小学五年级doc小数的巧算_2
(完整word版)小数的速算与巧算

五年级奥数教案第一讲小数的速算与巧算第一课时教学内容:运算定律的简单运用教学目的:通过教学使学生进一步掌握乘法的交换律、结合律、乘法对加法的分配律,等运算定律.并利用这些运算定律进行巧算与速算。
教学重点:进一步理解并能运用运算定律进行计算.教学难点:在理解的基础上进行灵活运用。
教学过程:一复习运算定律1、乘法的交换律 a×b=b×a2、乘法的结合律(a×b)×c=a×(b×c)3、乘法的分配律 (a+b)×c=a×c+b×c乘法的分配律,不公适用两个加数的和,也适用于两个数的差,而且适用于多个数的和。
也可以逆向使用。
如果把乘号改成除号,不能逆向使用。
二、一些特殊的计算5×2=10 25×4=100 125×8=10000。
5×2=1 0.25×4=1 0。
125×8=1三、运用定律例1 1.25×(1.7×8)因为1.25与8的乘积为10。
=1。
25×8×1.7 先去括号,利用乘法的交换律和结合律,=10×1.7 求出1。
25与8的积.再乘1。
7.=17例2 0。
25×32×12。
5 看到25想到4,看到125想到8,=0。
25×4×8×12.5 把32看成为4与8的乘积.=0.25×4×(8×12。
5)分别求出0。
25与4的积,12。
5与8的积.=1×100100例3 12。
5×(10+0。
8)因为12。
5与0.8的乘积为整十数,=12.5×10+12。
5×0。
8 直接运用乘法的分配律。
=125+10=135例4 (20-0。
4)×2。
5 直接运用乘法的分配律=20×2。
五年级小数的速算与巧算2

小数的巧算2小数“巧”算的基本途径还是灵活应用小数四则运算的法则、运算定律,使题目中的数尽可能转化为整数。
在某种意义上讲,“化整”是小数运算技巧的灵魂。
当然,根据小数的特点,在乘除运算中灵活运用小数点的移位:两数相乘,两数中的小数点反向移动相同的位数,其积不变(如0.8×1.25=8×0.125);两数相除,两数中的小数点同向移动相同的位数,其商不变(如0.16÷0.04=16÷4),也是常见的简化运算方法。
另外,某些特殊小数相乘化整,应熟记于心,如上面的8×0.125=1;0.5×2=0.25×4=1;0.75×4=3;0.625×16=10等等。
同学们在平时做题时留心积累这些“窍门”会大大提高自己的运算能力。
一、例题讲解小数点的移位法则例1:计算2005×18-200.5×80+20050×0.1例2:计算75×4.7+15.9×25练习(1)计算1.25×3.14+125×0.0257+1250×0.00229 (2)计算22.8×98+45.6换成相同的乘数例3:999.90.280.666680⨯+⨯ 例4:计算999.9×0.28-0.6666×370练习1、999.90.27 6.66630.5⨯-⨯2、5.211111666660.8⨯+⨯3、3.631.443.9 6.4⨯+⨯找相同的乘数例5:计算7.816×1.45+3.14×2.184+1.69×7.816 练习:3.73 2.638.37 3.73 3.73⨯+⨯-添括号或去括号凑整数例6:320÷1.25÷8 例7: 18÷(31.25×0.9)+99.36练习:1、220÷0.25÷42、520÷12.5÷83、8÷(21.25÷1.25)4、40×(31.25×0.75)整体表示小数的和或者差1、(20.450.56)(0.450.560.84)(20.450.560.84)(0.450.56) ++⨯++-+++⨯+2、(5 2.12 4.53)(2.12 4.53 6.8)(2.12 4.53)(5 2.12 4.53 6.8) ++⨯++-++++凑整和分解数1、1.1 2.2 3.3 4.4 5.5 6.67.78.89.911.1113.1315.1517.1719.19+++++++++++++2、2012201.220.12 2.012+++二、课堂练习1、计算37.5-1.53-0.25-1.222、计算2.5×1.25×3.23、计算3.74×2.85+8.15×3.74-3.744、计算2.4×7.6+7.6×6.5+7.6×1.15、计算8÷(31.25×0.4)+99.366、计算20.05×39+200.5×4.1+40×10.0257、计算:15.48×35-154.8×1.9+15.48×84 8、计算:0.9+9.9+99.9+999.9+9999.9+99999.9+999999.9 9、计算2006+200.6+20.06+2.006 10、计算:(4.8×7.5×8.1)÷(2.4×2.5×2.7)11、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.1912、计算(2+3.15+5.87)×(3.15+5.87+7.32)-(2+3.15+5.87+7.32)×(3.15+5.87)13、计算(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)作业:1.计算:100-9.9-8.8-7.7-6.6-5.5-4.4-3.3-2.2-1.1 2.计算 1.25×17.6+36÷0.8+2.64×12.5。
五年级小数的巧算

五年级小数的巧算1、计算2005×18-200.5×80+20050×0.1 (乘法性质和提取公因式)2、计算75×4.7+15.9×25 (先拆分,再提取公因式)3、计算3.51×49+35.1×5.1+49×5.1(乘法性质、提取公因式、特例49×51=(50-1)×(50+1)=2500-1,平方差公式)4、计算7.816×1.45+3.14×2.184+1.69×7.816 (重点将 2.184分拆成10-7.816)5、计算38.3×7.6+11×9.25+427×0.24(把427拆分成383+44,再提取公因式)6、计算(8.4×2.5+9.7)÷(1.05÷1.5+8.4÷0.28)7、计算、(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)(换元法)8、若A=9.876543×3.456789, B=9.876544×3.456788,试比较A、B的大小。
(换元法与乘法分配率)9、如果362-(321.2-□×5.78)+1.3×5.6÷0.07=347.1,那么□=?(逆运算)10、计算41.2×8.1+53.7×1.9+1.1×92.5(同 4题)练习题一、加、减法算式11、计算37.5-1.53-0.25-1.22 (添括号)二、乘、除法算式12、计算2.5×1.25×3.2 (拆分,凑整)三、加、减、乘、除混合运算13、计算3.74×2.85+8.15×3.74-3.74 (提取公因式)14、计算3.6×31.4+43.9×6.4 (拆分再提取公因式)15、计算8÷(31.25×0.4)+99.3616、计算20.05×39+200.5×4.1+40×10.02517、计算18.3×0.25+5.3÷0.4-7.1318、计算2005÷0.375-0.375÷1949+3.75÷2.419、计算(123456789.1)2-123456789×123456789.2(换元法)20、已知9.4×〔□-(1.54-0.31)〕=0.47,求□=?21、计算2006+200.6+20.06+2.00622、比较A、B的大小。
小数的巧算

小数的巧算1.分解凑整法:将一个数适当的分解为n 个数,运用乘法的交换律,结合律或乘法分配凑整进行计算.2.运用商不变的性质:被除数和除数同时扩大或缩小相同的倍数.(零除外),商不变. 3.运用积不变的性质:一个因数扩大若干倍(零除外),另一个因数同时缩小相同的倍数,积不变.4.运用乘除法性质,改变运算顺序和运算方法:①a÷b÷c=a÷(b×c)=a÷(b×c)=a÷c÷b ②a×b÷c=a÷c×b ③( c bc ac ba )一、分解凑整法例1 12.5×0.7×0.25×8×4练习1 8×2.5×1.25×0.5×0.4 练习2 64×1.25×0.25×0.05二、去添括号法例2 121×7÷25×100÷11练习1 8.4×13÷2.1 练习2 336÷496×222÷336×496÷222第2 页共4 页例3 3.6÷(1.2÷1.5)三、乘法分配律法例 4 312.5×12.3-31.25×23 练习 14.2×26+0.42×640+42练一练:1.0.125×2.5×64×0.5 2.0.25×1.25×4×0.8 3.4.8×(1.9÷1.2) 4.378÷265×194÷378×265÷194 5.27000÷125 6.3.9÷(1.3×5) 7.7.3×1.2+12×0.27 8.372×2.8+12.8×289.4.3÷1.3+8.4÷1.3-2.3÷1.3 10.0.16×320+6.8×16一.初步训练:1.1.31×12.5×0.25×16 2.0.98×101 3.2.5×64×1.25×0.5 4.4.8÷(2.4÷30)5.4800000÷125÷25÷32 6.396÷243×468÷396×243÷468 7.75×4.67+7.5×53.3 8.4.2×0.3+42×0.07 9.7.28×333+72.8×66.710.7.2÷18+2.8÷18+8÷18二深入训练: (1)4.7+3.91÷(22-19.7) (2)92.8×0.25×8(3)1.56×1.7+0.44×1.7-0.7 (4)20-[7.8+(6.2-1.38÷0.23)] (5)10.5+(10.5+10.5)×10.5 (6)49.5×99+49.5(7)4500÷125 (8)3.84×7.6-3.84×6.6。
小数巧算

小数的巧算姓名小数的计算技巧指小数运算的速算与巧算。
它除了可以灵活运用整数四则计算中我们已经学过的许多速算与巧算的方法外,还可以利用小数本身的特点。
计算时要注意审题,善于观察题目中数字的特征,灵活地运用小数的性质及运算性质、运算技巧,确定合理简便的算法。
一、常用的运算定律。
1、加法交换律:2、加法结合律:3、乘法交换律:4、乘法结合律:5、乘法分配律:二、常用的运算性质。
1、积不变性质:若一个因数扩大(或缩小)若干倍,另一个因数缩小(或扩大)相同的倍数,则积不变。
2、商不变性质:被除数和除数同时乘(或除以)一个相同的数(0除外),商不变。
三、速算及巧算的一般方法。
可以运用数的分解、合并,改变原来的运算顺序而达到简算的目的。
有时也运用四则运算的定律、性质或利用和、差、积、商的变化规律,使计算简便。
例1 计算:5.32+2.06+19.4+1.84+7.68例2 计算:1-0.1-0.01-0.001-……-0.000000001 【0.888888889】例3 计算:7.63-4.98+5.26+1.89 【9.8 】例4 计算:(1)80×25×2×1.25×0.5×0.4 (2)64×12.5×0.25×0.05 【1000,10】例5 计算:0.56×9.8 【5.488】例6 计算:0.125÷(3.6÷80)×0.18 【0.5】想一想,下面各题怎样计算比较简便?(1)4.92÷0.25÷0.4 (2)47.85÷6.38×0.638(3)36.363÷(1.2121×4)(4)(0.6×1.38)÷(13.8×4.8)例7 计算:312.5×12.3-312.5×6.9+312.5 【2000】例8 计算:2000×199.9-1999×199.8 【399.8】例9 计算:12.9÷0.72+43.5÷3.6 30例10 计算:45.3×3.2+578×0.68+12×9.25 649例11 计算:(1)2.5+3.2+7.5+2.8=16(2)18.6-9.3-1.6-2.7 =5例12 计算:6.25×0.16+264×0.0625+5.2×6.25+0.625×20 =62.5例13 计算:0.125×0.25×0.5×64=1例14 计算:(1)0.525÷13.125÷4×85.2(2)(4.8×7.5×8.1)÷(2.4×2.5×2.7)=18一般应用题(一)知识要点:一般复合应用题往往是有两组或两组以上的数量关系交织在一起,有的已知条件是间接的,数量关系比较复杂,叙述的方式和顺序也比较多样。
从课本到奥数(五年级)第一讲小数的简便运算.doc

从课本到奥数(五年级)第一讲小数的简便运算简便运算,就是用比较简捷、巧妙的方法计算出算式的得数。
一道计算题的简便算法常常不止一种。
小数的简便运算一般分为两个方面:(1)利用加、减、乘、除法的运算性质巧算;(2)巧用特殊数之间四则运算时表现出的一些特性巧算。
计算时,仔细观察算式的特点,观察算式中数与数之间的关系,确定正确的简便运算方法,简捷、巧妙地计算出算式的得数。
难题点拨①计算:⑴ 0.125 × 400⑵2.5×10.8点拨:观察上面两道算式,算式⑴中,400 可以写成8× 50:算式⑵中, 10.8 以写成10+0.8 。
这两道题都可以利用特殊数之间四则运算时表现出的一些特殊巧算。
0.125 × 400 =0.125 ×8×50=1×50=50 2.5 ×10.8=2.5 ×( 10+0.8 =2.5 ×10+2.5 × 0.8=25+2=27 可)想一想做一做1. =12 0.125 ×96=0.125 ×(100-4 )2.=0.125 ×100-0.125 ×41.25 ×88=1.25 ×(=12.5-0.580+8 )=1.25 ×80+1.25× 8=100+10=1103. 0.25 ×40.4 =0.25 ×( 40+0.4 ) =12.5 ×(10+0.8) =0.25 × 40+0.25× 0.4=10+0.1 =10.14.12.5 × 10.8= 125+10=135难题点拨②计算: 199.7 × 19.98-199.8 ×19.96点拨:观察算式发现, 19.98 扩大到它的 10 倍就是 199.8 ,因此我们先将减号前面的部分写成 19.97 ×199.8 ,再利用乘法的分配律巧算。
小学五年级奥数题大全及答案(更新版)
小学五年级奥数题大全及答案五年级奥数1、小数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与面积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1小数的巧算(一)年级班姓名得分一、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89⨯4.68+4.68⨯6.11+4.68=_____.7、计算 17.48⨯37-17.48⨯19+17.48⨯82=_____.8、计算 1.25⨯0.32⨯2.5=_____.9、计算 75⨯4.7+15.9⨯25=_____.10、计算 28.67⨯67+32⨯286.7+573.4⨯0.05=_____.二、解答题11、计算 172.4⨯6.2+2724⨯0.3812、计算 0.00...0181⨯0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下面有两个小数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a⨯b,a÷b.1.2小数的巧算(二)年级班姓名得分一、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)⨯8=_____.4、计算 34.5⨯8.23-34.5+2.77⨯34.5=_____.5、计算 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6、计算 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7、计算 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8、计算 13.5⨯9.9+6.5⨯10.1=_____.9、计算 0.125⨯0.25⨯0.5⨯64=_____.10、计算 11.8⨯43-860⨯0.09=_____.二、解答题11、计算32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.537812、计算 0.888⨯125⨯73+999⨯313、计算 1998+199.8+19.98+1.99814、下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0试求a+b, a-b, a⨯b, a÷b.2.1数的整除性(一)年级班姓名得分一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3、能同时被2、3、5整除的最大三位数是_____.4、能同时被2、5、7整除的最大五位数是_____.5、1至100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(二)年级班姓名得分一、填空题1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10、所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(一)年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(二)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。
五年级奥数小数巧算
实用文档小数的速算与巧算【知识概述】小数的简便计算出了可以灵活运用整数四则运算中我们已经学过的许多速算与巧算的方法外,还可以运用小数本身的特点,如小数的意义、小数的数位顺序、小数的性质、小数点位置移动引起小数大小的变化等。
很多计算题,如果我们根据运算法则按部就班地计算,将会觉得很繁,也很耗费时间,有的甚至算不出结果,如果我们能够发现其中数据的特点、正确运用数的组成、运算规律,把复杂的计算转化为简便的计算将会节约很多时间。
学会巧算的一些基本方法,将有助于我们提高计算能力、发展思维能力、增强注意力与记忆力。
1、凑整法简算:例1 计算:0.125×0.25×0.5×64练习:(1)1.31×12.5×8×2 (2)1.25×32×0.25 (3)1.25×882、拆拼法简算:例2 计算:(1)1.25×1.08 (2)7.5×9.9实用文档练习:(1)2.5×10.4 (2)3.8×0.99 (3)1991+199.1+19.91+1.9914、转化法简算:例4 5.7×9.9+0.1×5.7练习:(1)4.6×99+4.6 (2)7.5×101-7.5不用计算,根据已知条件直接写出下面题的结果。
已知0.26×4.5=1.17计算:2.6×4.5=() 0.26×45=() 0.026×0.45=()) 45 260 0.45 2.6×=()×=(实用文档例5 1240×3.4+1.24×2300+12.4×430 练习:4.65×32-2.5×46.5-70×0.4655、设数法简算:例6 (2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87)练习:(1+0.23+0.34)×(0.23+0.34+0.65)-(1+0.23+0.34+0.65)×(0.23+0.34)6、数形结合法简算:例7 计算:1.999×2003-1.998×2004 练习:19.94×2010-19.93×2011实用文档A训练用简便方法计算下面各题25 ×12.5×0.82.5 (2)×0.042(1)1.9××0.2×(4)×0.125 99×73.2+73.2 3()16.08100+100.1 +99.9+99.8+99.60.1250.25(5)×4.73××320 )6(2.9 2.11847.91007()×+×+×84训练B实用文档21 27+1.9×6.3(2)×(1)4.7×2.8+3.6×9.42.7 ×160×+12.5)1250×0.037+0.12543.75(3)×4.8+62.5×0.48 (360 -×13.23.6×232-36)(5训练C(1)1.23×245-1.22×246(2)(0.1+0.12+0.123+0.1234)×(0.12+0.123+0.1234+0.12345)-(0.1+0.12+0.123+0.1234+0.12345)×(0.12+0.123+0.1234)实用文档分数的巧算55111?(3.8?1)?71333387?79?790?66661计算 2、、计算1 99524322?3?2537.9?6、计算35554、有一串数1, 4, 9, 16,25,36……它们是按一定规律排列的,那么其中第2000个数与第2001个数相差多少?2220112012?、计算52255836354?7)(9??(?1?)?(??)计算、6计算 7、7979971111794415?3727?计算①②45261212010??20102012②计算①20122011111314?41??5173?计算计算1583445实用文档1513?5???1075.?76?.25?990975?①②88841161333?????5?3.75735?16.2?62.?5730?③12747678组合图形面积能根据各种组合图形的条理解计算组合图形面积的多种方法;教学目标:在自主探索活动中,解决生活中组合图形的实际问能运用所学的知识,件,有效地选计算方法并进行正确的解答;题。
五年级上册趣味数学教案
五年级上册趣味数学教案授课教师:张志奎小数的巧算(1)训练目标巧算也就是简便运算,在小数的四则运算中,可以根据数的特点,通过数的分解、合并改变原来的运算顺序,从而达到简便计算的目的。
一道计算题的简便算法常常不止一种,有时也运用四则运算的定律、性质或利用和、差、积、商的变化规律,使计算简便。
典型例题例题计算:4.25-1.64+8.75-9.36=?分析与解答利用变换律(在同一级运算中,改变运算顺序,结果不变)和减法的运算性质(一个数分别减去两个数等于这个数减去这两个数的和),即可巧妙解答该题。
解:原式=(4.25+8.75)-(1.64+9.36)=13-11=2基础练习1. 计算。
(1)18.63+5.68+41.37+10.2+29.8(2)3.18+4.57+2.82+5.43提高练习1. 计算。
48.576- (38.576+6.75)2. 计算。
12+12.1+12.2+12.3+12.4+……+12.8+12.93. 计算。
(1+0.43+0.29)×(0.43+0.29+0.87)-(1+0.43+0.29+0.87)×(0.43+0.29)小数的巧算(2)训练目标巧算也就是简便运算,在小数的四则运算中,可以根据数的特点,通过数的分解、合并改变原来的运算顺序,从而达到简便计算的目的。
一道计算题的简便算法常常不止一种,有时也运用四则运算的定律、性质或利用和、差、积、商的变化规律,使计算简便。
典型例题例题计算:200.5×0.82-20.05×4.5-20.05×3.7=?分析与解答:这道题不能直接用乘法分配律,但是观察后,我们发现因数的数字组成是一样的,小数点的位置不同,先用积不变的性质定律整理后,再用乘法分配律计算。
解:原式=20.05×8.2-20.05×4.5-20.05×3.7=20.05×(8.2-4.5-3.7)=20.05×0= 0基础练习1. 计算。
小学五年级doc小数的巧算
小数的巧算1.1.25×0.32×2.52.272.4×6.2+2724×0.383.7311792544.0⨯⨯+⨯⨯4.2.89⨯4.68+4.68⨯6.11+4.685.99999÷5+9999÷5+999÷5+99÷5+9÷5二进制与十进制的运算1. 把下列二进制数转化为十进制数(1)11011 (2)111012.把下列十进制数转化为二进制数(1)967 (2)8643.二进制的加减法运算(1)11011+110001 (2)10101011-1001014.二进制的乘除法运算(1)110001×1011 (2)10100010÷10015.二进制数的混合运算(1)(101+11)×1010 (2)111×1001+1001×110质数与合数1. 360有多少个约数?2.求不大于60,且只有10个约数的正整数3.一个长方体的长,宽,高是连续的三个自然数,这个长方体的体积是91080,求这个长方体的长,宽,高是多少?表面积是多少?4.有三个自然数,最大的比最小的大6,另一个是它们的平均数,且三个数的乘积是42560,求这三个自然数5.求自然数M ,它能被2和25整除,且共有6个约数。
余数的特性和剩余定理的应用1. 今天是星期一,再过7575天是星期几?2. 算式()131715131715⨯+的得数的个位数是多少?3.有连续的三个自然数a 、1a +、2a +,它们恰好分别是9、8、7的倍数,求这三个自然数中最小的数至少是多少?4.一个大于10的数,除以3余1,除以5余2,除以11余7,问满足条件的最小自然数是多少?5.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?整除的特性1. 求一个首位数字为5的最小六位数,使这个数能被9整除,且各位数字均不相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小数的巧算1.1.25×0.32×2.52.272.4×6.2+2724×0.383.7311792544.0⨯⨯+⨯⨯4.2.89⨯4.68+4.68⨯6.11+4.685.99999÷5+9999÷5+999÷5+99÷5+9÷5二进制与十进制的运算1. 把下列二进制数转化为十进制数(1)11011 (2)111012.把下列十进制数转化为二进制数(1)967 (2)8643.二进制的加减法运算(1)11011+110001 (2)10101011-1001014.二进制的乘除法运算(1)110001×1011 (2)10100010÷10015.二进制数的混合运算(1)(101+11)×1010 (2)111×1001+1001×110质数与合数1. 360有多少个约数?2.求不大于60,且只有10个约数的正整数3.一个长方体的长,宽,高是连续的三个自然数,这个长方体的体积是91080,求这个长方体的长,宽,高是多少?表面积是多少?4.有三个自然数,最大的比最小的大6,另一个是它们的平均数,且三个数的乘积是42560,求这三个自然数5.求自然数M ,它能被2和25整除,且共有6个约数。
余数的特性和剩余定理的应用1. 今天是星期一,再过7575天是星期几?2. 算式()131715131715⨯+的得数的个位数是多少?3.有连续的三个自然数a 、1a +、2a +,它们恰好分别是9、8、7的倍数,求这三个自然数中最小的数至少是多少?4.一个大于10的数,除以3余1,除以5余2,除以11余7,问满足条件的最小自然数是多少?5.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?整除的特性1. 求一个首位数字为5的最小六位数,使这个数能被9整除,且各位数字均不相同。
2.如果六位数1992□□能被105整除,那么这个六位数是多少?3.一个六位数12A34B 能被88整除,这个六位数是多少?4.能被11整除,首位数字是4,其余各位数字均不相同的最大和最小六位数分别是多少?5.某个数只有1和0,且能被225整除,这个数最小是多少?集合与容斥原理1.某年级的课外学科小组分为数学、语文、外语小组,参加数学小组的有23人,参加语文小组的有27人,参加外语小组的有18人;同时参加数学、语文两个小组的有4人,同时参加数学、外语小组的有7人,同时参加语文、外语小组的5人,三个小组都从参加的有2人。
问:这个年纪参加课外学科小组的共有多少人?2.某班有50名学生,都报名参加了语文、数学或英语三门学科的比赛,已知35人参加晕比赛,40人参加数学竞赛,37人参加英语比赛。
问:至少有多少人参加了三种比赛?3.六年级有60人爱好数学,50人爱好语文,42人爱好体育,30人既爱好数学又爱好语文,20人既爱好语文又爱好体育,35人既爱好体育又爱好数学,有18人三方面都爱好。
请问这个年级中数学、语文、体育三方面至少爱好一项的学生有多少名?4. 初一(2)班26个男同学中,有13人喜欢打篮球,9人喜欢踢足球,12人喜欢打排球,并且2个男同学即喜欢打排球又喜欢踢足球,2个男同学既喜欢打篮球又喜欢踢足球,但没有一个男同学是三种球都喜欢的。
问有多少男同学喜欢既打篮球又喜欢打排球?5. 盛夏的一天,10个同学去冷饮店,向服务员交了一份需要冷饮的清单,要可乐、果汁和凉茶的各有5人;可乐、果汁都要的有3人;可乐、凉茶都要的有2人;果汁、凉茶都要的有2人,三样都要的只有1人,那么有多少人一样饮料都没药?完全平方数1. 一个小于400的三位数,它是平方数,它的前两个数字组成的两位数还是个平方数,其个位数也是个平方数,满足条件的三位数有1.证明()153+⨯n 不是平方数。
()为自然数n2.如果a 、b 为自然数,那么6415⨯ab 是否可能是个平方数?3.若自然数a 与378的积是完全平方数,那么a 最小是多少?最大公约数和最小公倍数1.甲、乙、丙三班同学去公园划船,甲班49人,乙班56人,丙班42人,把各班同学分别分成小组,分乘若干条小船,使每条船上人数相等,最少要有多少条船?2.有若干名学生上体育课,内容是学习篮球、排球和足球。
规定每二人合用一只排球,每三人合用一只足球,每四人合用一只篮球,共用了26只球。
问有多少名学生。
3.大雪后的一天,大亮和爸爸共同步测一个圆形花圃的周长,他俩的起点和走的方向完全相同,大亮每步长54厘米,爸爸每步长72厘米,由于两人脚印有重合的,所以各走完一圈后雪地上只留下60个脚印,求花圈的周长。
4.在一根绳上做记号,每5米画记号,后因为一些原因,改为每6米画一个记号。
由于记号有重合,最后留下了100个记号,问,这根绳有多长?5. 有一段公路要排电线杆,每两根的距离为45米,后来因为某些原因,每两根的距离要改为60米,除了起点的一根不动,再过多远又有一根不需要移动?时钟问题1.8时到9时之间,在什么时刻时针与分针重合?2.现在是3时,再过多长时间,时针和分针恰在“12”字两边,并且与“12”字距离相等?3.某人下午6点多外出时,看了看手表两指针夹角为110°,下午7点前回家时发现两指针夹角仍为110°,问:他外出多长时间?4.一只钟的时针与分针均指在8与10之间,且钟面上的“9”字恰好在时针与分针的正中央,问这时是什么时刻?5.小华与妈妈8点多钟外出,临出门时他一看钟,时针与分针是重合的,下午2点多钟回到家,一进门看到时针与分针方向相反,正巧成一条直线,他们外出了多少时间?周期问题1. 接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8⨯9=72,在9后面写2,9⨯2=18,在2后面写8,……得到一串数字:1 9 8 92 8 6……这串数字从1开始往右数,第1989个数字是什么?2.流水线上生产小木珠涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后再依次是5红,4黄,3绿,2黑,13.甲、乙、丙、丁、戊五人玩扑克牌,某人把“大王”插在54张扑克牌的中间,从上面数下去是第30张,甲想要抓到“大王”,应该从第几张抓起?(每人依次抓1张)4. 黑珠、白珠共102颗,穿成一串,排列如下图:这串珠子中,最后一颗珠子应该是_____色的,这种颜色的珠子在这串中共有_____颗.5. 在一个循环小数0.1234567中,如果要使这个循环小数第100位的数字是5,那么表示循环节的两个小圆点,应分别在_____和_____这两个数字上.代换法解应用题1.买2张新课桌和3只方凳要付210元,现买同样的课桌3张和方凳2只要付280元。
问:买一张课桌和一只方凳用多少钱?2.一辆货车正好装12麻袋大米和25袋面粉,取下3袋大米后空下的地方正好装5袋面粉。
问:这辆车全装面粉比全装大米多放几袋?3.5辆玩具摩托车与3辆玩具汽车的价钱相等,每辆玩具汽车比摩托车贵8元。
求两种玩具的单价各是多少元?4.3筐梨的价钱和2筐苹果的价钱相等,一筐苹果比一筐梨贵12元。
苹果、梨一筐各多少钱?5.用大、小两台水泵抽水,大水泵抽4小时,小水泵抽3小时,一共抽水156吨。
小水泵5小时的抽水量等于大水泵2小时的抽水量。
求两水泵的抽水量。
逻辑推理1.甲、乙、丙三人,一个姓张,一个姓李和一个姓王,他们一个是银行职员,一个是计算机程序员,一个是秘书.又知甲既不是银行职员也不是秘书;丙不是秘书;张不是银行职员;王不是乙,也不是丙.问:甲、乙、丙三人分别姓什么?2. 甲、乙、丙、丁与小明五位同学进入象棋决赛.每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分.到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分.那么小明现在已赛了盘,得了分.3. A、B、C、D四人定期去图书馆,四人中A、B二人每隔8天(中间空7天,下同)、C每隔6天、D每隔4天各去一次,在2月份的最后一天,四人刚好都去了图书馆,那么从3月1日到12月31日只有一个人来图书馆的日子有____ 天.4. 四位运动员分别来自北京、上海、浙江和吉林,在游泳、田径、乒乓球和足球四项运动中,每人只参加了一项,且四人的运动(3) 李勇和北京运动员、乒乓球运动员三人同住一个房间;(4) 郑永禄不是北京运动员,年龄比吉林运动员和游泳运动员两人的年龄小;(5) 浙江运动员没有参加游泳比赛.根据这些条件,请你分析一下:这四名运动员各来自什么地方?各参加什么运动?5. 五年级四个班举行数学竞赛,小明猜测(3)班第一名,(2)班第二名,(1)班第三名,(4)班第四名;小华猜测名次排列顺序是(2)班、(4)班、(3)班、(1)班.已知(4)班是第二名,其他各班的名次小明和小华都猜错了,这次竞赛的名次是怎样排列的? 立体图形与面积1. 如图,三角形ABC 的面积是24平方厘米,且DC=2AD ,E 、F 分别是AF 、BC 的中点,那么阴影部分的面积是多少?2. 如图,这个长方形的长是9厘米,宽是8厘米,A 和B 是宽的中点,求长方形内阴影部分的面积。
3. 如图棱长是2分米的正方体,沿与AB 棱垂直的方向切3刀,沿与BC 棱垂直的方向切4刀,沿与BF 棱垂直的方向切5刀,共得到大小长方体120个。
问这120个长方体的表面积之和是多少平方分米。
4..小明小制作时把6个棱长分别为1、2、3合部分用胶固定粘牢,再把所有外露的部分涂上油漆,交给老师,所有涂上油漆部分的面积是多少平方分米?5.一个正方形,如果把它的相邻两边都增加6厘米,就可以得到一个新正方形,新正方形的面积比原正方形大120平方厘米.求原正方形的面积?行程问题1. 甲车以40千米/小时的速度从A 站向B 站开出,2小时后,乙车以20千米/小时的速度从B 站向A 站开出, 两车相遇时,相遇点离两站的中点50千米。
A 、B 两站相距多少千米?2.甲、乙两车同时从A 、B 两地出发相向而行,两车在离B 地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A 地48千米处第二次相遇,A 、B 之间的距离是多少?3.A 、B 是一圆形道路的一条直径的两个端点,现有甲、乙两人分别从A 、B 两点同时沿相反方向绕道匀速跑步(甲、乙两人的速度未必相同),假设当乙跑完100米时,甲、乙两人第一次相遇;当甲差60米跑完一圈时,甲、乙两人第二次相遇,那么当甲、乙两人第十二次相遇时,甲跑完几圈又多少米?4.解放军某部队进行军事训练,队伍长525米,以每秒1米的速度进行,一个通讯员因事需要从末尾到排头并立即返回末尾。