车牌识别系统外文文献

合集下载

车牌识别系统毕业论文

车牌识别系统毕业论文

车牌识别系统毕业论文论文(设计)题目车牌识别系统——车辆牌照定位系统的设计与实现院系名称计算机科学与技术系专业(班级)计算机科学与技术摘要车牌识别系统作为智能交通系统的一个重要组成部分,在交通监控中占有很重要的地位。

车牌识别系统可分为图像预处理、车牌定位、字符识别3个部分,其中车牌定位作为获得车辆牌照图像的重要步骤,是后续的字符识别部分能否正确识别车牌字符的关键环节。

车牌定位系统实现对车辆牌照进行定位的功能,即从包含整个车辆的图像中找到车牌区域的位置,并对该车牌区域进行定位显示,将定位信息提供给字符识别部分。

在本文中作者分析出车辆牌照具有如下特征:(1)具有固定的长宽比;(2)车牌区域内部字符数目固定;(3)字符与背景之间存在很大的颜色差别;(4)对于含有车牌信息的灰度图像,其车牌区域边缘明显,灰度跳变大,相对于车牌以外区域,具有明显的特征等。

所以,一般基于图像处理的车牌定位系统是通过分析车辆牌照的某些特征来进行定位的。

针对车牌本身固有的特征,本文首先介绍了在车牌定位过程中常用的几种数字图像处理技术:图像的二值化处理、边缘检测和图像增强等。

其次介绍了现在常用的车牌定位方法,并对这些方法进行分析,总结出各种方法的优缺点,然后在此基础上提出采用带边缘检测的灰度图像行扫描投影方法对车牌进行定位,并使用VC++6.0编码实现车牌定位系统。

最后对该系统进行了测试,测试结果表明该系统具有良好的人机交互方式,具有较高的识别正确率和较快的识别速度,对用户给定的待测图像能够迅速准确地进行车辆牌照的定位并将定位结果显示给用户,该系统具有一定的实用价值。

关键词:车牌定位,灰度图像,行扫描,投影AbstractAs an important part of the Intelligent Transportation Systems, License Plate Recognition System plays an important role in traffic monitoring area. License plate recognition system can be divided into three parts, i.e., image pre-processing, license plate location and character recognition. The vehicle license plate location is an important procedure which is used to obtain a license image. It is also the key of the following character recognition system which can identify the correct license plate characters. License plate location system can perform the vehicle license location function, i.e., finding the location of the vehicle license in the image containing the entire vehicle license plate, positioning the plate region and then demonstrating the location information on the computer screen which will be transferred to the character recognition system.In this thesis, the author analyzes the vehicle license and finds that it has the following characteristics: (1) Fixed aspect ratio. (2) Fixed license plate characters number. (3) Great color difference between characters and background.(4) Obvious edge and great intensity change for grayscale images with registration information, and obvious characteristics compared with the outer plate region. Therefore, the majority of image-based positioning systems perform location function by analyzing some characteristics of the vehicle license.According to the own inherent characteristics of license plate, this thesis introduces many commonly used digital image processing techniques in the location process of license plate: binary image processing, edge detection and image enhancement, and so on. Then, we introduce the commonly used methods of license plate location. Further, we analysis these methods and summarize their advantages and disadvantages. Moreover, we propose locating plate by using the gray-scale image projection and line scanning method with edge detection. This system was implemented by using the VC++ 6.0. Finally, the experimental results indicate that the system has a good human-computer interaction, a better identification rate and higher speed. For images provided by users, the system can quickly and accurately locate the vehicle license and display the location results to the users. Therefore, this system has some practical values.Key words: license plate location, gray-scale images, line scan, projection目录摘要 (I)Abstract ................................................................................................................................................................ I I 目录 (III)第一章绪论 (1)1.1 课题的来源及意义 (1)1.2 课题主要研究的问题 (1)1.3 系统设计的目标及基本思路 (1)1.3.1 设计目标 (2)1.3.2 基本思路 (2)第二章车牌定位中常用的数字图像处理技术 (3)2.1 汽车牌照的特征 (3)2.2 数字图像处理技术概述 (3)2.3 DIB图像概述 (3)2.4 车牌定位中常用的数字图像处理技术概述 (4)2.4.1 图像二值化 (4)2.4.2 边缘检测 (4)2.4.3 图像增强 (5)第三章车牌定位方法研究 (6)3.1 车牌定位常用方法介绍 (6)3.1.1 基于纹理特征分析的定位方法 (6)3.1.2 基于数学形态学的定位方法 (6)3.1.3 基于边缘检测的定位方法 (6)3.1.4 基于小波分析的定位方法 (6)3.1.5 基于图像彩色信息的定位方法 (6)3.2 基于行扫描灰度跳变分析的车牌定位方法 (7)第四章车牌定位系统的设计与实现 (8)4.1 车牌定位系统系统分析 (8)4.1.1系统业务需求 (8)4.1.2系统用户需求 (8)4.1.3系统功能需求 (8)4.1.4 系统运行环境需求 (8)4.2 车牌定位系统的整体架构设计 (8)4.2.1 系统总体架构 (8)4.2.2 系统技术架构 (9)4.3 车牌定位系统的功能模块划分和实现 (10)4.3.1 系统的功能模块划分 (10)4.3.2 系统的功能模块实现 (11)第五章车牌定位系统的系统测试 (16)5.1 系统测试过程 (16)5.2 系统测试结果 (17)5.3 测试结果分析 (24)第六章技术要点回顾 (26)6.1 难度分析 (26)6.2 主要工作 (26)6.3 应用的主要技术手段 (26)6.4 存在的问题及展望 (27)结论 (28)参考文献 (29)致谢 (30)第一章绪论1.1 课题的来源及意义随着全球各国汽车数量的持续增加,城市的交通状况越来越受到人们的重视。

车牌识别外文文献翻译中英文

车牌识别外文文献翻译中英文

外文文献翻译(含:英文原文及中文译文)文献出处:Gao Q, Wang X, Xie G. License Plate Recognition Based On Prior Knowledge[C]// IEEE International Conference on Automation and Logistics. IEEE, 2007:2964-2968.英文原文License Plate Recognition Based On Prior KnowledgeQian Gao, Xinnian Wang and Gongfu XieAbstract - In this paper, a new algorithm based on improved BP (back propagation) neural network for Chinese vehicle license plate recognition (LPR) is described. The proposed approach provides a solution for the vehicle license plates (VLP) which were degraded severely. What it remarkably differs from the traditional methods is the application of prior knowledge of license plate to the procedure of location, segmentation and recognition. Color collocation is used to locate the license plate in the image. Dimensions of each character are constant, which is used to segment the character of VLPs. The Layout of the Chinese VLP is an important feature, which is used to construct a classifier for recognizing. The experimental results show that the improved algorithm is effective under the condition that the license plates were degraded severely.Index Terms - License plate recognition, prior knowledge, vehiclelicense plates, neural network.I. INTRODUCTIONV ehicle License-Plate (VLP) recognition is a very interesting but difficult problem. It is important in a number of applications such as weight-and-speed-limit, red traffic infringement, road surveys and park security [1]. VLP recognition system consists of the plate location, the characters segmentation, and the characters recognition. These tasks become more sophisticated when dealing with plate images taken in various inclined angles or under various lighting, weather condition and cleanliness of the plate. Because this problem is usually used in real-time systems, it requires not only accuracy but also fast processing. Most existing VLP recognition methods [2], [3], [4], [5] reduce the complexity and increase the recognition rate by using some specific features of local VLPs and establishing some constrains on the position, distance from the camera to vehicles, and the inclined angles. In addition, neural network was used to increase the recognition rate [6], [7] but the traditional recognition methods seldom consider the prior knowledge of the local VLPs. In this paper, we proposed a new improved learning method of BP algorithm based on specific features of Chinese VLPs. The proposed algorithm overcomes the low speed convergence of BP neural network [8] and remarkable increases the recognition rate especially under the condition that the license plate images were degrade severely.II. SPECIFIC FEA TURES OF CHINESE VLPSA. DimensionsAccording to the guideline for vehicle inspection [9], all license plates must be rectangular and have the dimensions and have all 7 characters written in a single line. Under practical environments, the distance from the camera to vehicles and the inclined angles are constant, so all characters of the license plate have a fixed width, and the distance between the medium axes of two adjoining characters is fixed and the ratio between width and height is nearly constant. Those features can be used to locate the plate and segment the individual character. B. Color collocation of the plateThere are four kinds of color collocation for the Chinese vehicle license plate .These color collocations are shown in table I.TABLE IMoreover, military vehicle and police wagon plates contain a red character which belongs to a specific character set. This feature can be used to improve the recognition rate.C. Layout of the Chinese VLPSThe criterion of the vehicle license plate defines the characters layout of Chinese license plate. All standard license plates contain Chinese characters, numbers and letters which are shown in Fig.1. The first one is a Chinese character which is an abbreviation of Chineseprovinces. The second one is a letter ranging from A to Z except the letter I. The third and fourth ones are letters or numbers. The fifth to seventh ones are numbers ranging from 0 to 9 only. However the first or the seventh ones may be red characters in special plates (as shown in Fig.1). After segmentation process the individual character is extracted. Taking advantage of the layout and color collocation prior knowledge, the individual character will enter one of the classes: abbreviations of Chinese provinces set, letters set, letters or numbers set, number set, special characters set.(a)Typical layout(b) Special characterFig.1 The layout of the Chinese license plateIII. THE PROPOSED ALGORITHMThis algorithm consists of four modules: VLP location, character segmentation, character classification and character recognition. The main steps of the flowchart of LPR system are shown in Fig. 2.Firstly the license plate is located in an input image and characters are segmented. Then every individual character image enters the classifier to decide which class it belongs to, and finally the BP network decides which character the character image represents.A. Preprocessing the license plate1) VLP LocationThis process sufficiently utilizes the color feature such as color collocation, color centers and distribution in the plate region, which are described in section II. These color features can be used to eliminate the disturbance o f the fake plate ’ s regions. The flowchart of the plate location is shown in Fig. 3.Fig.3 The flowchart of the plate location algorithmThe regions which structure and texture similar to the vehicle plate are extracted. The process is described as followed:Here, the Gaussian variance is set to be less than W/3 (W is the character stroke width), so 1P gets its maximum value M at the center of the stroke. After convolution, binarization is performed according to a threshold which equals T * M (T<0.5). Median filter is used to preserve the edge gradient and eliminate isolated noise of the binary image. An N * N rectangle median filter is set, and N represents the odd integer mostly close to W.Morphology closing operation can be used to extract the candidate region. The confidence degree of candidate region for being a license plate is verified according to the aspect ratio and areas. Here, the aspect ratio is set between 1.5 and 4 for the reason of inclination. The prior knowledge of color collocation is used to locate plate region exactly. The locating process of the license plate is shown in Fig. 4.2) Character segmentationThis part presents an algorithm for character segmentation based on prior knowledge, using character width, fixed number of characters, the ratio of height to width of a character, and so on. The flowchart of the character segmentation is shown in Fig. 5.Firstly, preprocess the license the plate image, such as uneven illumination correction, contrast enhancement, incline correction and edge enhancement operations; secondly, eliminating space mark which appears between the second character and the third character; thirdly, merging the segmented fragments of the characters. In China, all standard license plates contain only 7 characters (see Fig. 1). If the number of segmented characters is larger than seven, the merging process must be performed. Table II shows the merging process. Finally, extracting the individual character’ image based on the number and the width of the character. Fig. 6 shows the segmentation results. (a) The incline and broken plate image, (b) the incline and distort plate image, (c)the serious fade plate image, (d) the smut license plate image.where Nf is the number of character segments, MaxF is the number of the license plate, and i is the index of each character segment.The medium point of each segmented character is determined by:(3)where 1i Sis the initial coordinates for the character segment, and 2i S is thefinal coordinate for the character segment. The d istance between two consecutive medium points is calculated by:(4)Fig.6 The segmentation resultsB. Using specific prior knowledge for recognitionThe layout of the Chinese VLP is an important feature (as described in the section II), which can be used to construct a classifier for recognizing. The recognizing procedure adopted conjugate gradient descent fast learning method, which is an improved learning method of BP neural network[10]. Conjugate gradient descent, which employs a series of line searches in weight or parameter space. One picks the first descent direction and moves along that direction until the minimum in error is reached. The second descent direction is then computed: this direction the “ conjugate direction” is the one along which the gr adient does not change its direction will not “ spoil ” the contribution from the previous descent iterations. This algorithm adopted topology 625-35-N as shown in Fig. 7. The size of input value is 625 (25*25 ) and initial weights are with random values, desired output values have the same feature with the input values.As Fig. 7 shows, there is a three-layer network which contains working signal feed forward operation and reverse propagation of error processes. The target parameter is t and the length of network outputvectors is n. Sigmoid is the nonlinear transfer function, weights are initialized with random values, and changed in a direction that will reduce the errors.The algorithm was trained with 1000 images of different background and illumination most of which were degrade severely. After preprocessing process, the individual characters are stored. All characters used for training and testing have the same size (25*25 ).The integrated process for license plate recognition consists of the following steps:1) Feature extractingThe feature vectors from separated character images have direct effects on the recognition rate. Many methods can be used to extract feature of the image samples, e.g. statistics of data at vertical direction, edge and shape, framework and all pixels values. Based on extensive experiments, all pixels values method is used to construct feature vectors. Each character was reshaped into a column of 625 rows’ feature vector. These feature vectors are divided into two categories which can be used for training process and testing process.2) Training modelThe layout of the Chinese VLP is an important feature, which can be used to construct a classifier for training, so five categories are divided. The training process of numbers is shown in Fig. 8.As Fig. 8 shows, firstly the classifier decides the class of the inputfeature vector, and then the feature vector enters the neural network correspondingly. After the training process the optimum parameters of the net are stored for recognition. The training and testing process is summarized in Fig. 9.(a) Training process(b)Testing processFig.9 The recognition process3) Recognizing modelAfter training process there are five nets which were completely trained and the optimum parameters were stored. The untrained feature vectors are used to test the net, the performance of the recognition system is shown in Table III. The license plate recognition system is characterized by the recognition rate which is defined by equation (5).Recognition rate =(number of correctly read characters)/ (number of found characters) (5)IV. COMPARISON OF THE RECOGNITION RA TE WITH OTHER METHODSIn order to evaluate the proposed algorithm, two groups of experiments were conducted. One group is to compare the proposed method with the BP based recognition method [11]. The result is shown in table IV. The other group is to compare the proposed method with themethod based on SVM [12].The result is shown in table V. The same training and test data set are used. The comparison results show that the proposed method performs better than the BP neural network and SVM counterpart.V. CONCLUSIONIn this paper, we adopt a new improved learning method of BP algorithm based on specific features of Chinese VLPs. Color collocation and dimension are used in the preprocessing procedure, which makes location and segmentation more accurate. The Layout of the Chinese VLP is an important feature, which is used to construct a classifier for recognizing and makes the system performs well on scratch and inclined plate images. Experimental results show that the proposed method reduces the error rate and consumes less time. However, it still has a few errors when dealing with specially bad quality plates and characters similar to others. This often takes place among these characters (especially letter and number): 3—8 4—A 8—B D—0.In order to improve the incorrect recognizing problem we try to add template-based model [13] at the end of the neural network.中文译文基于先验知识的车牌识别Qian Gao, Xinnian Wang and Gongfu Xie摘要- 本文介绍了一种基于改进的BP(反向传播)神经网络的中国车牌识别(LPR)算法。

文献综述车牌识别

文献综述车牌识别

文献综述1‎前言近几‎年来,随着汽‎车的数量猛增‎,智能型交通‎体系(ITS‎——Inte‎l ligen‎t Tra‎n sport‎a tion ‎S ystem‎)便成为未来‎交通监管系统‎的主要发展趋‎势,所谓智能‎交通系统是在‎较完善的基础‎设施(包括道‎路、港口、机‎场和通信)之‎上将先进的信‎息技术、通信‎技术、控制技‎术、传感器、‎计算机技术和‎系统综合技术‎有效的集成,‎并应用于‎地面运输系统‎,从而建立起‎在大范围内发‎挥作用的,实‎时、准确、高‎效的运输‎系统[1~2‎]。

行驶‎车辆的车牌实‎时识别尤其是‎智能运输系统‎研究的重要组‎成部分。

车牌‎识别系统‎是对公路上配‎置的摄像头拍‎摄的照片进行‎数字图像处理‎与分析,综合‎应用大量‎的图像处理最‎新成果和数学‎形态学方法对‎汽车图像进行‎平滑、二值化‎、模糊处‎理、边缘检测‎、图像分割、‎开运算、比运‎算、区域标识‎等,利用多种‎手段以提‎取车牌区域,‎进而达到对汽‎车牌照的精确‎定位并最终完‎成对汽车牌照‎的识别。

‎车牌识别系统‎的用途很多,‎如高速公路电‎子收费站、公‎路流量控制、‎公路稽查‎、失窃车辆查‎询、监测黑牌‎机动车、监控‎违章车辆的电‎子警察等公路‎监管场合,‎以及停车场‎车辆管理、出‎入控制等需要‎车牌认证的场‎合都要应用车‎牌识别系统,‎尤其在高‎速公路收费系‎统中,实现不‎停车收费技术‎可提高公路系‎统的运行效率‎,由此可‎见车牌识别系‎统具有不可替‎代的作用,‎因此对车牌识‎别技术的研究‎和应用系统的‎开发具有重要‎的现实意义。

‎2 车牌‎识别技术研究‎现状车牌‎识别系统要综‎合应用多种手‎段提取车牌区‎域,对汽车‎牌照的精确定‎位并最终完成‎对汽车牌照的‎识别。

因此车‎牌识别系统要‎应对多种复杂‎环境,如车流‎量高峰期、照‎射反光、车牌‎污染等。

利用‎模拟人脑智能‎A NN,在识‎别车牌时能‎进行联想记‎忆与推理,能‎够较好地解决‎字符残缺不完‎整而无法识别‎的问题。

实时的车牌识别系统 中英文

实时的车牌识别系统 中英文

VISL 项目在完成了02年一种实时车牌识别(LPR)的系统由酒吧,母鸡罗恩指导单位约哈难埃雷兹该系统一个典型的模式:摘要这个项目的目的是建立从汽车板在门入口处时,例如A区牌照时停车一个真正的应用程序,它已承认。

该系统具有视频摄像机的普通PC机,渔获量的视频帧,其中包括一个明显的汽车牌照和处理它们。

一旦发现车牌,它的数字确认,并显示在用户界面或数据库核对一。

形象的重点是设计一个单一的算法车牌从用于提取,分离板的特点及识别单个字符。

背景:目前已在实验室过去类似的项目。

包括项目实施的整个系统。

这个项目的目的首先是改善方案的准确度,并尽可能其时间复杂度。

该实验室的所有项目在过去。

根据精度不佳的测试中,我们就程序设置的45个影像,我们用我们的成功,并只有在特定的条件感到满意。

出于这个原因,除了再次从非常罕见的情况下,整个程序写。

简要说明执行情况:我们的车牌识别系统可大致分为以下框图。

框图全球系统。

另外这个进程可以被看作是减少或地方的牌照抑制有害信息从携带信息的信号,这里是一个视频序列包含大量无关信息的特点,形式抽象符号的研究。

光学字符识别(OCR)已采用神经网络技术,采用神经元在输出层的前馈网络的3层,200个神经元在20输入层,中间神经元在10层,。

我们保留了神经网络数据集图像用在项目的先例,其中包括238位第我们的算法的详细步骤说明如下图:框图程序的子系统。

这里介绍捕获帧的一个给定的产出上面所述的主要步骤:示例捕获帧黄色区域捕获的帧过滤捕获帧地区扩张黄色车牌区域确定氡角度的变换板的使用改进的LP地区调整唱片轮廓-列和图调整唱片轮廓-线条和图唱片作物灰度唱片唱片二值化,均衡使用自适应阈值二进制唱片归唱片确定使用的LP水平轮廓图像总和先决行归唱片轮廓调节字符分割使用的山峰到山谷方法扩张型数位影像调整数字图像水平轮廓-线和图调整的数字图像轮廓调整大小的数字图像OCR的数字识别的神经网络方法工具该方案实施开发了基于Matlab。

车牌照识别系统设计与实现毕业设计论文

车牌照识别系统设计与实现毕业设计论文

车牌照识别系统设计与实现Design and Implementation of Car License Plate Recognition System毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。

据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。

对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。

作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。

有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。

学校可以公布论文(设计)的全部或部分内容。

保密的论文(设计)在解密后适用本规定。

作者签名:指导教师签名:日期:日期:注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。

4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。

图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它摘要汽车牌照自动识别系统是智能交通系统的重要组成部分,是高科技的公路交通监控管理系统的主要功能模块之一,汽车牌照识别技术的研究有重要的现实应用意义。

汽车车牌识别系统毕业论文(带外文翻译)解析

汽车车牌识别系统毕业论文(带外文翻译)解析

汽车车牌识别系统---车牌定位子系统的设计与实现摘要汽车车牌识别系统是近几年发展起来的计算机视觉和模式识别技术在智能交通领域应用的重要研究课题之一。

在车牌自动识别系统中,首先要将车牌从所获取的图像中分割出来实现车牌定位,这是进行车牌字符识别的重要步骤,定位的准确与否直接影响车牌识别率。

本次毕业设计首先对车牌识别系统的现状和已有的技术进行了深入的研究,在此基础上设计并开发了一个基于MATLAB的车牌定位系统,通过编写MATLAB文件,对各种车辆图像处理方法进行分析、比较,最终确定了车牌预处理、车牌粗定位和精定位的方法。

本次设计采取的是基于微分的边缘检测,先从经过边缘提取后的车辆图像中提取车牌特征,进行分析处理,从而初步定出车牌的区域,再利用车牌的先验知识和分布特征对车牌区域二值化图像进行处理,从而得到车牌的精确区域,并且取得了较好的定位结果。

关键词:图像采集,图像预处理,边缘检测,二值化,车牌定位ENGLISH SUBJECTABSTRACTThe subject of the automatic recognition of license plate is one of the most significant subjects that are improved from the connection of computer vision and pattern recognition. In LPSR, the first step is for locating the license plate in the captured image which is very important for character recognition. The recognition correction rate of license plate is governed by accurate degree of license plate location.Firstly, the paper gives a deep research on the status and technique of the plate license recognition system. On the basis of research, a solution of plate license recognition system is proposed through the software MATLAB,by the M-files several of methods in image manipulation are compared and analyzed. The methods based on edge map and das differential analysis is used in the process of the localization of the license plate,extracting the characteristics of the license plate in the car images after being checked up for the edge, and then analyzing and processing until the probably area of license plate is extracted,then come out the resolutions for localization of the car plate.KEY WORDS:imageacquisition,image preprocessing,edge detection,binarization,licence,license plate location目录前言 (1)第1章绪论 (2)§1.1 课题研究的背景 (2)§1.2 车牌的特征 (2)§1.3 国内外车辆牌照识别技术现状 (3)§1.4车牌识别技术的应用情况 (4)§1.5 车牌识别技术的发展趋势 (5)§1.6车牌定位的意义 (6)第2章MATLAB简介 (7)§2.1 MATLAB发展历史 (7)§2.2 MATLAB的语言特点 (7)第3章图像预处理 (10)§3.1 灰度变换 (10)§3.2 图像增强 (11)§3. 3 图像边缘提取及二值化 (13)§3. 4 形态学滤波 (18)第4章车牌定位 (21)§4.1 车牌定位的主要方法 (21)§4.1.1基于直线检测的方法 (22)§4.1.2 基于阈值化的方法 (22)§4.1.3 基于灰度边缘检测方法 (22)§4.1.4 基于彩色图像的车牌定位方法 (25)§4.2 车牌提取 (26)结论 (30)参考文献 (31)致谢 (33)前言随着交通问题的日益严重,智能交通系统应运而生。

汽车牌照识别系统的车牌定位技术研究外文资料翻译(适用于毕业论文外文翻译+中英文对照)

汽车牌照识别系统的车牌定位技术研究外文资料翻译(适用于毕业论文外文翻译+中英文对照)

建立一个自动车辆车牌识别系统车辆由于数量庞大的抽象,现代化的城市要建立有效的交通自动系统管理和调度.最有用的系统之一是车辆车牌识别系统,它能自动捕获车辆图像和阅读这些板块的号码在本文中,我们提出一个自动心室晚电位识别系统,ISeeCarRecognizer,阅读越南样颗粒在交通费的注册号码.我们的系统包括三个主要模块:心室晚电位检测,板数分割和车牌号码识别。

在心室晚电位检测模块,我们提出一个有效的边界线为基础Hough变换相结合的方法和轮廓算法.该方法优化速度和准确性处理图像取自不同职位。

然后,我们使用水平和垂直投影的车牌号码分开心室晚电位分段模块.最后,每个车牌号码将被OCR的识别模块实现了由隐马尔可夫模型。

该系统在两个形象评价实证套并证明其有效性是适用于实际交通收费系统。

该系统也可适用于轻微改变一些其他类型的病毒样颗粒。

一.导言车牌识别的问题是一个非常有趣,且困难的一个问题.这在许多交通管理系统中是非常有用的。

心室晚电位识别需要一些复杂的任务,如车牌的检测,分割和识别。

这些任务变得更加复杂时,处理各种倾斜角度拍摄的图像或含有噪音的图像。

由于此问题通常是在实时系统中使用,它不仅需要准确性,而且要效率.大多数心室晚电位识别应用通过建立减少一些复杂的约束的位置和距离相机车辆,倾斜角度。

通过这种方式,车牌识别系统的识别率已得到明显改善.在此外,我们可以更准确地获得通过一些具体的当地样颗粒的功能,如字符数,行数在一板,或板的背景颜色或的宽度比为一板高。

二.相关工作心室晚电位的自动识别问题在20世纪90年代开始就有研究。

第一种方法是基于特征的边界线。

首次输入图像处理,以丰富的边界线的一些信息如梯度算法过滤器,导致在一边缘图像.这张照片是二值化处理,然后用某些算法,如Hough 变换,检测线。

最终,2平行线视为板候选人[4] [5]。

另一种方法是基于形态学[2]。

这种方法侧重于一些板块图像性质如亮度,对称,角度等。

车牌识别系统的研究背景意义及国内外研究现状

车牌识别系统的研究背景意义及国内外研究现状

车牌识别系统的研究背景意义及国内外研究现状1车牌识别系统的背景1.1 车牌识别系统的背景及研究意义1.2 车牌识别系统简介2 车牌识别系统的国内外现状3车牌识别难点1车牌识别系统的背景1.1 车牌识别系统的背景及研究意义随着经济社会的迅猛发展,人们的生活水平的提高,机动车辆的数量也越来越多。

为了提高车辆的管理效率,缓解公路上的交通压力,我们必须找到一种解决方案。

而作为汽车“身份证”的汽车车牌,是在公众场合能够唯一确定汽车身份的凭证。

我们可以以此为依据,设计一种车牌识别系统监控各个车辆的情况。

为此,我国交通管理部门对汽车车牌的管理非常重视并制定了一套严格的管理法规。

其中对汽车车牌的制作、安装、维护都要求由制定部门统一进行管理。

在此基础上,如果研制出一种能在公众场合迅速准确地对汽车牌照进行自动定位识别的系统(CPR),那么这将是一件非常有意义的工作,并将极大地提高汽车的安全管理水平及管理效率。

车辆牌照定位与识别是计算机视觉与模式识别技术在智能交通领域应用的重要研究课题之一, 该技术应用范围非常广泛, 其中包括: (1) 交通流量检测;(2)交通控制与诱导;(3) 机场、港口等出入口车辆管理;(4) 小区车辆管理;(5) 闯红灯等违章车辆监控;(6) 不停车自动收费;(7) 道口检查站车辆监控;(8) 公共停车场安全防盗管理;(9) 计算出行时间;(10) 车辆安全防盗、查堵指定车辆等。

其潜在市场应用价值极大,有能力产生巨大的社会效益和经济效益。

如图1所示,LPR[1]的部分应用:图1 LPR在收费口、道路监控和停车管理中的应用近些年,计算机的飞速发展和数字图像技术的日趋成熟,为传统的交通管理带来重大转变。

先进的计算机处理技术,不但可以将人力从繁琐的人工观察、检测中解放出来,而且能够大大提高其精确度,汽车牌照自动识别系统就是在这样的背景与目的下进行开发的。

汽车牌照自动识别系统(VLPRS)是对由公路上配置的摄像头拍摄的照片进行数字图像处理与分析,综合应用大量的图像处理最新成果和数学形态学方法对汽车图像进行平滑、二值化、模糊处理、边缘检测、图像分割、开运算、闭运算、区域标识等多种手段以提取车牌区域,进而达到对汽车牌照的精确定位并最终完成对汽车牌照的识别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Vehicle License Plate Recognition System Based on Digital Image ProcessingYao Yuan,Wu xiao-liDepartment of Computer Science and Engineering, Henan University of Urban Constructioneyaoyuan@Akf1l'll c l-This paper analyzes the basic method of digital videoimage processing, studies the vehicle license plate recognition system based on image processing in intelligent transport system, presents a character recognition approach based on neural network perceptron to solve the vehicle license plate recognition in real-time traffic flow. Experimental results show that the approach can achieve better positioning effect, has a certain robustness and timeliness.Keywonls-veltic/e license plate recognition; imllge processing,· "igilll/I'fJ ltologyI. INTRODUCTIONSince the 21st century, with social development and improvement of living standards, the number of vehicles is continuously increased, the traffic conditions is worsening, which brought huge pressures to the society and environment. Intelligent transport system is a real-time, accurate, and efficient transportation management system built based on a relatively perfect road infrastructure and by synthetically using the advanced electronic technology, information technology, sensor technology and systemic engineering technology in ground transportation[1] . d management . This system can solve the vanous roaproblems generated by the traffic congestion, thus receiving more and more attention.Vehicle license plate recognition is one of the key technologies in the intelligent transport system, while its development is rapid, has been gradually integrated into our real life. Vehicle license plate recognition system can carry out automatic registration, verification, monitoring and alarm management, is an important part of modem highway toll management system, highway speed automatic monitoring system, highway surveillance, parking automatic charging management and other fields.II. VEHICLE LICENSE PLATE RECOGNITION SYSTEM A. Vehicle license p late recognition system overviewVehicle license plate recognition system is mainly composed by hardware and software. The hardware part includes a control computer, one Ethernet camera, a UPS power supply and an interface control port. These sections ensure the car images intake and processing. The software part is divided into the Ethernet camera embedded front-end software and the processing software in the industrial computer.Vehicle license plate recognition system usually consists of data acquisition (license plate image acquisition), license plate extraction, and license plate identification several major components, the system architecture as shown978-1-4244-5540-9/10/$26.00 ©2010 IEEE in figure 1.Image extractionRecognitionresultsImage preprocessingInformation recognitionFigure I. Vehicle license plate recognition system structureIn the vehicle license plate recognition system, the image acquisition is completed mainly by the hardware, which is to extract the foreground image of the vehicle, to convert the camera's video signal to digital image signals to be sent to the computer for processing. Because the impact of the natural environment and the lighting conditions, there are many disturbances in the license plate images, which brings inconvenience to the positioning of the license plate, so in order to better extract the license plates, it needs to preprocess the license plate image to ensure the license plate location quality. VLP detection, this part is the core of the system, and the implementation of which affects the performance of the whole system, which is mainly to use pattern recognition[2] , digital image processing, information theory and other knowledge to position and extract the license plate in the license plate images. Character segmentation and recognition, when the plate has been successfully extracted, it needs to segment the characters in which, and use prior knowledge to identify them to get the final results.B. Key technologies o/license p late recognition1) Vehicle license regional positioning technology: it is to use the above characteristics to determine the true location of l icense plate. To accurately position the vehicle license plate .from the images obtained .from the natural scene is the key of the vehicle license plate recognition system, is also the most diffi c ult ste p.2) Vehicle license plate character segmentation technology: it is to divide the license plate region into a single character region .for the follow-u p license plate recognition module to ident!fY the single characters.J) Vehicle license plate character recognition technology: character recognition is the p rocess of confirming the Chinese characters, English letters and numbers on the license plate on the basis of the accuratel"J segmentationfor the vehicle license p late character .III. VEHICLE LICENSE PLATE RECOGNITION SYSTEM BASED ON DIGITAL IMAGE PROCESSINGA. System designVehicle license plate recognition system structure as shown in figure 2:Vehicle license plate recognition systemImage extractionImage preprocessingRegional locationCharacterssegmentationCharacter recognitionI m age filteringI mage binarizationEdge detectionFeature extractionPattern matchingFigure 2. Vehicle license plate recognition system structurei) The regional location of v ehicle licenseIn the vehicle images, to position a car license plate is a difficulty of vehicle license plate recognition and image coding treatment. The positioning in the vehicle license is to extract the coordinates of the vehicle license plate area from the vehicle image, and then identify the license characters. It also needs to consider the distortion of the captured image, illumination uniformity, transmission impact and other reasons. If the captured image is vague, the license area is not obvious, and then the license area extraction will be greatly difficult. At present, the picture area extraction methods are static algorithm, character object extraction algorithm based on edge extraction and adaptive robust, the target search strategy algorithm based on color segmentation and other algorithms. The common starting point of those is to determine the location of the license through the characteristics of the license area.2) image p re processingIn order to identify the vehicle license from the video image, the original image is required to have appropriate brightness, higher contrast and can identify license plate video image. However, because that the camera usually works in an open outdoor environment, so the camera when shooting may affected by the distance between the camera and the license, their angle, the traffic speed, vehicle license plate clean degree and other factors, so that the license image may have blur, deflection, defects and other serious defects, therefore, it needs to preprocess the original image before the identification. The image preprocessing includes: image restoration, image enhancement, gamma correction, gray correction, color image grayscale, grayscale stretching, and other processes.J) Vehicle license plate character segmentation and processingAfter the license character image positioning and binary processing, the vehicle license is a level bar area only contains the license character, and to recognize the image characters, these characters need to be segmented from the binary license image. Because the weak stain, loss and other factors of the vehicle license may make the image have greater image noise, while the image binary process making some useful information lost, which resulted in the blur, even incompletion, adjacent characters adhesion of the license to be segmented, seriously affected the results of segmentation, therefore, the use of segmentation method with reference to the license character characteristics is effective.The key of the license plate recognition system is key character feature extraction. In other words, how to select the feature vector which is not only easy to extract, but also easy to identify, as well as has the feature vector as little as 'bl[6] d h h ..POSSl e ,an t e c aractenstlc parameters similar to the best sample characteristics, is the key of the feature extraction. Feature extraction and selection is crucial to the system identification, which basically determines the identification system performance and recognition accuracy, and even can affect the entire system identification effect. 4) Vehicle license p late character recognitionThe key of the license plate character recognition is the character feature extraction and pattern matching. When feature extracting and pattern matching there are mainly the following ways: one is the use of character structural features and transform for feature extraction, this method has high tolerance to the character incline and deformation, but the computation is huge, requires high computer performance. Another is the use of character statistical features for feature extraction, at present, most character recognition systems use this method, and when extracting the character features, also the character projector features and profile features can be used to composed the character feature vector for feature matching, thus the results have a high recognition rate.The specific processing flow of the system as shown in figure 3:Features information matchENDFigure 3. System specific processing flow chart Based on the hundreds of pieces of the vehicle licenseimages this paper carries out a license positioning and segmentation test, the results show that the correct rate can reach 96%. The automatic segmentation results can meet the requirements of character segmentation and recognition; andthe recognition range is accurate, the area size is appropriate, there is no missed part of the license[3] ; for the image without ideal light conditions, an image enhancement can be carried out once to make the dynamic range of image gray expanded and the contrast enhanced, and then for the image positioning and segmentation, thus, to improve the accuracy of image segmentation.B. System p eJjOrmance analysis1) Accuracy analysisIn order to achieve the purpose of real-time processing, the algorithms used in this system are not involved with complicated mathematical functions, and in such circumstances the system achieves good results, because the parts the system involved are more, so the output of each part can be the input of the next part. Linked together, the previous module error necessarily will lead to the latter modules error. Therefore, the system is a typical serial system, and the overall accuracy depends on the product of the various part accuracy.2) D!lJiculty analysisIn the image acquisition, the different object distances often result in different license plate sizes in the image. And the processing method of a fixed threshold adopted in the previous algorithm has not a universal adaptability. A fixed threshold can only handle a certain size of license plate images, but for other images with different sizes is helpless. Faced to a large number of license plate images with different sizes, to find a new algorithm with wider applicability is not easy. In actual image acquisition, the noise, light has a great influence on the image quality. A lot of random noise disturbance, different perspectives of the light, light, resulting in license plate light and dark gray irregular changes. The irregular and uncertain occurrence of the deformation, noise and other interference information all make the clarity of the captured license plate image greatly reduced.The difference of the angel when image collecting, the actual front license plate and the license plate incline will cause the captured license plate graphic to generate geometric deformation[5] . And the license plate graphic geometric deformation, the different degrees of the deformation, also make the license plate positioning in the license plate image and the license plate character recognition more difficult. This requires the license plate location and recognition to have high anti-interference and robustness.IV. CONCLUSIONVehicle license plate intelligence recognition system as the core of traffic identification system will play an important role in the future traffic control. This paper studied the vehicle license plate recognition system based on image processing in the intelligent traffic system, proposed a character recognition solution based on neural network perceptron to solve the license plate recognition problem in the real-time traffic flow, and also had some research on the vehicle license plate character recognition algorithm, the test results showed that the system had high anti-interference and robustness.REFERENCES(2). Dai Yan, Ma Hongqing, Liu Jilin. High Performance License PlateRecognition System Based on the Web Technique, IEEE Intelligent Transportation Systems Conference, August 25-29, 2001, 325-334. (3). Taleb A, Hamad A, Tilmant D. Vehicle license Plate recognition inmarketing application [C]. IEEE Transaction on Intelligent Vehicles Symposium, 2003, 90-94.(4). Kawaguchi H. Application system using license Plate recognitiontechnology [Jl. NEC Technical Journal, 2005, 54(7): 19-22.(5). Tsang-Hong Wang, Feng-Chou Ni, Keh-Tsong Li et al. RobustLicense Plate Recognition based on Dynamic Projection Warping. In: Sensing & Control, Taipei, Taiwan, 2004, 784-788.(6). Wenjing Jia, Huaifeng Zhang, Xiangjian He et al. Mean Shift forAccurate License Plate Localization. In: Intelligent Transportation Systems, Vienna, Austria, 2005, 566-570.(7). Hyun-Chul Kim, Shaoning Pang, Hong-Mo Je, Daijin Kim, SungYang Bang. Pattern Classification Using Support Vector Machine Ensemble, In: Pattern Recognition, Proceedings, South Korea, 2002, 160-163.。

相关文档
最新文档