2018考研高数重点复习定积分与不定积分定理总结

合集下载

定积分和不定积分的计算方法总结

定积分和不定积分的计算方法总结

定积分和不定积分的计算方法总结一、不定积分的定义和基本性质不定积分是函数积分的一种形式,表示为∫f(x)dx,其中f(x)为被积函数,dx表示自变量。

1.不定积分的定义不定积分是求导运算的逆运算。

如果F(x)是f(x)的一个原函数,那么F(x) + C也是f(x)的一个原函数,其中C为常数。

因此,∫f(x)dx = F(x) + C。

2.基本性质(1) 常数因子法则:若c是常数,则有∫cf(x)dx = c∫f(x)dx。

(2) 线性法则:若f(x)和g(x)都有原函数,则有∫(f(x) ±g(x))dx = ∫f(x)dx ± ∫g(x)dx。

(3) 逐项积分法则:若f(x)的原函数为F(x),g(x)的原函数为G(x),则有∫(f(x) ± g(x))dx = F(x) ± G(x)。

(4) 分部积分法则:若f(x)和g(x)都具有原函数,则有∫f(x)g(x)dx = F(x)g(x) - ∫(F(x)g'(x))dx,其中F(x)为f(x)的一个原函数,g'(x)为g(x)的导数。

二、定积分的定义和计算方法定积分是计算函数在一个有限区间上的面积的数值,表示为∫[a,b]f(x)dx,其中f(x)为被积函数,[a,b]为积分区间。

1.定积分的定义设f(x)在区间[a,b]上有定义,将[a,b]分为n个小区间,长度为Δx,选择每个小区间上一点ξi,记为Δx = (b-a)/n,ξi = a + iΔx (i = 0,1,2,...,n)。

定义Riemann和为S(f, Δx, ξ) = Σf(ξi)Δx =f(ξ1)Δx + f(ξ2)Δx + ... + f(ξn)Δx。

当n趋于无穷大时,Riemann和的极限称为函数f(x)在区间[a,b]上的定积分,记为∫[a,b]f(x)dx。

2.计算方法(1)几何意义:定积分表示函数f(x)在区间[a,b]上曲线与x轴之间的面积。

考研定积分知识点总结

考研定积分知识点总结

一、定积分的定义和性质1. 定积分的概念定积分是微积分学中的重要概念,它是对函数在一个区间上的积分值进行求解的操作。

具体来说,如果函数f(x)在区间[a,b]上是连续的,则我们可以通过定积分的形式来求解函数f(x)在区间[a,b]上的积分值,即∫(a to b) f(x)dx。

这里,∫表示积分符号,a和b分别表示区间的起点和终点,f(x)表示要求解的函数,dx表示积分变量,并代表着在区间[a,b]上x的变化范围。

因此,定积分的求解可以看做是对函数在一个区间上的积分值进行求解的过程。

2. 定积分的性质定积分具有一系列的性质,这些性质在定积分的求解中起着重要的作用。

主要的性质包括线性性、可加性、积性、保号性、保序性等。

具体来说,线性性指的是定积分的线性组合仍然可以进行积分求解;可加性指的是如果一个区间可以分解成若干个子区间,那么对应的积分值也可以进行求和;积性指的是如果一个函数是另一个函数的乘积,那么对应的积分值也可以进行相乘;保号性指的是如果函数在区间上恒大于等于零(小于等于零),那么对应的积分值也恒大于等于零(小于等于零);保序性指的是如果函数在区间上恒大于等于另一个函数(小于等于另一个函数),那么对应的积分值也恒大于等于(小于等于)另一个函数在相同区间上的积分值。

这些性质在定积分的具体求解中是非常有用的,可以帮助我们简化求解的过程,提高计算的效率。

二、定积分的计算1. 定积分的计算方法定积分的计算方法主要包括定积分的定义法、不定积分法、分部积分法、换元积分法和定积分的几何意义。

其中,定积分的定义法是直接根据定积分的定义进行求解;不定积分法是将定积分转化成不定积分,通过求解不定积分再将得到的结果代入原来的定积分式中,从而得到最终的定积分值;分部积分法是将被积函数进行分解,然后利用分部积分公式对各项进行积分求解;换元积分法是通过变量代换的方法将被积函数进行转化,然后再进行积分求解;定积分的几何意义则是利用定积分代表曲线下面积的特性来进行求解。

考研数学-专题10 不定积分和定积分的方法和技巧

考研数学-专题10 不定积分和定积分的方法和技巧

∫ ∫ a −a
f
( x) d
x
=
⎪⎧0, ⎪⎩⎨2
a 0
f
( x) d
x,
f (x) 为奇函数时, f (x) 为偶函数时.
(2) 设 f (x) 是以T 为周期的连续函数,则对任给数 a ,总有
5)利用公式
∫ ∫ a+T
T
f (x)d x = f (x) d x.
a
0
6
∫ ∫ (1)
π
2 sinn x d x =
x
= A + Bx + C
x3 − x2 + x −1 x −1 x2 +1
则 x ≡ A(x2 + 1) + (Bx + C)(x −1)
由此解得 A = 1 , B = − 1 ,C = 1 .
2
22

x3

x x2 +
x
dx −1
=
1 2

dx x −1

1 2

x −1
x
2
+
dx 1
= 1 ln x −1 − 1 ln(x2 + 1) + 1 arctan x + C
0
∫=
2
[(x −1) +1]
1− (x −1)2 dx
0
【例 3】
∫= 2 2x − x2 dx = π (几何意义)
0
2
∫π x
cos2 x − cos4 xdx = __________ .
0
∫ ∫ 【解】
原式 = π
π cos2 x − cos4 xdx = π

定积分的知识点总结

定积分的知识点总结

定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。

定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。

定积分的符号表示为∫。

对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。

定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。

二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。

这就是定积分的计算方法。

在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。

这就是黎曼和的基本思想。

2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。

对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。

这个面积就是曲线下的面积。

如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。

3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。

在物理学中,可以用定积分来计算物体的质量、质心等物理量。

对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。

其中c1、c2为常数,f1(x)、f2(x)为函数。

定积分与不定积分定理总结

定积分与不定积分定理总结

定积分与不定积分定理总结定积分与不定积分定理总结定积分与不定积分定理总结不定积分1、原函数存在定理●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。

●分部积分法如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。

如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。

2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。

定积分1、定积分解决的典型问题(1)曲边梯形的面积(2)变速直线运动的`路程2、函数可积的充分条件●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。

●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。

3、定积分的若干重要性质●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。

●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。

●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。

●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点,使下式成立:∫abf(x)dx=f()(b-a)。

4、关于广义积分设函数f(x)在区间[a,b]上除点c(a定积分的应用1、求平面图形的面积(曲线围成的面积)●直角坐标系下(含参数与不含参数)●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2)●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程)●平行截面面积为已知的立体体积(V=∫abA(x)d x,其中A(x)为截面面积)●功、水压力、引力●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)。

不定积分与定积分

不定积分与定积分

不定积分与定积分积分是数学分析中重要的概念和工具,在微积分中具有广泛的应用。

其中不定积分和定积分是常见的两种类型。

它们分别具有不同的定义和性质,对于解决实际问题和求解函数的面积等概念都有着重要的作用。

一、不定积分1.1 定义不定积分是函数的原函数的集合。

给定一个连续函数f(x),其不定积分可以表示为∫f(x)dx = F(x) + C,其中F(x)是f(x)的一个原函数,C为常数。

1.2 性质不定积分具有线性性质,即∫[af(x) + bg(x)]dx = a∫f(x)dx + b∫g(x)dx,其中a、b为常数。

同时,不定积分满足微积分基本定理,即对于函数f(x)的原函数F(x),有∫f'(x)dx = F(x) + C。

1.3 计算方法求解不定积分的方法有很多,最常用的方法是换元法和分部积分法。

换元法是通过引入新的变量替代原变量,将原函数转换成更容易积分的形式。

分部积分法则是通过对乘积的两个函数进行积分,得到原函数的表达式。

二、定积分2.1 定义定积分是对函数在一个闭区间上的积分。

给定函数f(x)在[a, b]区间上连续,定积分可以表示为∫[a, b]f(x)dx。

定积分表示函数在该区间上的面积或曲线与x轴所围成的面积。

2.2 性质定积分具有线性性质和可加性质,即对于函数f(x)和g(x),有∫[a, b][f(x) ± g(x)]dx = ∫[a, b]f(x)dx ± ∫[a, b]g(x)dx。

同时,定积分也满足中值定理,即在区间[a, b]上存在一个点c,使得∫[a, b]f(x)dx = f(c)·(b - a)。

2.3 计算方法计算定积分可以使用几何意义的面积计算法、代数意义的换元法和分段函数积分法等。

其中,面积计算法是将曲线区间划分成若干个小矩形,再对这些小矩形的面积求和。

而换元法和分段函数积分法则是通过转换变量或分别对函数在不同区间求积分。

不定积分和定积分

不定积分和定积分

不定积分和定积分重点知识
1、不定积分的定义
2、不定积分的性质(这个很简单,明白有这个东西)
3、不定积分的基本公式(初等函数的不定积分)
4、不定积分的基本方法(换元和分部基本)【*】
5、定积分的定义【计算一些无穷极限】
定积分的思想就是分割,无线分割求和的思想,注意理解!!!
6、定积分的计算。

首先要熟练公式,然后利用公式会做基本的计算。

另外会掌握几何法去计算定积分。

最后是一些技巧性比较强的计算。

7、定积分的应用。

包括求体积和面积。

这个非常重要。

8、微积分基本原理。

这个非常重要。

极限,不等式证明,最值极值都可以结合这个知识考察。

【变上限函数的求导】9、关于到暑假前的安排
首先还是以基础知识为主。

把我告诉你的这些重要知识研究透,公式熟练记忆。

把这个看完后,就来复习全书的习题,一道一道的吃透。

最后强化训练。

应该坚持下去90分以上是没问题的。

以后每周我会找10道经典例题检测你前面所学知识是否掌握。

2018考研数学必看重点:定积分证明三大解题思路_毙考题

2018考研数学必看重点:定积分证明三大解题思路_毙考题

2018考研数学必看重点:定积分证明三大解题思路
在考研数学中,定积分及其应用这部分知识点考察形式多样,是每年考察的重点,而定积分证明就是常见形式之一,大家需要加以重视,下面一起来看看这类题目的解题思路吧。

2、定积分中值定理命题的证明。

一般利用连续函数的介值定理、微分中值定理、积分中值定理等来证明,其关键是构造辅助函数。

3、定积分不等式的证明。

一般有三种方法。

①利用被积函数的单调性、定积分的保序性和估值定理证明。

②将定积分的上(下)限改为变量,从而将定积分不等式化为函数不等式,再用微分学方法证明。

③利用微分中值定理、积分中值定理(适用于已知条件中有连续性和一阶可导性)与泰勒公式(适用于题设中有二阶以上可导性)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018考研高数重点复习定积分与不定积
分定理总结
在暑期完成第一轮基础考点的复习之后,9月份开始需要对考研数学所考的定理定义进行必要的汇总。

本文为同学们整理了高数部分的定积分与不定积分定理定义汇总。

▶不定积分
1、原函数存在定理
●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x ∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。

●分部积分法
如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。

如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。

2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。

▶定积分
1、定积分解决的典型问题
(1)曲边梯形的面积(2)变速直线运动的路程
2、函数可积的充分条件
●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。

●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。

3、定积分的若干重要性质
●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。

●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。

●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx ≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。

●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。

4、关于广义积分
设函数f(x)在区间[a,b]上除点c(a
▶定积分的应用
1、求平面图形的面积(曲线围成的面积)
●直角坐标系下(含参数与不含参数)
●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2)
●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程)
●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积)
●功、水压力、引力
●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)。

相关文档
最新文档