安全具有重要意义。

一、设计背景与意义汽车超速报警器是一种通过监测车辆行驶速度并判断是否超速的装置。

当车辆行驶速度超过设定阈值时,报警器会发出警报,提醒驾驶员减速。

该装置有助于减少因超速驾驶导致的交通事故,提高道路安全。

二、硬件设计1、传感器选择:选用霍尔传感器作为车速传感器,其输出电压与转速成正比,可用于测量汽车行驶速度。

2、单片机选择:采用AT89C51单片机作为核心控制器,该单片机具有低功耗、高性能的特点,满足汽车行驶中的恶劣环境要求。

3、报警装置:采用蜂鸣器和LED灯作为报警装置,当汽车超速时,蜂鸣器发出警报声,LED灯闪烁提示。

4、存储模块:为保存设定的速度阈值和超速记录,需设计一个非易失性存储模块,如EEPROM。

5、电源模块:考虑到汽车电源的特殊性,设计一个稳定的电源模块,以确保报警器的稳定工作。

三、软件设计1、速度采集:通过霍尔传感器采集汽车行驶速度,并将速度信号转换为电信号输入单片机。

2、速度判断:单片机读取速度信号后,与设定的速度阈值进行比较。

若超速,则触发报警装置。

3、报警处理:当报警触发时,单片机控制蜂鸣器发出警报声,LED 灯闪烁提示。

同时,将超速记录保存在存储模块中。

4、速度阈值设定:为适应不同路况和驾驶需求,软件中设计一个速度阈值设定功能,驾驶员可根据实际情况调整阈值。

5、程序优化:为提高程序效率和稳定性,采用模块化设计和中断处理技术,减少CPU的占用时间。

四、系统测试与优化1、速度测试:通过实际行驶测试,验证报警器是否能准确监测汽车速度,并判断是否超速。

2、硬件调试:检查电路板连接是否正确,调整传感器和报警装置的工作状态,确保系统正常运行。

3、软件调试:通过调试和优化程序,提高报警器的响应速度和准确性。

(完整版)基于51单片机和霍尔开关传感器的转速测量仪毕业论文

(完整版)基于51单片机和霍尔开关传感器的转速测量仪毕业论文

基于51单片机和霍尔传感器的转速测量仪摘要系统由传感器、信号处理、系统软件等部分组成。

传感器采用霍尔开关传感器(JK8002C),负责将转速转化为脉冲信号;信号处理电路(反相器74LS14)包含待测信号整形反相等部分,波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTLCMOS兼容信号。

处理器采用51单片机,显示器采用单片机开发板自带的8位LED数码管动态显示。

课题背景在工农业生产和工程实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。

模拟式采用测速发电机为检测元件,得到的信号是模拟量,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难。

数字式通常采用光电编码器、圆光栅、霍尔元件等为检测元件,得到的信号是脉冲信号。

单片机技术的日新月异,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法,使得许多控制功能及算法可以采用软件技术来完成。

采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。

本课题,是要利用霍尔传感器来测量转速。

由磁场的变化来使霍尔传感器产生脉冲,由单片机计数,经过数据计算转化成所测转速,再由数码管显示出来。

1.硬件部分概述1.1系统组成框图系统框图原理如图1-1所示,系统由传感器、信号处理、数码管显示、蜂鸣器超速报警和系统软件等部分组成。

传感器采用霍尔开关传感器(JK8002C),负责将转速转化为脉冲信号。

信号处理电路反相器74LS14)包含待测信号波形变换、波形整形等部分,波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTLCMOS兼容信号。

处理器采用51单片机,显示器采用8位LED数码管动态显示。

1.2霍尔传感器测转速原理及特性霍尔传感器是对磁敏感的传感元件,由磁钢、霍耳元件等组成。

测量系统的转速传感器选用SiKO 的jk8002c的霍尔传感器,其响应频率为100KHz,额定电压为5-30(V)、检测距离为10(mm)。

基于霍尔传感器的测速系统设计

基于霍尔传感器的测速系统设计

基于霍尔传感器的测速系统设计【摘要】本论文介绍了霍尔传感器的原理,对霍尔传感器进行了深入研究,对霍尔传感器在测速中的实际运用进行了详细的分析,并对霍尔传感器测速系统进行了设计。

此系统以单片机为控制核心,通过霍尔传感器准确及时收集车方位信号和车轮转速等信息,实现了简单的加减速功能的基础上,还实现了汽车的测速功能、调速功能。

【关键词】霍尔传感器;测速;单片机1.研究背景与研究内容传感器,实际上是一种能量转换器,从外部接收被测量信息,并根据一定的法则,其他测量的或必要的形式的信息被转换成输出。

伴随着科学技术的发展,传感器技术在速度的测量领域上有很大的引用。

霍尔传感器是以霍尔效应为基础的,它是将被测量转变成电动势然后进行输出的传感器。

但是霍尔传感器的被测量的信息转换成电动势的效率很低、温度对传感器的影响大、要求转换精度较高,所以使用温度补偿来来弥补这些缺点是很有必要的。

本文进行了以下控制部分采用单片机来实现操作,汽车轮胎和车的转速是由霍尔传感器采集的信号,当信号变化时,可随时调整脉冲宽度调制控制电机和位置信号,本系统的实现简单,加速和减速功能的基础上,还完成了电动汽车速度、速度等。

1.1 传感器的组成传感器的类型有很多,这些传感器的作用是将各种非电输入量信号转变为电信号,其中非电输入量如光线、湿度、温度、位移、流量、重量、压力、电磁场等在自己控制的系统中就是利用了传感器把当前工作的环境转变成了电信号。

传感器一般由敏感元件、转换元件、测量电路以及辅助电源组成。

1.2霍尔传感器的原理准备金属或半导体元件的薄片;在这些薄片的两边进行通电,产生的电流记为I,在垂直于金属的方向添加磁感应强度为B的磁场,那么,在垂直于电流和磁场的方向上(即霍尔输出端之间),就会产生电动势,电动势记为UH。

我们把这种现象称为霍尔效应。

UH=RHIB/d,式中:RH—霍尔常数,m3.C-1;控制电流,A;B-- 磁感应强度,T;霍尔效应传感器是一种基于霍尔效应原理的组件。

基于霍尔传感器的测速仪设计毕业设计论文

基于霍尔传感器的测速仪设计毕业设计论文

基于霍尔传感器的测速仪设计【摘要】霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。

使用霍尔传感器获得脉冲信号,其机械结构也可以做得较为简单,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。

这种传感器不怕灰尘、油污,在工业现场应用广泛。

【关键词】传感器原理;检测技术;检测速度;一、测速仪功能简介测速是工农业生产中经常遇到的问题,测速仪表具有很重要的意义。

要测速,首先要解决是采样的问题。

在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。

使用单片机技术进行测速,可以采用简单的脉冲计数法。

只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。

二、霍尔传感器介绍霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。

如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。

如图1所示,这种传感器不怕灰尘、油污,在工业现场应用广泛。

图1 CS3020三、基于霍尔传感器的测速仪系统设计1、系统总体结构基于霍尔传感器的测速仪系统总体结构如图2所示:图2基于霍尔传感器的测速仪系统结构图2、信号获取电路图3是测速电路的信号获取部分,在电源输入端并联电容C6用来滤去电源尖啸,使霍尔元件稳定工作。

HR3020表示霍尔元件,采用3020,在霍尔元件输出端(引脚3)与地并联电容C7滤去波形尖峰,再接一个上拉电阻R15,然后将其接入LM393的引脚3。

基于51单片机和霍尔传感器的测速

基于51单片机和霍尔传感器的测速

基于51单片机和霍尔传感器的测速1. 小项目简介主要采用stc89c51/52单片机作为主控,由霍尔传感器作为测速的基本模块,采用按键控制速度快慢,数码管显示当前速度。

最后成品图如下:2.电源部分1.电源供电的功率尽可能的稍微大一些,我是采用罗马仕充电宝供电(5V,2.1A输出口)。

因为电源功率过小,将造成电机无法带动,或者数码管闪烁等硬件上的bug。

2.如果电源的电压高于5V,需要在电源输入端使用一个稳压电路,将输入电压稳压到5V给单片机,和其他外设供电。

防止电压过高造成器件损坏。

3.硬件部分1. stc89c51/52的最小系统注意:如果使用一般的USB接口供电,当电机转动时候,可能照成单片机的管脚供电不稳定,所以需要在单片机的IO的外接上拉排阻。

P3口不需要。

9针排阻如下:有小点的一端是公共端,需要和电源5V连接,其余口和单片机管脚一一对应焊接就行。

2. 霍尔传感器注意引脚,窄的一面来看引脚顺序:这里的VOUT口可以直接连接单片机的外部中断1口,可以经过一个电压比较器lm393之类的在给单片机。

3. 直流电机马达驱动51单片机的IO口输出的电流过小,驱动直流电机马达效果不明显,达不到后期变速,需要使用一个三极管(9015\9013这类都可以)放大电路去驱动马达:示范电路如下:(电阻根据自己需要修改)4. 共阴数码管//数码管位选sbit S1=P2^4;sbit S2=P2^5;sbit S3=P2^6;sbit S4=P2^7;//数码管段选:P1的八个IO口。

连线的时候一定根据下列图示的段选(注意注意注意:容易连错)4.软件部分1.软件工程整体图:2.main.c文件代码:自己创建一个51单片机的keil工程文件,将下面代码拷贝到自己工程文件下的main.c文件替换即可/************************************************************** ************************* 基于51单片机测速* 实现现象:按下按键K1减速按下按键K2加速外部中断1对应IO口P3^3注意事项:电机速度不能过快,否则会造成数码管显示不稳定*************************************************************** ************************/#include 'reg52.h' //此文件中定义了单片机的一些特殊功能寄存器typedef unsigned int u16; //对数据类型进行声明定义typedef unsigned char u8;//测试端口(根据自己需要决定)sbit led=P0^0; //将单片机的P0.0端口定义为led/************************************************************** ****************************************************核心部分**************************************************************************************************************** ************************///占空比u16 time = 0; // 定义占空比的变量u16 count=30; //定义占空比上限sbit PWM=P0^1;// P0.1输出pwm//速度u16 zhuansu=0; //转速初值为0u16 jishu = 0; //jishu的变量初值为0u8 flag = 0; //定时器1计数变量//按键sbit k1=P2^0;sbit k2=P2^1;sbit k3=P2^2;sbit k4=P2^3;//数码管位选sbit S1=P2^4;sbit S2=P2^5;sbit S3=P2^6;sbit S4=P2^7;//数码管位选:P1的八个IO口//共阴数码管段选u8 code smgduan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};//显示0~F的值//数码管存储中间变量unsigned char Display_data[4];/************************************************************** ****************** 函数名 : delay* 函数功能 : 延时函数,i=1时,大约延时10us*************************************************************** ****************/void delay(u16 i){while(i--);}//定时器和外部中断1的初始化函数void InitSyetem(){//配置外部中断1:采集霍尔传感器触发下降沿IT1 = 1; //选择下降沿触发EX1 = 1; //打开外部中断1//定时器0,1工作方式1TMOD=0x11; //定时或者计数模式控制寄存器//定时器0配置:产生PWM波TH0=(65536-10)/256;//赋初值定时10usTL0=(65536-10)%256;//sET0=1;//开定时器0中断TR0=1;//启动定时器0//定时1:测速TH1=(65536-10000)/256;//赋初值定时10msTL1=(65536-10000)%256;ET1=1;//开定时器0中断TR1=1;//启动定时器0PX1=1;//设置优先级PT1=1;//设定定时器1为最高优先级EA=1;//开总中断}//外部1中断服务函数void Service_Int1() interrupt 2{jishu++; //霍尔下降沿一次就记一次数if(jishu == 100) //累加计数有100次,总时间为100 * 10ms = 1s{led^=led; //led闪烁}}//定时0处理函数产生PWM 调速原理———在PWM高电平时候驱动电机转动在PWM低电平时候让电机停止转动void Service_Timer0() interrupt 1{TR0=0;//赋初值时,关闭定时器TH0=(65536-10)/256;//赋初值定时TL0=(65536-10)%256;//0.01msTR0=1;time++; //计数变量if(time>=100) time= 0; //清零标志变量if(time<=count) //小于设定值,输出高电平{PWM = 1;}elsePWM = 0;}//定时器1中断处理显示转速void Service_Timer1() interrupt 3{TR1=0;//赋初值时,关闭定时器TH1=(65536 - 10000) / 256;TL1=(65536 - 10000) % 256;//定时10msTR1=1;flag++; //计数变量加if(flag==100) //计时到达1s 测量此时的转速{// led=~led; //led状态取反zhuansu = jishu; //监测霍尔传感器总共计数次数jishu=0; //转速置0flag=0; //清除计数变量}}//数码管处理函数void Deal_data(){Display_data[3]=smgduan[zhuansu/1000]; //数码管高位Display_data[2]=smgduan[zhuansu/100%10];//去第二位Display_data[1]=smgduan[zhuansu/10%10];Display_data[0]=smgduan[zhuansu%10]; //数码管低位}/************************************************************** ****************** 函数名 : DigDisplay* 函数功能 : 数码管动态扫描函数,循环扫描4个数码管显示*******************************************************************************/void DigDisplay(){u8 i;for(i=0;i<4;i++){switch(i) //位选,选择点亮的数码管,{case 0 : S1 = 0; S2 = 1; S3 = 1; S4 = 1;break; //点亮第一位数码管case 1 : S2 = 0; S1 = 1; S3 = 1; S4 = 1;break;case 2 : S3 = 0; S1 = 1; S2 = 1; S4 = 1;break;case 3 : S4 = 0; S1 = 1; S2 = 1; S3 = 1;break;}P1=Display_data[i];//发送段码delay(5); //间隔一段时间扫描时间越少,一起亮且显示越稳定;时间越多,是流水点亮P1=0x00;//消隐时间过快时,每个数码管将会有重影}}/************************************************************** ****************** 函数名 : keypros* 函数功能 : 按键处理函数,判断按键K1是否按下*************************************************************** ****************/void keypros(){if(k1==0) //检测按键K1是否按下{delay(100); //消除抖动一般大约10ms 时间的估算100*n=1(s) if(k1==0) //再次判断按键是否按下{led=~led; //led状态取反count+=10;if(count >= 90) //设置一个上限count+=90;}while(!k1); //检测按键是否松开为假时候说明按键没有释放}if(k2==0) //检测按键K1是否按下{delay(100); //消除抖动一般大约10msif(k2==0) //再次判断按键是否按下{led=~led; //led状态取反count-=10;if(count <= 10){count = 10;}}while(!k2); //检测按键是否松开}}/************************************************************** ****************** 函数名 : main* 函数功能 : 主函数* 输入 : 无* 输出 : 无*************************************************************** ****************/void main(){led = 0; //上电熄灭小灯P1 = 0x00; //上电初始化熄灭数码管InitSyetem();//定时器和外部中断1的初始化函数while(1){keypros(); //按键处理函数Deal_data(); //数据处理函数DigDisplay(); //数码管显示函数}}。

毕业设计(论文)基于霍尔传感器的电机测速装置的设计与实现[管理资料]

毕业设计(论文)基于霍尔传感器的电机测速装置的设计与实现[管理资料]

广东白云学院毕业设计(论文)开题报告题目:基于霍尔传感器的控制电机测速装置的设计与实现课题类型:论文□设计□学生姓名学号:班级:07自动化2班专业(全称):自动化系别:电子信息工程系指导教师:2010年 10月基于霍尔传感器的电机测速装置的设计与实现摘要在工业生产生活中,经常会遇到各种需要测量转速的场合,例如在发电机、电动机、机床主轴等旋转设备的实验运转和控制中,常需要分时或连续测量、显示其转速及瞬时速度。

为了能精确地测量转速,还要保证测量的实时性,要求能测的瞬时速度。

针对工业上常见的发动机设计了以单片机STC89C52为控制核心的转速测量系统,本文介绍基于霍尔传感器的电机测速系统,该系统利用霍尔传感器采集脉冲信号,通过定时计数法程序,将转速结果实时显示出来。

实际测试表明,该系统能满足发动机转速测量要求。

关键词: 单片机;电机测速系统;霍尔传感器;定时SENSOR BASED ON HALL OF MOTOR SPEEDDEVICE DESIGNABSTRACTIn the course of industrial production in life often need to measure speed encounter various occasions. For example, AT the engines motors machine tool spindles and other rotating equipment’s operation and control of the piolt often need frequent time-sharing or continuous measurements show its speed and instantaneous order to accurately measured. The rotate spee measurement system for the common engine is designed with the single chip paper inroduces a microcomputer-based hall sensor speed system,the syetem uses Hall sensor pulse signal collected through the timer counting algorithm programs,will speed the results of real-time disply. The result of the experiment shows that the measurement system is able to satisfy the requirement of the engine rotate speed measurement.Key words:Single-chip;Motor Speed System; Hall sensor; Timing目录第1章绪论 (6)基于霍尔传感器的电机测速装置的现状 (6) (6)第二章基于霍尔传感器的电机测速装置总体方案设计 (8)系统原理框图设计 (8)总体方案的论证 (9) (9)转速测量方案论证 (9)电机驱动方案论证 (10) (10)转速显示方案论证 (10)PWM软件实现方案论证 (11)各模块的分析、计算与硬件电路设计 (11) (11)电机驱动电路的设计 (12)2.LCD显示电路与STC89C52的接口设计 (13)第三章本系统各部分功能程序设计 (14)系统总程序框图设计 (14)电机转速测量程序设计 (15)按键控制程序设计 (15)LCD显示程序设计 (18)PWM信号的单片机程序实现 (19)第四章本系统的实现与调试 (20) (20) (20) (21)软件部分调试 (23) (23)第五章总结 (25)参考文献 (26)致谢 (27)附录1:硬件总图 (28)附录2:电路PCB版图 (29)附录3:ISIS 7 PROFESSIONAL仿真图 (31)附录4:基于霍尔传感器的电机转速装置元件清单 (32)附录5:程序清单 (33)第1章绪论基于霍尔传感器的电机测速装置的现状霍尔传感器是利用霍尔效应实现磁电转换的一种传感器,我国从7O年代开始研究霍尔器件,经过20余年的研究和开发,目前已经能生产各种性能的霍尔元件,霍尔传感器具有灵敏度高、线性度好、稳定性高、体积小和耐高温等特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传感器与测控电路课程设计报告学生姓名:禹振榜指导老师:杨书仪余以道专业班级:12级测控二班所在学院:机电工程学院学号1203030214课题基于单片机的霍尔测速报警系统基于单片机的霍尔测速报警系统的设计摘要在生产中,电机应用十分广泛,比如汽车速度显示,设备工作时的档位,都需要我们了解电机或者机器的转速。

转速作为工程中应用的一个非常广泛的参数,它的测量方法有很多,特别是单片机对脉冲数字信号的强大处理能力,使得全数字测量系统越来越普及,越来越方便。

本设计属于码盘转速测量系统,实现转速的实时测量和显示。

本系统以STC90C51单片机为核心,旋转编码器通过用传感器测量非电量,转变成模拟电量,再通过一系列测控电路。

获得数字信号,实现实时轴转速测量,同时用四位段码式LED数码管显示模块显示电机转速,并且加入了报警模块。

详细阐述了转速测量系统的工作过程,以及硬件电路的设计、显示效果。

本文吸收了硬件软件化的思想,实现了题目要求的功能。

关键词:转速测量,,单片机, LED显示模块,霍尔传感器。

目录第一部分绪论1.1 设计的任务与要求————————————————1 第二部分功能分析与设计要求2.1 测控系统功能的概述———————————————1 2.2系统模块的确定————————————————— 2 2.3各模块的选择—————————————————— 2 2.1.1传感器模块的论证与选择——————————————2 2.1.2报警模块的论证与选择———————————————3 2.1.3显示模块的论证与选择———————————————3 2.1.2单片机模块的论证与选择——————————————3 2.4 小结——————————————————————3 第三部分测控系统的总体设计3.1 测控系统的总体设计———————————————4 3.1.1 硬件原理图———————————————————4 3.1.2 硬件电路设计总图————————————————5 3.2 测控系统子模块简介———————————————5 3.2.1传感器原理及分电路析—————————————— 5 3.2.2 报警模块————————————————————7 3.2.3 LED数码管———————————————————83.2.4 STC90C51单片机——————————————————10第四部分软件设计4.1 程序设计步骤———————————————————12 4.2 程序流程图————————————————————13 4.2.1 主程序设计—————————————————————14 4.2.2 中断服务程序设计——————————————————15第五部分软件调试与仿真5.1 KEIL软件进行程序调试———————————————15 5.2 PROTEUS软件仿真————————————————16 5.3 硬件软件联合调试—————————————————17 5.3.1 硬件电路的焊接与搭建————————————————18 5.3.2搭接检查步骤————————————————————19第六部分结论参考文献——————————————————————20附录第一部分绪论1.1 设计的任务与要求本课题的任务是:设计一套测量转速的仪器,转速在数码管上显示,且具有超速报警功能,精度到达转速个位,高低速实现报警。

要求会选用传感器并搭建测控电路,实现课题所要求的功能本设计需要对各种测量转速的基本方法予以分析,针对不同的应用环境,利用单片机设计一种全数字化测速系统,从提高测量精度的角度出发,分析讨论其产生误差的可能原因,为今后的实际使用提供借鉴。

并从实际硬件电路出发,分析电路工作原理和软件流程。

熟悉传感器的选择,及外围电路的设计,了解测控系统设计的基本流程第二部分功能分析与设计要求2.1 测控系统功能的概述在电机或转轴上放置一个或多个磁钢,将霍尔传感器有规律的放置在电机或者转轴附近,当有磁场通过时,在传感器上就可以产生电信号,通过测控电路对电信号的处理得到有用信号送单片机内部,根据信号测出电机转速,并在数码管上显示,且有报警功能。

2.2系统模块的确定通过对功能的分析可知,系统模块分为以下几类:1.传感器模块,以将非电信号信号转化为电信号。

2.报警模块,当速度过低或过高时,启动此模块。

3.显示模块,通过单片机处理得出转速,送显示模块显示。

4.单片机模块,用以对脉冲计数,对外部信号进行处理。

5.电源模块,这里使用现有电源,初步确定为5v直流电源,故不再设计。

此外由于单片机有计数功能,计数模块在单片机模块中讨论2.3各模块的选择2.1.1传感器模块的论证与选择霍尔传感器是根据霍尔效应制作的一种磁场传感器。

霍尔效应是磁电效应的一种,霍尔传感器具有许多优点,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。

广泛用于各类工程实际应用中,出于成本的考虑,在这里我们选用直插式霍尔片传感器A3144,与普通磁钢配套使用,体积小,灵敏度高,价格在1—2元左右,基本可以满足本课题的要求2.1.2报警模块的论证与选择方案一:采用蜂鸣器与LED发光二极管为主要报警系统,该系统成本低,电路容易实现,编程容易。

方案二:采用音乐语言报警,更人性化,但设计难度大,成本高。

基于现有设备器件,选用方案一。

2.1.3显示模块的论证与选择这里课题已要求使用数码管显示,由于测量转速适中,我们采用四位位选数码管完全能满足要求。

基于现有器件选用共阴极接法,但由于数码管功耗较高,故需要加入驱动芯片,在这里我们使用51单片机开发板上现有的锁存芯片74HC5732.1.2单片机模块的论证与选择此系统十分简单,数据处理不大,采用8位单片机完全能满足需要,基于国内8位单片机领导厂商宏晶公司生产的STC系列单片机的低价格,高性能的优势,我选用了STC系类90C51八位单片机,编程和使用与一般80c51单片机一样。

2.4 小结通过本小计,对本设计的基本模块进行了选择,确定了显示,报警,计数,传感器,单片机选择的可行性。

并在实现仪器功能的基础上充分考虑了成本问题。

第三部分 测控系统的总体设计3.1 测控系统的总体设计 3.1.1 硬件原理图系统原理图如下:3.1.2 硬件电路设计总图 系统硬件电路图如下:模拟量转换为数字量电压比较器霍尔传感单片机数码管显示电 机驱动电路计数脉冲输入非电量转换为模拟电量声光报警3.2 测控系统子模块简介3.2.1传感器原理及转换电路分析由霍尔效应知,霍尔电势的大小取决于:Rh为霍尔常数,它与半导体材质有关;I为霍尔元件的偏置电流;B为磁场强度;d为半导体材料的厚度。

对于一个给定的霍尔器件,当偏置电流 I 固定时,UH将完全取决于被测的磁场强度B。

一个霍尔元件一般有四个引出端子,其中两根是霍尔元件的偏置电流 I 的输入端,另两根是霍尔电压的输出端。

如果两输出端构成外回路,就会产生霍尔电流。

在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为UH的霍尔电压。

霍尔效应原理图以上为alldatasheet网站关于3144的数据外部接口本系统采用开关型霍尔传感器A3144以及磁钢,由它们来检测电机的转速。

工作方式为:将磁钢安装在电机的转轴上,而霍尔传感器则放在转轴的旁边,霍尔传感器连接在电路中,当磁钢随转轴经过霍尔传感器时,霍尔传感器的工作原理知,此时将输出一个低电平信号;而当磁钢离开霍尔传感器后,又将输出一个高电平。

这样通过高低电平的转换,将其送入单片机后就可以测量它的转速。

由于由霍尔传感器输出的电平未经特殊处理,且存在干扰,故不是完整的脉冲电平,在后续电路中进行改进,这里我们用到电压比较电路,选用常用的LM393双电压比较集成芯片,下图是ALLDATASHEET 数据,电路中只用到4、8、1、2、3脚。

电路图也在此给出:L3.2.2 报警模块报警模块可选用无源蜂鸣器或者有源蜂鸣器,有源蜂鸣器由于内部有震荡元件,故通电后就可以报警,由于硬件设备的限制,我们选用无源蜂鸣器,但编程上需要花点心思。

3.2.3 LED数码管显示电路采用LED数码管动态显示,LED(Light-Emitting Diode)是一种外加电压从而渡过电流并发出可见光的器件。

LED是属于电流控制器件,使用时必须加限流电阻。

LED有单个LED和八段LED之分,也有共阴和共阳两种。

七段发光数码管结构共阴极数码管的发光二极管阴极必须接低电平,当某发光二极管的阳极为高电平时(一般为+5V)时,此二极管点亮;共阳极数码管的发光二极管是阳极接到高电平,对于需要点亮的发光二极管使其阴极接低电平(一般为地)即可。

根据LED显示器可知,如果希望显示“8”字,那么除了“dp”管不要点亮以外,其余管全部点亮。

同理如果要显示“1”,只需bc两个发光二极管点亮,其余均布点亮。

通常将控制发光二极管的8位数据称为段选码,共阴极和共阳极的段选码互为补码。

LED显示器的段选码如下表所示:LED数码管段选码显示部分电路图如下,这里出于成本简便考虑,用到的是现有的单片机开发板,实际试验中只需用到四位数码管,且未加入单个发光二极管。

值得注意的是由于数码管功耗比较高,故在前面加入了74HC573锁存器芯片用做驱动数码管,但这里用到的并不是锁存功能。

3.2.4 STC90C51单片机STC90C51单片机是国内八位高性能单片机,选用的单片机带16K字节闪烁可编程可擦除只读存贮器,,STC的90CC51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案.P0口:P0口是一组8位漏极开路型双向I/0口,也即地址/数据总线复用口。

作为输出口用时,每位能驱动8个TTL逻辑门电路。

P1口:Pl是一个带内部上拉电阻的8位双向I/O口,Pl的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对端口写“l”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。

作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流.P2口:P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流P3口:P3口是一组带有内部上拉电阻的8位双向I/0口。

P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

相关文档
最新文档