相转化膜孔形成机理的研究进展

合集下载

相转化法制膜

相转化法制膜

一、相转化法制膜基本原理所谓相转化法制膜,就是配制一定组成的均相聚合物溶液,通过一定的物理方法使溶液在周围环境中进行溶剂和非溶剂的传质交换,改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,转变成一个三维大分子网络式的凝胶结构,最终固化成膜。

相转化制膜法根据改变溶液热力学状态的物理方法的不同,可以分为以下几种:溶剂蒸发相转化法、热诱导相转化法、气相沉淀相转变法、和溶液相转变法。

溶液相转化法也称溶液相转化法和浸入凝胶相转化法。

在以上几种相转化法中,溶液相转化法制备工艺简单,并且具有更多的工艺可变性,能够根据膜的应用更好的调节膜的结构和性能,于是成为制备微孔膜的主要方法。

溶液相转化法制膜过程至少包含3种物质,即聚合物、溶剂和非溶剂,成膜过程分为两个阶段。

第一阶段:分相过程,当铸膜液浸入凝固浴后,溶剂和非溶剂将通过液膜/凝固浴界面进行相互扩散,溶剂和非溶剂之间的交换达到一定程度,此时铸膜液变成热力学不稳定体系,于是导致铸膜液发生相分离。

这一阶段是决定膜孔结构的关键步骤,研究的内容有制膜体系的热力学性质以及传质动力学。

第二阶段:相转化过程,制膜液体系分相后,溶剂、非溶剂进一步交换,发生了膜孔的凝聚、相间流动以及聚合物富相固化成膜。

这一阶段对最终聚合物膜的结构形态影响很大,但不是成孔的主要因素,研究的内容主要是分相后到膜溶液相转化过程中的结构控制及其性能研究的固化这一过程,也称为凝胶动力学过程,相对于第一阶段的热力学描述和传质动力学研究,凝胶动力学研究的比较少。

二、成膜机理浸入沉淀相转化法所制备的聚合物膜常由表层和多孔底层两部分组成,表层的结构有致密和多孔两种,而不同的表层结构将影响膜的多孔底层的结构形态。

在浸入凝胶法制备聚合物膜的过程中,非对称膜结构的形成主要受控于铸膜液的热力学特性和其在凝胶浴中的动力学传递过程.在相分离过程中,聚合物富相形成膜的主体结构,而聚合物贫相将形成膜孔.新形成的膜结构并不稳定,通过固化过程后形成稳定的多孔结构。

(完整版)相转化法制膜

(完整版)相转化法制膜

一、相转化法制膜基本原理所谓相转化法制膜,就是配制一定组成的均相聚合物溶液,通过一定的物理方法使溶液在周围环境中进行溶剂和非溶剂的传质交换,改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,转变成一个三维大分子网络式的凝胶结构,最终固化成膜。

相转化制膜法根据改变溶液热力学状态的物理方法的不同,可以分为以下几种:溶剂蒸发相转化法、热诱导相转化法、气相沉淀相转变法、和溶液相转变法。

溶液相转化法也称溶液相转化法和浸入凝胶相转化法。

在以上几种相转化法中,溶液相转化法制备工艺简单,并且具有更多的工艺可变性,能够根据膜的应用更好的调节膜的结构和性能,于是成为制备微孔膜的主要方法。

溶液相转化法制膜过程至少包含3种物质,即聚合物、溶剂和非溶剂,成膜过程分为两个阶段。

第一阶段:分相过程,当铸膜液浸入凝固浴后,溶剂和非溶剂将通过液膜/凝固浴界面进行相互扩散,溶剂和非溶剂之间的交换达到一定程度,此时铸膜液变成热力学不稳定体系,于是导致铸膜液发生相分离。

这一阶段是决定膜孔结构的关键步骤,研究的内容有制膜体系的热力学性质以及传质动力学。

第二阶段:相转化过程,制膜液体系分相后,溶剂、非溶剂进一步交换,发生了膜孔的凝聚、相间流动以及聚合物富相固化成膜。

这一阶段对最终聚合物膜的结构形态影响很大,但不是成孔的主要因素,研究的内容主要是分相后到膜溶液相转化过程中的结构控制及其性能研究的固化这一过程,也称为凝胶动力学过程,相对于第一阶段的热力学描述和传质动力学研究,凝胶动力学研究的比较少。

二、成膜机理浸入沉淀相转化法所制备的聚合物膜常由表层和多孔底层两部分组成,表层的结构有致密和多孔两种,而不同的表层结构将影响膜的多孔底层的结构形态。

在浸入凝胶法制备聚合物膜的过程中,非对称膜结构的形成主要受控于铸膜液的热力学特性和其在凝胶浴中的动力学传递过程.在相分离过程中,聚合物富相形成膜的主体结构,而聚合物贫相将形成膜孔.新形成的膜结构并不稳定,通过固化过程后形成稳定的多孔结构。

PVDF超滤膜相转化制备方法及其改性的研究进展

PVDF超滤膜相转化制备方法及其改性的研究进展
滤膜因其具有力学性能优良、 韧性好、化学稳定性好、不易被酸碱腐蚀等优点而 备受到人们青睐[1 ]。PVDF 超滤膜大多采用相转化 法制备,工艺简单,操作方便。但 PVDF 超滤膜在使 用过程中仍存在一些问题,较强的疏水性易使膜孔 阻塞、使膜体受到污染,膜清洗困难[ 2 ]。因此提高 PVDF 膜的亲水性能,防止膜污染对于 PVDF 膜的 进一步的推广与应用显得尤为重要。本文从相转化 法制备的影响因素以及膜改性两方面对 PVDF 超滤 膜的研究进展进行综述。
LIU Chun-tao, JIN Zheng,HOU Hai-ge,SUN Yong-rong and WEN Lei (College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080) Abstract: The newly research progress of poly (vinylidene) fluoride (PVDF) membrane in preparation and modification is reviewed. The research focuses on the effects of solvents and non- solvents on the pore and structure of PVDF membranes by phase inversion. The modification methods of PVDF ultrafiltration membranes including substance modification and surface modification are introduced. The substance modification method includ - ed physical blending and copolymerization, the surface modification included radiation induced grafting and low-temperature plasma. It was evident that physical blending was the main trend of modification of PVDF ultrafiltration membrane. The PVDF ultrafiltration membrane as a new technique in water treatment application is introduced briefly. Key words: PVDF; ultrafiltration membrane; preparation; modification

PVDFPI阳离子交换膜的制备及脱盐性能

PVDFPI阳离子交换膜的制备及脱盐性能

第41卷第1期(0(1年(月膜科学与技术MEMBRANE SCIENCE AND TECHNOLOGYVol.41No.1Feb.(0(1I研究报告#PVDF/PI阳离子交换膜的制备及脱盐性能王乾杰1,李红海"!苏保卫($(1.青岛科技大学化工学院,青岛266042; 2.中国海洋大学化学化工学院,青岛266100)摘要:通过浸没沉淀相转化的方法制备了聚偏氟乙烯(PVDF)/聚酰亚胺(PI)共混膜,使用4,4'-二氨基二苯乙烯-2,2'-二磺酸与三乙胺(DASD-TEA)溶液修饰共混膜表面,制备出PVDF/PI阳离子交换膜.探究了DASD-TEA溶液的浸泡时间、浸泡温度、DASD浓度与PI 的浓度对PVDF/PI阳离子交换膜脱盐率的影响,得出最优的铸膜液配比为质量分数19.0的PVDF、1.0%的PI和80.0%的N,N-二甲基甲酰胺(DMF);最佳的DASD-TEA溶液修饰条件为质量分数0.03%的DASD,浸泡时间为10.0cin,浸泡温度为50.0°C.最佳条件下,PVDF/PI阳离子交换膜的离子交换容量为0.32mmol/g,含水率为3&6%,纯水渗透率为500L/(m2.h.MPa),接触角为81.9°,膜面电阻为2.96!-cm2.采用3组膜对的电渗析装置在电压4V和流量40L/h下对2000mg/L的NaCl溶液进行了120min的脱盐实验,PVDF/PI阳离子交换膜的脱盐率为商‘化阳离子交换膜的1.33倍,其脱盐性能高于商‘化阳离子交换膜.关键词:阳离子交换膜;表面修饰;电渗析;浸没沉淀相转化;交联中图分类号:TQ028.8文献标志码:A文章编号:10078924(2021)01000109doi:10.16159/ki.issnl007-8924.2021.01.001化工生产中经常会产生大量的高盐度废水'1S2(,成分复杂,除了接近饱和的盐(氯化钠)以外,还会有一些有机杂质、水溶性的反应物、产物和副产物等:3s4:.高盐度废水的处理一直是化工、环保领域的难点.目前,处理化工废水的主要方法有蒸发结晶、电化学法、离子交换法、吸附法以及膜分离法等24一5(・高盐度废水通常采用蒸I6的方式进行处理,需要消耗大量的能量,而且其运行成本相当高.因此,采用低能耗和低成本的方法进行高盐度废水的处理在化工、环保方面具有非常重要的意义.随着膜分离技术的发展,使用电渗析技术处理含盐废水受到广泛关注'7(.电渗析技术具有设备材质要,和行成,,长,浓缩倍率高,可拆卸清洗,操作方便等特点匚8一9(,化工物分离等分离领域应用前离子交换膜是电渗析技术的关键.离子交换膜分为均相离子交换膜和异相离子交换膜.目前商品化离子交换膜主要是异相离子交换膜,该膜制备过程简单,应用广泛,但异相离子交换膜存在化学性能不稳定、活性功能基团结合不牢固等缺点10•与其相比,均相离子交换膜的活性功能基团与膜高分子骨架是以化学键结合的,活性功能基团结合牢固,因此结构均匀稳定,电化学性能优良口1,近年来受到广泛关注•离子交换膜性能的优异主要取决于两方面,一方面为选择良好的膜材料,另一方面为制备出性能优异的活性功能基团,大致从这两方面提高离收稿日期:2020-03-08;修改稿收到日期:2020-05-17第一作者简介:王乾杰(1994-),男,山东聊城人,硕士生,研究方向为传质与分离工程.$通讯作者,李红海,E-mail:lihonghai@;苏保卫,subaowei@引用本文:王乾杰,李红海,苏保卫.PVDF/PI阳离子交换膜的制备及脱盐性能[口膜科学与技术,021,1(1):1—9. Citation:Wang Q J,Li H H,S u B W.Preparation and desalination performance of PVDF/PI cation exchange membrane [J(.Membrane Science and Technology(Chinese),2021,41(1):1一9.-2-膜科学与技术第卷子交换膜的脱盐性能•均相膜活性官能基团的修饰可大致分为以下几类:!)将活性功能基团以化学键的方式修饰在离子交换膜上;(2)将聚合物进行功能化,再进行溶解成铸膜液刮制成膜;(3)将某单体进行缩聚或者聚合,该单体应含有离子交换基团或者具有电荷基团,并与另一种单体形成共聚物'2(;(4)聚合物共混改性,如Zhao等'3(以聚乙烯毗咯烷酮(PVP)和主链磺化聚MN(SPES)为原料,加入导电聚苯胺(PANI),制备了复合阳离子交换膜(C-CEMS),增强了膜的离子电导率和脱盐性能•近年来,国内外研究人员在开发高选择性的离子交换膜方面开展了大量的研究工作口2"4_切.目前,聚苯乙烯(PS)、聚MN(PES)、聚乙烯醇(PVA)、聚丙烯[(PAN)和聚偏氟乙烯(PVDF)等聚合物材料相继用于离子交换膜的制备:10].聚偏氟乙烯(PVDF)是由偏氟乙烯聚合而成的一种线性半结晶聚合物,耐高温,机械强度高,并具有极高的化学稳定性,耐酸碱、抗氧化性,且成膜性能良好,是一种很好的膜材料.PVDF疏水性良好,能有效地减少水的迁移,这对于离子交换膜是有利的•但PVDF 材料不带电荷,需与荷电聚合物共混,以增加其离子交换容量•但荷电聚合物一般亲水性较强,PVDF疏水性强,二者很难实现分子尺度的共混,从而影响离子交换膜的电化学性质稳定性•聚酰亚胺(PI)是主链上含有酰亚胺环(一CO-N-CO―)的一类特种工程材料,无毒,具有优良的机械性能和热稳定性. P1可以与PVDF实现分子水平上的共混.P1的亚胺环可以与有机胺发生酰胺化反应,从而实现PI的改性,提高其性能•采用荷电基团的胺基化合物交联PI,发生酰胺化反应,可以实现PI的荷电化.4,4'-二氨基二苯乙烯-2,2'-二磺酸(DASD)含有两个胺基,能与PI发生交联反应,从而以化学键的方式将磺酸基团引入到PI主链上•本研究将PVDF与PI 共混,通过浸没沉淀相转化的方法制备平板膜,并采用DASD进行表面修饰,制备出具有增强离子选择透过性的阳离子交换复合膜,并探究DASD溶液的浸泡时间、浸泡温度、浓度以及铸膜液中的PI浓度等对离子交换膜脱盐性能的影响.1实验材料和方法1.1药品PVDF购自于上海有机氟材料有限公司;PI购自奥地利HP polymer GMbH公司;DMF(质量分数99.5%)购自天津富宇精细化工有限公司;DASD (质量分数95%,相对分子质量370.39)购自麦克林生化科技有限公司;TEA(分析纯),氯化钠(NaCl,分析纯),氢氧化钠(NaOH,分析纯),浓盐酸(HC1,质量分数36%〜37%)购自国药集团化学试剂有限公司;聚酯(PP)无纺布购自日本帝人公司;商品聚乙烯离子交换膜(化离子交换膜)购自华膜科技有限公司•去离子(DI)水为实验室自制. 1.2仪器电导率仪(DDSJ-308A),上海仪电科学仪器股份有限公司;离心机(TDL-5A),上海安亭科学仪器厂;刮膜机(H L KG3125),苏州圣垦自动化有限公司;真空干燥箱(DZF-6020),上海精宏实验设备有限公司;电渗析实验装置,实验室自制;磁力搅拌器(DF-101S),河南予华仪器制造有限公司;电子天平(CP-214),奥豪斯仪器(上海)有限公司;恒温水浴槽(SYP-$),南京桑力电子设备厂.1.3离子交换膜的制备PVDF与PI共混膜的制备:在锥形瓶中配制铸膜液PVDF质量分数19%PI质量分数分0.5%、1.0%、1.5%、2.0%,其余为DMF.将锥形中12h"12h脱泡•在温度为(25士2)°C、湿度为45%士2%的条件下"将铸膜液有聚的上刮膜"刮膜机刮与间的离160m,空气蒸发时间为15s,随后立即放入25C 恒温水浴槽中,发生相转化,固化成膜.10min后将膜从玻璃板上取下,保存在DI水中,制得PVDF与PI共混膜,命名为PVDF-P.DASD饰的阳离子交换膜的:分DASD质量分数为0.01%、0.03%、0.06%、0.09%、0.12%、0.18%的DASD-TEA水溶液,其中TEA 与DASD的质量分数相同.将PVDF-P分别浸泡在30、40、50、60C的DASD-TEA溶液中,浸泡时间分别为5、10和20min,使其充分修饰膜表面,制备出DASD修饰的PVDF/PI阳离子交换膜,命名为PVDF-P-D.对照膜(纯PVDF膜)的制备:铸膜液中PVDF 的质量分数为19%,不加入PI,其它制膜条件同PVDF/PI共混膜"的膜PVDF& DASD具有两个伯胺基和两个磺酸基,与间苯二胺和PI的亚胺基团发生的开环交联反应相似'6(,DASD的伯胺基团可以与PI 的亚胺基团发第1期王乾杰等:PVDF/PI阳离子交换膜的制备及脱盐性能・3・生交联反应,生成酰胺,使得PVDF-P成功修饰上磺酸基团.PI与DASD反应式如图1所示.图1PI与DASD反应机理Fig.1Reaction mechanism between PI and DASD1.4PVDF/PI阳离子交换膜的表征将实验样品膜用DI水洗净,并在60C真空干燥箱中干燥48h放置于洁净的样品袋中备用.采用傅里叶变换红外光谱仪(ATR-FTIR,Magna-560,美国Nicolet公司)表征PVDF、PVDF-P及PVDF-PD表面的化学结构及组成;采用扫描电子显微镜(SEM,S-4800,日本Hiachi公司)表征膜的表面形貌.1.5PVDF/PI阳离子交换膜的性能参数测试1.5.1接触角(CA)采用光学接触角测量仪(DSA100,德国Kruss 公司)通过静态悬滴法测定膜表面接触角•为减小误差,每个膜片样品上测试3个位置处的接触角,取其平均值为该样品的接触角.待测膜片均在真空干燥箱(一0.095MP j50°C)中处理24h后进行接触角测1.5.2离子交换容量(EC)采用酸碱滴定法测定PVDF-PD的IEC.取适量PVDF-PD置于1mol/L的HCl溶液中浸泡12h并间歇振荡,使交换基团完全转变成H型,转型如式(1)所示.RSO3Na+HCl%RSO3H+NaCl(1)12h后将其取出,用去离子水清洗去除膜表面残留的HCl溶液,用滤纸拭去膜表面附着的水分,用电子天平称取离子交换膜的质量%w,将离子交换膜放入三角瓶中,并加入50mL浓度为1mol/L的NdCl溶液,放入超声振荡器中12h.加入5滴酚L 指示剂,用0.025mol/L NaOH溶液滴定至终点(溶液变为淡粉色).IEC的计算公式为:I=$NaOH X V NaOH%w(2)式中:IEC为离子交换容量,mmol/g;C joh为NaOH液体浓度,mol/L;V noh为N e OH液体体积" mL1.5.3含水率取适量PVDF、PVDF-P、PVDF-P-D膜样品放置于去离子水中在室温环境下浸泡24h使膜含水量呈饱和状态,然后用滤纸拭去膜表面的水分,再用电子天平准确称取湿膜的重量%,然后将湿膜放・4・膜科学与技术第41卷入真空干燥箱中(一0.095MPa,50G)干燥,直至膜的质量不再发生变化,准确称量干燥后膜的质量"1•含水率的计算公式为:w t d m w~m d X100@⑶1.5.4膜的水通量采用自制超滤错流评价装置对PVDF.PVDF-P.PVDF-PD膜进行纯水通量测试.将膜样品置于膜池中,在0.15MMJ压力下预压30mim然后在0.1MPa下测量膜水透过量.纯水通量的计算式为:j=Q⑷Jw*+宀式中:J x为膜的纯水通量,L/(m2.h);Q为%时间内透水体积丄;+为膜的有效面积,m2;*为测试时间,I1.5.5膜面电阻采用上海辰华041660:型电化学工作站,通过交流阻抗谱来测试膜的阻抗值•测试扰动电压为5mV,阻抗谱测试的频率范围为10-2〜106Hz.将制备好的离子交换膜放置在0.5mol/L Na01溶液中浸泡12h后,再进行测试.膜面电阻计算公式为:R1=RXS(5)式中:,i为膜面电阻,!・cm2;S为膜与电极的接触面积,为0.503cm?R为相角为零时膜的阻抗1.6PVDF/PI阳离子交换膜的性能评价在电压4V、流量40L/h下,采用3个膜对的电渗析装置对2000mg/L Na01溶液进行120min 脱盐实验.实验电渗析器电极板采用钛镀钉电极,离子交换膜的尺寸为10cmX15cm,膜的有效面积为70cm?•为了保护电极,用阳膜靠近电极"日膜和阴膜(商品阴离子交换膜)分别为3张和2张.采用一级一段式组装,工艺流程如图2所示.淡水槽、浓水槽和极水槽都装入1L实验用水,浓水、淡水和极水各自独立循环,每隔20min取一次淡水样,测其电导率.电渗析装置对淡水室内溶液盐度去除率用脱盐率表示,它是反映离子交换膜性能好坏的重要参数.脱盐的计算式:/=凤一&X100%(6)式中:.为脱盐率,为溶液初始电导率S/ cm;/t为电渗析器运行*后溶液的电导率S/cm.1.淡水槽2.浓水槽;3.极水槽;4.电源图2实验室电渗析器装置的工艺流程图Fig.2The process flow schematic of laboratoryelectrodialysis installation2结果与讨论*1PVDF/PI离子交换膜的表征PVDF、PVDF-P和PVDF-P-D膜的红夕卜光谱图如图3所示.3种膜的红外光谱非常相近,原因是PVDF的含量远大于PI的含量,所以,PVDF-P 和PVDF-P-D膜上显示的主要是PVDF的特征峰.PVDF膜在840.1070.1177和1407cm s1存在特征吸收峰,其中840和1047cm s1是一CH2拉伸振动峰,1070和1177cm"1是C—F基团特征峰'7(.PVDF与PI共混后,在1723cm"1处出现了一个微弱的峰,这是典型的聚酰亚胺的摄基C=O 的对称伸缩振动峰'8一19(证明PI与PVDF成功共混.PVDF/PI共混膜经过DASD修饰后, 1723cm"1处的峰减弱,证明DASD与PVDF-P发生反应.由文献可知,DASD存在1130、1170和图3PVDF,PVDF-P和PVDF-P-D膜的红外光谱图Fig.3Infrared Spectra of PVDF,PVDF-P andPVDF—P_D第1期王乾杰等:PVDF/PI阳离子交换膜的制备及脱盐性能・5・1030cm—13征峰,为DASD中的〉S=O拉伸振'0—21(・但由于PI相对含量较低,经过DASD修饰后磺酸、酰胺量也较低,因此磺酸的红外吸征非常显.PVDF.PVDF-P和 PVDF-P-D膜的表面扫描电镜图如图4所示.PVDF有明显H 有较的“片层”状结构'2(.共混膜PVDF-P 较为疏松"显的孔结构如图4(b)是由于PI相对于PVDF较为亲水,所形成的共混铸膜液发生化中,PI更易向[扩散"易共混,导致孔结构的形成由图4(b)与图4(c)比较可以看出,经过DASD修饰后"PVDF-P-D膜孔结构数量少"孔径减小.研究的各种离子交换膜的离子交换容量、含水率、纯水通量、接触角和膜面电阻性能参数值如表1,表中也列出了离子交换膜的性参数(a)PVDF表面形貌(b)PVDF-P表面貌(c)PVDF-P-D表面形貌图4PVDF,PVDF-P和PVDF-P-D膜的表面扫描电镜图Fig.4SEM images of surface microscope of PVDF,PVDF-P and PVDF-P-D membranes表1实验所用离子交换膜参数Table1Parameters of the ion exchange membranes used in the experiment目阴膜阳膜PVDF膜PVDF-P膜PVDF-P_D膜IEC/(mmol-g—1) 1.82——0.32水率/%404525.6383386纯水渗透率/(L・m-2・h-1・MPa-1)'100'100311470500接触角/(°)106.3101.589.58281.9膜面电阻/(!*cm2)(17(1516.6 4.37 2.9622浸泡时间对脱盐的影响将PVDF-P!质量分数19.0%的PVDF1.0%的PI80.0%的DMF)分30C的DASD-TEA溶液(质量分数0.03%的DASD".03%的三乙胺"9.94%的去离子水)中5)0和20min,然后进行脱盐实验"吉果如图5•5可以看出,脱盐率随运行时间持续上升.在电渗析脱盐120min后,浸泡5、10、20min的PVDF-P-D脱盐率分别为11.95%、19.44%、14.39%,浸泡10min的离子交换膜脱盐效果最佳.从2h脱盐看"三20min时脱盐差大"0min时脱盐化较大"0min后脱盐率上升,未出现式增长•在外加电压的作用下,脱盐率经过一上升期,脱盐率的升高主要膜的离子交换量,当离子交换量达到最大后,脱盐率的上度"旦仍呈上-020406080100120脱盐运行时间/min图5不同浸泡时间所制备的离子交换膜的脱盐率随运行时间的变化Fig.5The variation of the desalination rate of the ion exchange membranes prepared at different soaking timewith running time・6・膜科学与技术第41卷势2.当DASD修饰时间较短时,DASD与PI未能反应完全,离子交换膜携带的磺酸基团很少,离子交换能力较弱,脱盐性能下降;如DASD修饰时间过长,PI在水溶液中易水解'6(长时间浸泡会导致膜结构的损坏,甚至造成离子交换膜更严重的缺陷,致使脱盐能力严重下降•综上分析,选择最佳DASD-TEA溶液浸泡时间为10min.23浸泡温度对脱盐率的影响将PVDF-P!质量分数19.0%的PVDF10%的PI80.0%的DMF)浸泡在DASD-TEA溶液(质量分数0.03%的DASD".03%的三乙胺,99.94%的去离子水)中10min,改变浸泡溶液温度,探究不同的DASD-TEA溶液温度对脱盐性能的影响,结如6图6不同浸泡温度下所制备的离子交换膜脱盐率随运行时间的变化Fig.6The variation of the desalination rate oftheionexchangemembranespreparedatdi f erentsoaQingtemperaturewithrunningtime从图6可知,在电渗析脱盐120min浸泡温度的不同影响到脱盐的效果当DASD-TEA溶液浸泡温度为30)0)0)0C运行120min脱盐率分别为19.44%)0.06%.26.68%.21.45%.从脱盐趋势来看,在30)0)0C浸泡下,脱盐20min后,脱盐率缓慢上升;在50C浸泡下"0min后脱盐率的上升速度明显高于其它浸泡温度•当浸泡温度为50 C时,DASD与PI反应较为充分,使得离子交换膜磺酸基团增多,从而使离子交换膜具有较强的离子交换能力,呈现出较高的脱盐率•随着浸泡温度的升高,脱盐率也会相应提高,说明提高温度使得DASD 与PI能够更容易发生交联反应更容易修饰上较多的磺酸基团,大大提高了离子交换能力•当浸泡温度为60C时,温度过高使得PI在水溶液中加速水解,导致只有少量PI与DASD发生交联反应,使得离子交换膜携带较少磺酸基团,致使脱盐率下降'7(.因此,没有再继续提高浸泡温度•在实验选定的浸泡温度区间30〜60°C内,确定最佳浸泡温度为50C24不同PI浓度对脱盐率的影响固定PVDF质量分数为19.0%,制备不同PI 浓度的PVDF-P,并将其浸泡在50°C、质量分数0.03%的DASD-TEA溶液中10min,探究不同PI 浓度对脱盐率的影响,结果如图7所示.图7不同PI质量分数下所制备离子交换膜的脱盐随行时间的化Fig.7The variation of the desalination rate ofthe ion exchange membranes at different PIconcentration with operation time从图7可知,PI质量分数为1.0%、1.5%时,脱盐效果较好.其中质量分数为1.0%时,脱盐120mn后,脱盐率最高,但是从脱盐趋势来看,PI 质量分数为1.5%时,在脱盐进行60min时,已达到脱盐最佳,60min之后脱盐率趋于平衡.从不同PI浓度的离子交换膜脱盐趋势来看,外加电压40mn后,脱盐率的上升幅度趋缓,但仍缓慢上升.未加PI的离子交换膜与加入PI的离子交换膜脱盐率相差较大•当PI质量分数为0.5%时,PI浓度较低,经DASD修饰后,PVDF-P-D所带的磺酸基团较少"离子交换较"脱盐较;PI质量分数为1.0%和1.5%时,与其它PI浓度的离子交换膜相比脱盐率更高,说明该浓度下的离子交换膜比度的离子交换膜有磺酸更;PI 质量分数为2.0%时,铸膜液浓度高,并且更黏稠,使得PVDF与PI不能充分均匀分散,致使大量PI第1期王乾杰等:PVDF/PI 阳离子交换膜的制备及脱盐性能・7・不能与DASD 发生交联反应,导致膜缺陷较多,脱 盐能力降低•综合考虑,铸膜液中较优的PI 质量分数为1.0%和1.5%.2.5不同浓度的DASD 对脱盐的影响将 PVDF-P !质量分数 19% PVDF,1.5%PI "79. 5%DMF )浸泡在50 G 不同浓度的DASD-TEA溶液中10 min,探究不同浓度的DASD 对脱盐率的影响,结果如图8所示.3020151052520 40 60 80 100 120脱盐运行时间/min质量分数->-0.01%+ 0.03%* 0.06% ” 0.09% ■0.12% «0.18%图8不同质量分数DASD-TEA 溶液下所制备离子交换膜的脱盐率随运行时间的变化Fig. 8 The variation of the desalination rate of the ion exchange membranes prepared at different concentrationof DASD-TEA solution with running time从图8可知,从低浓度到高浓度的DASD- TEA 溶液对脱盐率影响不同.DASD 质量分数为0. 03%、0. 06%、0. 09%,脱盐效果较好;DASD 质量 分数为0. 01%和0. 18%,脱盐效果较差,其中质量分数为0. 03 %脱盐效果最佳.从整体脱盐趋势来看" 脱盐实验进行40 min 后,浸泡不同浓度DASD-TEA 溶液的PVDF-PD 脱盐率普遍上升趋势变缓,其中浸泡质量分数为0. 03%.0. 06%脱盐上升趋势明显高于其它浓度•当DASD-TEA 溶液质量分数为0. 01%时,DASD 含量较少,使得大部分PI未能与DASD 发生交联反应,携带磺酸基团较少"导致脱盐率较低.由于DASD 相对分子质量很小"若DASD 浓度过大,过多的DASD 会渗透在膜表 面,产生强烈的静电排斥作用,导致Nd 十与磺酸基团交换受阻,导致脱盐率下降'8(.综合考虑,选择 DASD 溶液的 质量分数 003%&根据上述优化结果,进行了重复性实验,分别制 备出PI 质量分数为1 %和1.5%的PVDF-P 膜,并 在上述最佳交联条件(浸泡在50 °C 、质量分数为0. 03 %的DASD-TEA 溶液,浸泡10 min )下交联,然 进行脱盐 实 "结 如 9 & "PI 质量分数分别为1 0%、1. 5%的PVDF-PD 脱盐效果相差不大,并且与图7的结果基本一致,证明重复性很好.综合考虑成本因素,选择PI 最佳质量分数为1. 0%.图9 PI 质量分数分别为1.0%、1.5%的离子交换膜脱盐 随 行时间 的 化Fig9 ThevariationofthedesalinationrateoftheionexchangemembranesatPIcontentof10% and1.5 % with operation time2.6与商品离子交换膜的脱盐性能对比在相同条件下,将上述优化条件下制备的PVDF-PD 阳离子交换膜与商品化阳离子交换膜进行脱盐实验对比,结果如图10所示.图10 PVDF-PD 膜和商品化阳 离子交换膜的 脱盐 随 行时间 的 化Fig10 ThevariationofthedesalinationrateofPVDF-P-D and the commercial cationexchangemembranewithrunningtime从图10中可见,在相同条件下"PVDF-PD膜的脱盐率比商品化阳离子交换膜提高了 1. 33倍,这说明PVDF-PD膜的脱盐性能明显优于商品化*8*膜科学与技术第41卷阳离子交换膜.3结论本研究将PVDF与PI共混,通过浸没沉淀相转化法制备平板膜,并采用DASD进行表面修饰,以化学键的方式将磺酸基团引入膜高分子骨架,制备出具有增强离子选择透过性的均相阳离子交换复合膜,并得到了最优制膜条件:质量分数19.0% PVDF,1.0%PI,浸泡时间为10min,浸泡温度为50C, DASD-TEA溶液质量分数为0.03%.所制备的阳离子交换膜具有多孔结构,其含水率为38.6%,水渗透率为500L/(m2-h-MPa),接触角为81.9。

PVDF超滤膜的制备及其成膜机理研究

PVDF超滤膜的制备及其成膜机理研究
动力学计算方面假设膜的形成过程是溶剂和非溶剂的反方向相互扩散过程建模过程中考虑了由扩散导致的对流对膜厚度的影响得出聚合物浓度在膜厚度方向分布的数学表达式以及界面扩散通量随时间分布膜厚度随时问变化的数学表达式
Y 9口,:_726
洳≥:≥~嘧
硕士学位论文

论文题目里迎E超逮腿数剑釜盈墓盛照扭堡硒塞
作者姓名 指导教师
研究了成膜条件对膜的结构与性能的影响。PVDF浓度的增加会使膜结构更加致密。 对不同溶剂而言,用翻ⅥF、DMAc和DMSO作为溶剂时,膜内部易形成指状孔,用TEP 作溶剂时,则易形成网络状孔。对不同添加剂而言,LiCl和磷酸作添加剂会使膜表面变致 密,PVP易于形成疏松性结构,甘油使膜内孔的连通性好,而水作添加剂时,有利于膜表 面孔密度高、孔径均一。对凝胶浴而言,当凝胶浴中加入弱凝胶剂对成膜的影响与对聚膜 液进行预蒸发所得到的效果类似,都会使膜形成多孔的表面,同时抑制内部指状孔的生成。 另外,凝胶浴温度升高可以抑制结晶现象,并使膜表面孔径和孔密度增加。研究结果表明, 当制膜液组成为78%DMAc、17%PVDF和5%甘油,以50。C纯水为凝胶浴时,制得表面
excellent physical—chemical characteristics,was used as membrane material.Based on
Flory。Huggin’S theory and Fick’S law,Multi—component phase diagrams and coagulation paths were obtained.The calculation results were examined with the experimental results.
致密、截面结构为指状孔,孔连通性较好的超滤膜。在O.tMPa下,水通量为83L/m2/^, 对牛血清白蛋白的截留率为92%。 关键词:聚偏氟乙烯,超滤膜,热力学模型,动力学模型,成膜机理

浸入沉淀相转化法制膜

浸入沉淀相转化法制膜

浸入沉淀相转化法制膜一、本文概述本文将全面介绍“浸入沉淀相转化法制膜”的原理、过程、影响因素以及应用前景。

浸入沉淀相转化法是一种重要的膜制备技术,通过控制溶液中的化学反应,使溶质在基材表面形成一层具有特定结构和功能的膜层。

这种方法具有操作简便、成膜均匀、可调控性强等优点,因此在膜分离、水处理、化学反应控制等领域具有广泛的应用。

本文将从理论和实验两个方面对浸入沉淀相转化法制膜进行深入研究,以期为该技术的进一步优化和应用提供有益的参考。

二、浸入沉淀相转化法制膜技术概述浸入沉淀相转化法(Dip-Coating and Phase Inversion Method)是一种常用的制膜技术,尤其在制备高分子膜领域具有广泛的应用。

该方法结合了浸渍和相转化的原理,通过控制高分子溶液在支撑体上的浸渍和随后的相转化过程,实现高分子膜的形成。

浸入沉淀相转化法制备的膜材料具有优良的物理和化学性能,如高机械强度、良好的化学稳定性和渗透性等,因此在分离、过滤、膜反应等多个领域具有潜在的应用价值。

在浸入沉淀相转化法制膜过程中,高分子溶液首先被涂覆或浸渍在支撑体上,然后通过控制温度、溶剂蒸发速率或引入非溶剂等手段,使高分子溶液发生相转化,即从液态转变为固态,从而在支撑体上形成一层连续、均匀的高分子膜。

相转化的过程涉及到高分子链的重新排列和聚集,以及溶剂与非溶剂之间的相互作用,这些因素共同决定了最终形成的膜的结构和性能。

浸入沉淀相转化法制膜的优点在于操作简单、易于控制膜的厚度和结构,并且可以通过调整溶液组成、浸渍条件和相转化参数来调控膜的微观结构和性能。

该方法还适用于制备多层复合膜和功能性膜材料,通过在不同层之间引入不同的高分子或添加剂,可以实现膜材料性能的定制和优化。

然而,浸入沉淀相转化法制膜也存在一些挑战和限制。

例如,在相转化过程中可能会出现膜材料收缩、开裂或缺陷等问题,这些都会影响膜的完整性和性能。

对于某些特定的高分子材料,可能需要特殊的溶剂或非溶剂才能实现有效的相转化,这增加了制膜过程的复杂性和成本。

相转化法的湿法成膜机理

相转化法的湿法成膜机理

相转化法的湿法成膜机理
相转化法是一种常见的成膜技术,它利用溶液中的化学反应使得溶液中的某些物质从溶解态转化为沉淀态,从而形成薄膜。

湿法相转化法成膜的机理是: 当溶液中的反应物A、B混合均匀后,它们会在溶液中发生反应,生成一种带有化学活性的物质C。

此时,如果将含有C的溶液涂覆在基材表面上,C会与基材表面上的某些化学物质发生反应,从而形成一层化学反应产物的薄膜。

这个过程是一个动态的过程,需要在合适的时间和条件下进行,否则会影响膜的质量和附着力。

同时,湿法相转化法成膜还需要考虑涂覆速度、涂覆厚度、涂覆次数等因素的影响,以确定最佳的成膜条件。

- 1 -。

相转化法制膜分析

相转化法制膜分析

一、相转化法制膜基本原理所谓相转化法制膜,就是配制一定组成的均相聚合物溶液,通过一定的物理方法使溶液在周围环境中进行溶剂和非溶剂的传质交换,改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,转变成一个三维大分子网络式的凝胶结构,最终固化成膜。

相转化制膜法根据改变溶液热力学状态的物理方法的不同,可以分为以下几种:溶剂蒸发相转化法、热诱导相转化法、气相沉淀相转变法、和溶液相转变法。

溶液相转化法也称溶液相转化法和浸入凝胶相转化法。

在以上几种相转化法中,溶液相转化法制备工艺简单,并且具有更多的工艺可变性,能够根据膜的应用更好的调节膜的结构和性能,于是成为制备微孔膜的主要方法。

溶液相转化法制膜过程至少包含3种物质,即聚合物、溶剂和非溶剂,成膜过程分为两个阶段。

第一阶段:分相过程,当铸膜液浸入凝固浴后,溶剂和非溶剂将通过液膜/凝固浴界面进行相互扩散,溶剂和非溶剂之间的交换达到一定程度,此时铸膜液变成热力学不稳定体系,于是导致铸膜液发生相分离。

这一阶段是决定膜孔结构的关键步骤,研究的内容有制膜体系的热力学性质以及传质动力学。

第二阶段:相转化过程,制膜液体系分相后,溶剂、非溶剂进一步交换,发生了膜孔的凝聚、相间流动以及聚合物富相固化成膜。

这一阶段对最终聚合物膜的结构形态影响很大,但不是成孔的主要因素,研究的内容主要是分相后到膜溶液相转化过程中的结构控制及其性能研究的固化这一过程,也称为凝胶动力学过程,相对于第一阶段的热力学描述和传质动力学研究,凝胶动力学研究的比较少。

二、成膜机理浸入沉淀相转化法所制备的聚合物膜常由表层和多孔底层两部分组成,表层的结构有致密和多孔两种,而不同的表层结构将影响膜的多孔底层的结构形态。

在浸入凝胶法制备聚合物膜的过程中,非对称膜结构的形成主要受控于铸膜液的热力学特性和其在凝胶浴中的动力学传递过程.在相分离过程中,聚合物富相形成膜的主体结构,而聚合物贫相将形成膜孔.新形成的膜结构并不稳定,通过固化过程后形成稳定的多孔结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相转化膜孔形成机理的研究进展
武 利 顺 ,孙 俊 芬 2 庆 瑞2 ,王
(. 1 山东省 菏泽学 院 化学 化工 系 ,菏泽 24 1 ; . 70 5 2 东华 大学 材 料学 院 ,上海 20 5 ) 0 0 1 摘 要 :系统地 总结 了近年 来 国 内外 学者对 相转 化膜 孔 形成提 出的各种机 理 , 进行 了分 类 . 并
示 在膜形 成过 程 中铸 膜 液 的 沉 淀路 线 . 当制 膜 液在 玻璃 板 上凝胶 沉 淀时 , 膜 的 断 面可 将 制 膜 液分 为 按
3层 ( 图 1 如 所示 ) :
聚合 物
1 表 面 张 力机 理
17 年 , t 等[ 在制备 醋酸纤维 素膜时根 92 Ma z 9 _
据 表面张 力理 论提 出 了孔 的形 成 机 理 . 们认 为 当 他 铸膜 液浸 入凝 固浴后 , 溶剂 立 即 向凝 固浴 中扩 散 . 由
于溶 剂 的减少 , 聚合 物相 的表 面张力 增加 , 当两 相 问
的界 面张 力为零 时 , 表面就 处 于亚稳 定状态 , 于微 对
淀 剂 图 1 膜 的形 成 过 程
膨胀力 之 和时 , 稀 相 核 之 间 的浓 相 会 断 裂 而 聚结 两 使稀 相核 生长 .
2 应力机理
Srtman¨ 于 17 根 据 在 表 面 的胶 体脱 tah n [] 95年
溶剂 收缩 产生 的应 力 提 出 了孔 的形 成 理 论 . 1 图 显
具有各 种各 样 的孔 结 构 l j关 于 膜 孔 的形 成 机 理 _ . l 国 内外 的学 者 一直 众说 纷 纭 , 目前 为止 也 没 有 一 到 个统一 的认 识 . 内的 一些 学 者 也 试 图将 膜 孔 的形 国 成方法 和机 理加 以分类 _ J但 目前还 没 有 人 将 相 6 , 转化膜孔 的形成机 理 加 以 系统 地 总 结 , 将 国内外 现 几种 主要 的论点综 述如 下 .
维普资讯
第 3期
武利顺 等 : 相转 化膜 孔形 成机理的研究进展
・ 7・ 8
合物 的贫 相 . 两相 处于 平 衡之 中 , 组成 可 用 B— 若 其 D 间的连线 表示 . 相 分 离 点 B, 合 物 中 含 有 高 在 聚 浓度 的溶剂 和 低浓度 的沉淀剂 , 因此可 以流 动 . 近 靠 凝 固浴 的聚合 物沉淀 时 间较 长 , 剂含 量较 少 , 淀 溶 沉 剂含 量较 多 , 因而 黏 度较 高 , D 点 时 聚 合 物 几 乎 到 全部 沉淀 . 在这 段 时间 内 , 淀 的聚合 物流 动而 形成 沉
了膜 母体 .
3 浓度梯度机理
18 9 0年 , re s I j 孔 的形 成 机 理 又 提 出 B on 等 l 对 2
了新 的观点 . 们把 铸 膜 液 的 分相 分 为液 一液 相 分 他 离 、 晶相 分离 和凝 胶相 分离 . 表皮 的形 成是 由于 结 膜
陆茵 [】 1 9 1 在 9 9年提 出动态 分相 的概 念 时提 到 表面 ( j 张力 的 问题 . 提 出在指 状孔形 成 过程 中 , 她 当浓相 的
1 )制膜 液 层 : 层 紧 靠玻 璃 板 , 的组 成 与 制 该 它 膜液 的初 始组 成 A 相近 , 少 有溶 剂从 该 层扩 散 出 很 来, 而沉 淀剂 也很少 扩散 到该层 中去 . 2 )流 动 的 聚 合 物层 : 层 位 于 沉 淀 点 B 和 固 该
Fi . F r t n p o e s so mb a e g1 o ma i rc se fme r n o
小 的温 度 、 压力 等其他 因素 的变 化都 比较敏 感 . 这样 非溶剂 的进 入就 会 引起 指 状 孔 的生 长 点 . 已经 固 与 化 的膜 表面 相 比 , 形成 的表 面 由于具 有 较 低 的 黏 刚 度, 具有 更快 的溶 剂扩散 速率 , 而保持 了指 状孔 的 从 生 长 . 种机 理提 出后并 没有 得到 充 分的发展 , 这 只有
维普资讯
第 2 卷 第 3期 7 20 0 7年 6月
膜科学与来自技术 Vo . 7 No 3 I2 .
Ⅳ /3 Ⅱ ^Ⅱ RANE S ENCE AND CHNOL0GY Cl TE
J n.2 0 u 07
文章 编号 :0 7—8 2 (0 7 0 —0 8 ~0 10 94 20 )3 0 6 5
膜 分离 过程是 一 门新 兴 的高 效 的分 离技 术 , 近 年来 其应 用越 来越 广泛 , 显示 出 旺盛的 生命 力 . 各种 膜过 程 和技术 不断 得 到 开发 和 利 用 , 备 了形 形 色 制 色 的分 离 膜 . 所有 的膜 的 制备 方 法 中相转 化 制 膜 在
法为 最常 用 的制 膜 方 法 , 通过 该 方 法 制备 的分 离 膜
化点D 之间. 该层 中制膜液 分为 聚合物的富相和聚
收稿 日期 : 05—0 20 9—0 ; 5 修改稿收到 日期 :20 —0 —1 06 3 0
作者 简介 : 武利顺 (99一) 男 ,山东省菏泽 市人 , 16 , 博士 , 事功能高分子膜的研究 .w —lh n 6 .o 从 ( u i u @13 cm) s
各 种形成 机理 都 可 以解释 一 定的 实验现 象 , 有一 定 的理论 基础 . 中稀相成 核机 理 正逐渐被 具 其 越 来越 多的 学者所认 同 , 并得到 不 断的 完善和补 充 .
关键 词 : ; ;相 转化 ; 理 ;稀相 膜 孔 机 中 图分类 号 : 0 8 8 TQ 2 . 文献标 识码 : A 内聚力小 于浓 、 相 间的 界 面 张力 和稀 相 核 长大 的 稀
相关文档
最新文档