函数中的任意和存在性
导数题中“任意、存在”型的归纳辨析

导数题任意以及存在的分类解析导数题是高考题中的常客,而且大都以压轴题的面目出现,所以拿下导数题是迈入高分段的标志。
导数题虽年年有,但却悄然之中发生着些改变。
这其中,尤以关于“任意”、“存在”的内容最为明显。
“任意”、“存在”可以说是导数题最为明显的特色,从早期单一型,发展到现今的混合型。
下面对此作一归纳。
一.单一函数单一“任意”型例1.已知函数()ln()f x x x a =-+的最小值为0,其中0a >。
(1)求a 的值;(2)若对任意的[0,)x ∈+∞,有2()f x kx ≤成立,求实数k 的最小值。
解析:(1)1()x a f x x a+-'=+,()f x ∴在(,1)a a --单调递减,在(1,)a -+∞单调递增,所min ()f x (1)01f a a =-=⇒=。
(2)设2()ln()g x kx x x a =-++,则问题等价于()0g x ≥对[0,)x ∈+∞恒成立,即min ()0g x ≥。
因为当0k ≤时,x →+∞时,()f x →-∞,所以0k >。
由22(21)()1kx k x g x x +-'=+,若2104k k-->,则当21(0,)4k x k -∈-时,()0g x '<,()g x 单调递减,()(0)0g x g <=,矛盾。
从而2104k k--≤,解得12k ≥。
即实数k 的最小值是12。
点评:“任意”的意思是不管x 取给定集合中的哪一个值,得到的函数值都要满足给定的不等式,它有两种形式:“对任意的x A ∈,()()a f x >≥恒成立”等价于“当x A ∈时,max ()()a f x >≥”;“对任意的x A ∈,()()a f x <≤恒成立”等价于“当x A ∈时,min ()()a f x <≤”。
二.单一函数单一“存在”型例2. 已知函数2()ln f x a x x =+(a R ∈),若存在[1,]x e ∈,使得()(2)f x a x ≤+成立,求实数a 的取值范围。
高考数学函数中存在性和任意性问题分类解析

函数中存在性与任意性问题分类解析全称量词、特称量词以及全称命题与特称命题在近几年新课标高考卷与模拟卷中频频亮相成为高考的热点问题、特别就是全称量词”任意”与特称量词”存在”与函数情投意合风火情深,火借风势、风助火威,大有逾演逾烈之势、两种量词插足函数,使得函数问题意深难懂神秘莫测,问题显得更加扑朔迷离难度大增,同时题目也因此显得富有变化与新意、解决这类问题的关键就是揭开量词隐含的神秘面纱还函数问题本来面目,本文通过典型题目分类解析供参考、1、,,使得,等价于函数在上的值域与函数在上的值域的交集不空,即、例1已知函数与函数,若存在,使得成立,则实数的取值范围就是()解设函数与在上的值域分别为与,依题意、当时,,则,所以在上单调递增,所以即、当时,,所以单调递,所以即、综上所述在上的值域、当时,,又,所以在在上单调递增,所以即,故在上的值域、因为,所以或解得,故应选、2、对,,使得,等价于函数在上的值域就是函数在上的值域的子集,即、例2(2011湖北八校第二次联考)设,、①若,使成立,则实数的取值范围为___;②若,,使得,则实数的取值范围为___解①依题意实数的取值范围就就是函数的值域、设,则问题转化为求函数的值域,由均值不等式得,,故实数的取值范围就是、②依题意实数的取值范围就就是使得函数的值域就是函数的值域的子集的实数的取值范围、由①知,易求得函数的值域,则当且仅当即,故实数的取值范围就是、例3已知,它们的定义域都就是,其中就是自然对数的底数,、(1)求的单调区间;(2)若,且,函数,若对任意的,总存在,使,求实数的取值范围、解(1)略;(2)依题意实数的取值范围就就是使得在区间上的值域就是的值域的子集实数的取值范围、当时,由得,故在上单调递减,所以即,于就是、因,由得、①当时,,故在上单调递增,所以即,于就是、因为,则当且仅当,即、②当时,同上可求得、综合①②知所求实数的取值范围就是、3、已知就是在闭区间的上连续函,则对使得,等价于、例4已知,其中、(1)若就是函数的极值点,求实数的值;(2)若对任意的都有成立,求实数的取值范围、解(1)略;(2) 对,有,等价于有、当时,,所以在上单调递增,所以、因为,令得,又且,、①当时,,所以在在上单调递增,所以、令得这与矛盾。
函数、导数“任意、存在”型问题归纳

函数导数任意性和存在性问题探究导学语函数导数问题是高考试题中占比重最大的题型,前期所学利用导数解决函数图像切线、函数单调性、函数极值最值等问题的方法,仅可称之为解决这类问题的“战术”,若要更有效地彻底解决此类问题还必须研究“战略”,因为此类问题是函数导数结合全称命题和特称命题形成的综合性题目.常用战略思想如下:题型分类解析一.单一函数单一“任意”型战略思想一:“∀x A ∈,()()a f x >≥恒成立”等价于“当x A ∈时,max ()()a f x >≥”;“∀x A ∈,()()a f x <≤恒成立”等价于“当x A ∈时,min ()()a f x <≤”. 例1 :已知二次函数2()f x ax x =+,若∀[0,1]x ∈时,恒有|()|1f x ≤,求实数a 的取值范围. 解:|()|1f x ≤,∴211ax x -≤+≤;即211x ax x --≤≤-;当0x =时,不等式显然成立,∴a ∈R.当01x <≤时,由211x ax x --≤≤-得:221111a x x x x --≤≤-, 而min 211()0x x-=,∴0a ≤. 又∵max 211()2x x--=-,∴2,20a a ≥-∴-≤≤,综上得a 的范围是[2,0]a ∈-. 二.单一函数单一“存在”型战略思想二:“∃x A ∈,使得()()a f x >≥成立”等价于“当x A ∈时,min ()()a f x >≥”;“∃x A ∈,使得()()a f x <≤成立”等价于“当x A ∈时,max ()()a f x <≤”.例2. 已知函数2()ln f x a x x =+(a R ∈),若存在[1,]x e ∈,使得()(2)f x a x ≤+成立,求实数a 的取值范围.解析:()(2)f x a x ≤+⇒x x x x a 2)ln (2-≥-.∵[1,]x e ∈,∴x x ≤≤1ln 且等号不能同时取,所以x x <ln ,即0ln >-x x ,因而x x xx a ln 22--≥,[1,]x e ∈, 令x x xx x g ln 2)(2--=],1[e x ∈,又2)ln ()ln 22)(1()(x x x x x x g --+-=', 当],1[e x ∈时,1ln ,01≤≥-x x ,0ln 22>-+x x ,从而0)(≥'x g (仅当x=1时取等号),所以)(x g 在],1[e 上为增函数,af (x )下限f (x )上限f (x )f (x )故)(x g 的最小值为1)1(-=g ,所以a 的取值范围是),1[+∞-. 三.单一函数双“任意”型战略思想三:∀x R ∈,都有"f ()f x 的最小值和最大值,1|x - 例3. 已知函数()2sin()25x f x ππ=+,若对∀x R ∈,都有12"()()()"f x f x f x ≤≤成立,则12||x x -的最小值为____.解 ∵对任意x ∈R ,不等式12()()()f x f x f x ≤≤恒成立, ∴12(),()f x f x 分别是()f x 的最小值和最大值.对于函数sin y x =,取得最大值和最小值的两点之间最小距离是π,即半个周期. 又函数()2sin()25x f x ππ=+的周期为4,∴12||x x -的最小值为2.战略思想四: ,,21A x x ∈∀1212()()"()"22x x f x f x f ++>成立 ⇔()f x 在A 上是上凸函数⇔0)(''≤x f例4. 在222,log 2,,cos y x y x y x y x ====这四个函数中,当1201x x <<<时,使1212()()"()"22x x f x f x f ++>恒成立的函数的个数是( )解:本题实质就是考察函数的凸凹性,即满足条件1212()()"()"22x x f x f x f ++>的函数,应是凸函数的性质,画草图即知2log 2y x =符合题意;战略思想五: ,,21A x x ∈∀1212()()"0"f x f x x x ->-成立⇔()f x 在A 上是增函数例5 已知函数()f x 定义域为[1,1]-,(1)1f =,若,[1,1]m n ∈-,0m n +≠时,都有()()"0"f m f n m n->-,若2()21f x t at ≤-+对所有[1,1]x ∈-,[1,1]a ∈-恒成立,求实数t 取值范围.解:任取1211x x -≤<≤,则12121212()()()()()f x f x f x f x x x x x --=--,由已知1212()()0f x f x x x ->-,又120x x -<,∴12()()0f x f x -<,即()f x 在[1,1]-上为增函数.∵(1)1f =,∴[1,1]x ∈-,恒有()1f x ≤;∴要使2()21f x t at ≤-+对所有[1,1]x ∈-,[1,1]a ∈-恒成立, 即要2211t at -+≥恒成立,故220t at -≥恒成立, 令2()2g a at t =-+,只须(1)0g -≥且(1)0g ≥, 解得2t ≤-或0t =或2t ≥.战略思想六: ,,21A x x ∈∀t x f x f ≤-|)()(|21(t 为常数)成立⇔t=min max )()(x f x f -例6. 已知函数43()2f x x x =-+,则对任意121,[,2]2t t ∈-(12t t <)都有≤-|)()(|21t f t f 恒成立,当且仅当1t =____,2t =____时取等号.解:因为12max min |()()||[()][()]|f x f x f x f x -≤-恒成立, 由431()2,[,2]2f x x x x =-+∈-,易求得max327[()]()216f x f ==,min 15[()]()216f x f =-=-, ∴12|()()|2f x f x -≤.战略思想七:,,21A x x ∈∀|||)()(|2121x x t x f x f -≤-⇔t x x x f x f <--|)()(|2121⇔)0(t |)('|>≤t x f例7. 已知函数()y f x =满足:(1)定义域为[1,1]-;(2)方程()0f x =至少有两个实根1-和1; (3)过()f x 图像上任意两点的直线的斜率绝对值不大于1.(1)证明:|(0)|1f ≤; (2)证明:对任意12,[1,1]x x ∈-,都有12|()()|1f x f x -≤. 证明 (1)略;(2)由条件(2)知(1)(1)0f f -==,不妨设1211x x -≤≤≤,由(3)知121221|()()|||f x f x x x x x -≤-=-,又∵121212|()()||()||()||()(1)||()(1)|f x f x f x f x f x f f x f -≤+=--+-122112112()2|()()|x x x x f x f x ≤++-=--≤--;∴12|()()|1f x f x -≤例8. 已知函数3()f x x ax b =++,对于12123,(0,)()x x x x ∈≠时总有1212|()()|||f x f x x x -<-成立,求实数a 的范围.解 由3()f x x ax b =++,得'2()3f x x a =+,当3(0,)x ∈时,'()1a f x a <<+,∵1212|()()|||f x f x x x -<-, ∴1212()()||1f x f x x x -<-, ∴11011a a a ≥-⎧⇒-≤≤⎨+≤⎩评注 由导数的几何意义知道,函数()y f x =图像上任意两点1122(,),(,)P x y Q x y 连线的斜率211221()y y k x x x x -=≠-的取值范围,就是曲线上任一点切线的斜率(如果有的话)的范围,利用这个结论,可以解决形如1212|()()|||f x f x m x x -≤-|或1212|()()|||f x f x m x x -≥-(m >0)型的不等式恒成立问题.四.双函数“任意”+“存在”型:战略思想八:12,x A x B ∀∈∃∈,使得12()()f x g x ≥成立min min ()()f x g x ⇔≥;12,x A x B ∃∈∀∈,使得12()()f x g x ≥成立max max ()()f x g x ⇔≥.例9.已知函数2()25ln f x x x x=--,2()4g x x mx =-+,若存在1(0,1)x ∈,对任意2[1,2]x ∈,总有12()()f x g x ≥成立,求实数m 的取值范围.解析:题意等价于()f x 在(0,1)上的最大值大于或等于()g x 在[1,2]上的最大值.22252()x x f x x -+'=,由'()0f x =得,12x =或2x =, 当1(0,)2x ∈时, ()0f x '>,当1(,1)2x ∈时()0f x '<,所以在(0,1)上,max 1()()35ln 22f x f ==-+. 又()g x 在[1,2]上的最大值为max{(1),(2)}g g ,所以有185ln 2()(1)35ln 2521135ln 282(115ln 2)()(2)22m f g m m m f g ⎧≥-≥⎧⎪-+≥-⎧⎪⎪⇒⇒⎨⎨⎨-+≥-≥-⎩⎪⎪≥⎩⎪⎩85ln 2m ⇒≥-,所以实数m 的取值范围是85ln 2m ≥-.战略思想九:“∀1x A ∈,∃2x B ∈,使得12()()f x g x =成立”⇔“()f x 的值域包含于.()g x 的值域”.例10.设函数32115()4333f x x x x =--+-. (1)求()f x 的单调区间.(2)设1a ≥,函数32()32g x x a x a =--.若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得10()()f x g x =成立,求a 的取值范围.解析:(1) '225()33f x x x =--+,令'()0f x ≥,即225033x x +-≤,解得:513x -≤≤,∴()f x 的单增区间为5[,1]3-;单调减区间为5(,]3-∞-和[1,)+∞.(2)由(1)可知当[0,1]x ∈时,()f x 单调递增,∴当[0,1]x ∈时,()[(0),(1)]f x f f ∈, 即()[4,3]f x ∈--;又'22()33g x x a =-,且1a ≥,∴当[0,1]x ∈时,'()0g x ≤,()g x 单调递减,∴当[0,1]x ∈时,()[(1),(0)]g x g g ∈,即2()[321,2]g x a a a ∈--+-,又对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得10()()f x g x =成立⇔[4,3]--⊆2[321,2]a a a --+-,即2321432a a a⎧--+-⎨--⎩≤≤,解得:312a ≤≤例11.已知函数1()ln 1()af x x ax a R x-=-+-∈; (1)当12a ≤时,讨论()f x 的单调性; (2)设2()24g x x bx =-+,当14a =时,若对1(0,2)x ∀∈,2[1,2]x ∃∈,使12()()f x g x ≥,求实数b 的取值范围;解:(1)(解答过程略去,只给出结论)当a ≤0时,函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增; 当a=21时,函数f(x)在(0,+∞)上单调递减; f (x )下限f (x )上限g (x )下限g (x )上限当0<a<21时,函数()f x 在(0,1)上单调递减,在1(1,1)a -上单调递增,在1(1,)a-+∞上单调递减; (2)函数的定义域为(0,+∞),f '(x )=x 1-a+21xa -=-221x a x ax -+-,a=41时,由f '(x )=0可得x 1=1,x 2=3. 因为a=41∈(0,21),x 2=3∉(0,2),结合(1)可知 函数f(x)在(0,1)上单调递减,在(1,2)上单调递增, 所以f(x) 在(0,2)上的最小值为f(1)= -21. 由于“对∀x 1∈(0,2),∃x 2∈[1,2],使f(x 1) ≥g(x 2)”等价于 “g(x)在[1,2]上的最小值不大于f(x) 在(0,2)上的最小值f(1)= -21”. (※) 又g(x)=(x -b)2+4-b 2, x ∈[1,2],所以① 当b<1时,因为[g(x)]min =g(1)=5-2b>0,此时与(※)矛盾; ② 当b ∈[1,2]时, 因为[g(x)]min =4-b 2≥0,同样与(※)矛盾; ③ 当b ∈(2,+∞)时,因为[g(x)]min =g(2)=8-4b.解不等式8-4b ≤-21,可得b ≥817. 综上,b 的取值范围是[817,+∞).五.双函数“任意”+“任意”型战略思想十:12,x A x B ∀∈∀∈,使得12()()f x g x ≥成立min max ()()f x g x ⇔≥ 例12.已知函数32149()3,()332x cf x x x xg x +=--+=-,若对任意12,[2,2]x x ∈-,都有12()()f x g x <,求c 的范围.解:因为对任意的12,[2,2]x x ∈-,都有12()()f x g x <成立,∴max min [()][()]f x g x <,∵'2()23f x x x =--,令'()0f x >得3,1x x ><-x >3或x <-1;'()0f x <得13x -<<; ∴()f x 在[2,1]--为增函数,在[1,2]-为减函数. ∵(1)3,(2)6f f -==-,∴max [()]3,f x =.∴1832c+<-,∴24c <-. 例13.已知两个函数232()816,()254,[3,3],f x x x k g x x x x x k R =+-=++∈-∈;(1) 若对[3,3]x ∀∈-,都有()()f x g x ≤成立,求实数k 的取值范围; (2) 若[3,3]x ∃∈-,使得()()f x g x ≤成立,求实数k 的取值范围; (3) 若对12,[3,3]x x ∀∈-,都有12()()f x g x ≤成立,求实数k 的取值范围; 解:(1)设32()()()2312h x g x f x x x x k =-=--+,(1)中的问题可转化为:[3,3]x ∈-时,()0h x ≥恒成立,即min [()]0h x ≥. '2()66126(2)(1)h x x x x x =--=-+;当x 变化时,'(),()h x h x 的变化情况列表如下:因为(1)7,(2)20h k h k -=+=-,所以,由上表可知min [()]45h x k =-, 故k-45≥0,得k ≥45,即k ∈[45,+∞).小结:①对于闭区间I ,不等式f(x)<k 对x ∈I 时恒成立⇔[f(x)]max <k, x ∈I;不等式f(x)>k 对x ∈I 时恒成立⇔[f(x)]min >k, x ∈I.②此题常见的错误解法:由[f(x)]max ≤[g(x)]min 解出k 的取值范围.这种解法的错误在于条件“[f(x)]max≤[g(x)]min ”只是原题的充分不必要条件,不是充要条件,即不等价.(2)根据题意可知,(2)中的问题等价于h(x)= g(x)-f(x) ≥0在x ∈[-3,3]时有解,故[h(x)]max≥0.由(1)可知[h(x)]max = k+7,因此k+7≥0,即k ∈[7,+∞).(3)根据题意可知,(3)中的问题等价于[f(x)]max ≤[g(x)]min ,x ∈[-3,3]. 由二次函数的图像和性质可得, x ∈[-3,3]时, [f(x)]max =120-k.仿照(1),利用导数的方法可求得x ∈[-3,3]时, [g(x)]min =-21.由120-k ≥-21得k ≥141,即k ∈[141,+∞). 说明:这里的x 1,x 2是两个互不影响的独立变量.从上面三个问题的解答过程可以看出,对于一个不等式一定要看清是对“∀x ”恒成立,还是“∃x ”使之成立,同时还要看清不等式两边是同一个变量,还是两个独立的变量,然后再根据不同的情况采取不同的等价条件,千万不要稀里糊涂的去猜..六.双函数“存在”+“存在”型战略思想十一:12,x A x B ∃∈∃∈,使得12()()f x g x ≤成立min max ()()f x g x ⇔≤;12,x A x B ∃∈∃∈,使得12()()f x g x ≥成立max min ()()f x g x ⇔≥.例14.已知函数3()ln 144x f x x x=-+-,2()24g x x bx =-+.若存在1(0,2)x ∈,[]21,2x ∈,使12()()f x g x ≤,求实数b 取值范围.解析:22113(1)(3)()444x x f x x x x--'=--=-, ()f x ∴在(0,1)上单调递增,在(1,2)上单调递减,min 1()(1)2f x f ∴==-.依题意有min max ()()f x g x ≤,所以max 1()2g x ≥-.又22()()4g x x b b =--+, 从而⎪⎩⎪⎨⎧-≥-≥21)2(21)1(g g ,解得817≤b . 战略思想十二:“12,x A x B ∃∈∃∈,使得12()()f x g x =成立”等价于“()f x 的值域与()g x 的值域相交非空”.例15.已知函数32()(1)(2)()f x x a x a a x a R =+--+∈,191()63g x x =-.是否存在实数a ,存在[]11,1x ∈-,[]20,2x ∈,使得112'()2()f x ax g x +=成立若存在,求出a 的取值范围;若不存在,说明理由.解析:在[]0,2上()19163g x x =-是增函数,故对于[]0,2x ∈,()1,63g x ⎡⎤∈-⎢⎥⎣⎦. 设()()()22322h x f x ax x x a a '=+=+-+,当[]1,1x ∈-时,∈)(x h [312-2--a a ,52-2+-a a ].要存在]1,1[1-∈x ,]2,0[2∈x 使得()()12h x g x =成立,只要[312-2--a a ,52-2+-a a ]Φ≠-⋂]6,31[考虑反面, [312-2--a a ,52-2+-a a ]Φ=-⋂]6,31[则 21523a a ->--或6<312-2--a a ,解得1a >-1a <-,从而所求为1133a --≤≤-+.。
警惕函数中的任意性与存在性

教 教学中如何让学生吃透函数中的任意性与存在性. 师 版 关键词 :函数教学 ;任意性 ;存在性
在高三数学综合考试中 , 诸如 “ 对任 意 x, 某某恒成立 ” 的问题 , 在每套试题中 几乎都能见其 身影 . 2009 年 江 苏 苏 锡 常 镇 四 市 高 三 数 学 模 拟 测 试 第6题 : 命 题 “埚x∈R,2x -3ax+9<0为假命题 ,则实数 a
! ! ! ! ! ! ! ! !
应同时满足
1 9 1 , ≤ - 5 f(1) 1! 1 1 1 - ≥ f(k) f(k+1) (k+1)!
对
能不唯一, 但系数范围有限制 ) ;
(3) 构 造 单 调 数 列 或 利 用 数 学 归 纳 法证明之. 下面再举两例说明.
21 a≥ , 26
· a 2k+1≤2k+1-1
《2009 年 江 苏 高 考 最 后 冲 刺 抢 分 必 做 》P71 第 1 题 的 第 二 问 改 为 “ 任 意 x ∈
x 三一模统测第 5题 :“ 若函数 f (x)= k-2 x
1+k2
在定 义 域 上 为 奇 函 数 , 则 k=
.”
当 0 在其定义域内时 , 利用 f (0) =0 很 容 易 得到k=1, 但学生往往忽视x=0的存在性 , 当x≠0时 ,此时只能根据定义 ,得到k=-1. 函数是高中数学的一条主线 , 不等 式 、三角 、数列 、导数等都与函数有着极为 密切的联系 ,是不可分割的 . 抓好高一函 数中的任意性与存在性教学 ,不仅有利于 高一学生对函数的理解 , 更有利于三角 、 数列 、 立体几何的教学 , 对高三解决含参 问题也 有极大的帮助 . 笔 者 就 此 谈 了 点 自己多年教学中的一点感悟 , 不妥之处 , 欢迎批评指正.
浅议函数中任意性与存在性问题

浅议函数中任意性与存在性问题姻文/陈刚盐城市阜宁县陈集中学,江苏阜宁224400函数的任意性与存在性问题,是一种常见题型,也是高考的热点之一。
它们既有区别又有联系,意义和转化方法各不相同,容易混淆。
对于这类问题,利用函数与导数的相关知识,可以把相等关系转化为函数值域之间的关系,不等关系转化为函数最值大小的比较。
下面结合实例来看看函数中的任意性与存在性问题在解题中的区别。
1. 若函数()f x 的定义域为D ,对任意x D Î时有()0f x ³恒成立min ()0f x Û³;()0f x £恒成立max ()0f x Û£。
例1. 设函数32()29128f x x x x c =-++,若对任意[0,3]x Î,都有2()f x c <成立,则实数c 的取值范围是解析 因为32()29128f x x x x c =-++,由2()f x c < 所以32229128x x x c c -++<,所以32229128x x x c c -+<-令32()2912g x x x x =-+,欲使2()8g x c c <-对任意[0,3]x Î恒成立,则需使max ()g x <28c c -对任意[0,3]x Î成立即可。
所以 2()61812g x x x ¢=-+ 令()0g x ¢=,得121,2x x ==,当(0,1)x Î时,()0g x ¢>,所以函数()g x 在区间(0,1)上单调递增;当(1,2)x Î时,()0g x ¢<,所以函数()g x 在区间(1,2)上单调递减;当(2,3)x Î时,()0g x ¢>,所以函数()g x 在区间(2,3)上单调递增.又由(1)5,(3)9g g ==,故当[0,3]x Î时,max ()9g x =由题意得 298c c <-,得91c c ><-或。
方法技巧专题16函数中恒成立与存在性问题

方法技巧专题16函数中恒成立与存在性问题在数学中,函数是一种描述两个集合之间的对应关系的工具。
函数中的公式通常包含变量,通过给定变量的值,可以计算出函数的值。
然而,在函数的研究和应用中,我们会遇到一些函数恒成立与存在性的问题。
首先,函数中的恒成立问题是指函数中一些等式对于所有变量的取值都成立。
这意味着,无论我们取函数中的任意变量值,方程都会成立。
如果我们证明了一些等式在整个定义域上都成立,那么我们就称它为函数中的恒成立等式。
例如,对于任意实数x,函数f(x)=x^2-x+6中的等式f(x)=f(2)始终成立。
我们可以验证当x取任意实数时,等式都成立。
这说明f(x)=f(2)是这个函数中的恒成立等式。
其次,函数中的存在性问题是指函数是否存在合适的定义域和值域。
函数的定义域是指所有可能的输入值,而值域是指函数输出的所有值。
在研究函数时,有时候我们需要确定一个函数是否存在,并找到合适的定义域和值域。
例如,考虑函数f(x)=1/x,在x=0时,函数的定义域不存在,因为0作为除数是不合法的。
然而,在其他任意实数x上,函数都有定义,并且值域是实数集合。
因此,函数f(x)=1/x在定义域上存在,并且值域为实数。
解决函数中恒成立与存在性问题的方法和技巧如下:1.使用代数方法:我们可以通过代数运算和等式推导来证明函数中的恒成立等式。
根据等式的性质和规律,我们可以对等式进行变形和化简,证明等式在所有变量取值下都成立。
2.使用图形方法:对于一些函数,我们可以通过绘制图形来分析函数的行为和性质。
通过观察函数的图形,我们可以判断函数是否存在,以及函数中是否存在一些等式。
3.使用定义和性质:函数的定义和性质是解决函数恒成立与存在性问题的重要依据。
我们可以运用函数的定义和性质,结合数学推理和逻辑推导,来证明函数中的恒成立等式和存在性问题。
4.使用反证法:当我们无法通过直接证明函数的恒成立等式或存在性问题时,可以尝试使用反证法。
函数中的任意和存在性问题知识讲解

问题一: 已知函数 f ( x) 2k2 x k, x [0,1], 函数 g( x) 3x2 2(k 2 k 1)x 5, x [1,0],
变式 2:存在 x [0,1] x [1,0],使得
1
2
g( x2 ) f ( x1) 成立,求 k 的取值范围.
1
2
g( x2 ) f ( x1) 成立,求 k 的取值范围.
变式 3:存在 x [0,1], x [1,0],使得
1
2
g(x ) f (x )成立, 求 k 的取值范围.
2
1
变式
4:对任意
x 1
[0,1],存在
x 2
[1,0]
,
使得 g(x ) f (x )成立,求 k 的取值范围.
2
1
1
2
g( x2 ) f ( x1) 成立,求 k 的取值范围.
变式
3:对任意
x 1
[0,1],存在
x 2
[1,0]
,
使得 g(x ) f (x )成立,求 k 的取值范围.
2
1
走进高考: (09 浙江理)
已知函数 f ( x) x3 (k2 k 1)x2 5x 2,
小结
1.对函数中的存在性与任意性问题: 相等关系转化为函数值域之间的关系, 不等关系转化为函数的最值大小.
2.解题中要注意数学思想方法的应用:如转化与 化归思想、数形结合思想、分类讨论思想等.
作业
已知函数 f ( x) 2k2 x k, x [0,1], 函数 g( x) 3x2 2(k2 k 1)x 5, x [1,0],
2
函数中的任意性与存在性问题

龙源期刊网
函数中的任意性与存在性问题
作者:马军辉
来源:《新课程·教师》2013年第11期
任意与存在在逻辑上是互为否定的两个量词。
近几年全国各地的高考题以它们立意命题,已成为考查高中数学知识的热点。
尤其在函数与导数及不等式中频频出现,由于这类问题灵活多变,思辨性强,大多数学生望而生畏、束手无策。
本文通过对几道具有代表性、示范性的高考题进行改编并深入探究,通过一题多解、一题多变,总结出解决这类问题的思路与方法。
需要说明的是,通过分离参数最终转化为不含参数的新函数的最值问题,是我们解决这类问题的主要方法。
总之,处理函数中的任意性与存在性问题的主线是运用函数的最值,本文以一题多解、一题多变来培养学生思维的灵活性,加深对任意性与存在性问题的认识。
当然,在分析问题时还是要对问题进行适当的转化,找到最有效的解决途径,提炼出解题的思维与方法,提高思维能力与数学素养。
编辑薄跃华。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题函数中的任意和存在性(2)
对函数中的存在性与任意性问题,可把相等关系问题转化为函数值域之间的关系问题,不等关系转化为函数的最值问题。
①若a>f(x)恒成立,则a>f max(x)(如果函数没有最大值,其值域是
(m,n))则a≥n
若a≤f(x)恒成立,则a≤f min (x)(如果函数没有最小值,其值域是(m,
n),)则a≤m
②设函数f(x)的定义域为A
若∃x1∈A,使a≥f(x1)成立,则a≥f min (x) (如果函数没有最小值,
其值域是(m,n))则a≥m
若∃x1∈A,使a<f(x1)成立,则a<f max (x) (如果函数没有最大值,
其值域是(m,n))则a≤n
③若∀x1,x2∈ A,则| f(x1)-f(x2)|≤f max(x)-f min (x)
④∃x1∈D1,∃ x2∈D2,使得f(x1)=g (x2)⇔ f(x)在D1上的值域A与函
数g(x)在D2上的值域B的交集不是空集,即A∩B≠∅
⑤对∀x1∈D1,∃ x2∈D2,使得f(x1)=g (x2)⇔函数f(x)在D1上的值
域A是函数g (x)在D2上的值域B的子集,即A⊆B。
⑥若f(x),g (x)是闭区间D上的连续函数,则对∀ x1,x2∈D,使得
f(x1)≤g(x2)⇔f(x) 的最大值小于或等于g(x)的最小值。
即
f max(x)≤
g min(x).
⑦若对∀ x1∈D1,∃ x2∈D2,使得使得f(x1)≥g (x2)⇔ f(x) 在D1上的
最小值不小于g (x)在D2上的最小值。
即f min (x)≥g min(x).。